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2 CHEN AND LEFLOCH

ABSTRACT

This paper is devoted to the derivation of entropy satisfying flux-splittings associated
with a system of conservation laws

Siu+ 0 flu) =0,  u(at)eRF,

endowed with a strictly convex entropy function U : R? — R. A decomposition of
the form f(u) = f¥(u) + f~(u) is called a flux-splitting if +V f* has only real and
non-negative eigenvalues, which we denote by £V f* > 0. We say that it is an entropy
fluz-splitting if, furthermore, U is an entropy function for both

v+ 0. f(v)=0, and Syw + 8, fH{(w) = 0.

When p > 2, the notion depends upon the choice of the entropy U. We say that it is
a genuine fluz-splitting if f¥(u) = f(u) and f¥(u) = 0 when £Vf > +C for C
large enough. Observe that this latter condition is weaker than the standard condition
that f¥(u) = f(u) and fF(u) = 0 when £V f > 0. We say that the splitting is a
diagonalizable fluz-splitting if the three matrices Vf, VT, and Vf~ have a common
basis of eigenvectors.

Flux-splittings induce simple but useful difference schemes for the approximation of
hyperbolic systems. We obtain in this paper a framework for the construction and anal-
ysis of these schemes. We prove that the schemes defined from an entropy flux-splitting
satisfy a discrete cell entropy inequality. For the scheme generated from a diagonalizable
splitting, the principle of bounded invariant regions applies to the scheme, and provides an
a priori L® estimate. Using compensated compactness arguments, we deduce the strong
convergence of the flux-splitting schemes associated with strictly hyperbolic and genuinely
nonlinear systems of two conservation laws.

This paper includes in a unified framework for the existing flux-splittings (Steger-
Warming, van Leer, kinetic, Lax-Friedrichs type, etc). The approach leads to several new
properties and characterizations of these splittings, as well as to a method for extending
them to more general situations. A main result in this paper is the existence of a large
family of genuine entropy flux-splittings for several significant examples: the (nonconvex)
scalar conservation laws, the p-system, and the Euler system for an isentropic gas described
by the so-called y-law. The isentropic Euler system is particularly noteworthy. For this
system, we obtain a family of splittings that satisfy the entropy inequality associated with
the mechanical energy. We prove that there exists a unique genuine entropy flux-splitting
that satisfies all the entropy inequalities. It is also the unique diagonalizable splitting
associated with the isentropic Euler system. This splitting could also be derived by the
so-called kinetic approximation. Finally, for this later splitting, we study the Riemann
problem associated with the flux-functions f* and f~, check the strict hyperbolicity
and genuine nonlinearity of the corresponding hyperbolic systems, and prove the strong
convergence of the scheme for v € (1,5/3}.

Our companion paper [9] establishes the existence of entropy splittings for the isentropic
2% 2, as well as full 3 x 3, systems of gas dynamics. The so-called real (i.e., not necessarily
polytropic and perfect) gas is treated. Numerical results will be presented in a forthcoming
publication.
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1. Introduction

This paper and its companion [9] are devoted to the construction of entropy
satisfying flux-splittings associated with the flux-function of any hyperbolic sys-
tem of conservation laws. Flux-splittings are used in order to design the so-called
flux-splitting finite difference schemes, and their high order accurate extensions. In
this work, we propose a general framework which unifies the derivation and anal-
ysis of entropy satisfying flux-splittings. We intent to prove the convergence of
the flux-splitting schemes to the entropy discontinuous solutions to the system of
conservation laws.

Many flux-splittings has been derived in the literature for the Euler systems of gas
dynamics and are currently used in fluid dynamics codes. In Steger-Warming[60]
and van Leer[39], the derivation is heuristic and based on specific properties of
the gas dynamics equations (such as the homogeneity), or on searching for the
“simplest possible” splitting having a given a priori expression (e.g., polynomial
function with minimum order). It is unknown if those splittings are consistent with
the entropy criterion. In the works by Sanders-Prendergast, Pullin, Reitz, Kaniel,
and their followers [56, 54, 55, 34|, the splitting is built up in a rather natural
manner from a kinetic formulation of the gas dynamics equations. It is known
that some flux-splittings satisfy the entropy criterion (Deshpande [25], Perthame
[562], Croisille-Delorme [20, 21]). The present paper continues the analysis of flux-
splittings. The approach is intended to be rather general: we do not make a priori
assumption on the hyperbolic system under consideration, nor on the form of the
flux-splitting, and derive necessary and sufficient conditions for a splitting to exist
and to be entropy satisfying. In this first paper, we explain how most of the classical
flux-splittings can be derived in a simple and systematic manner, and in some cases
characterized uniquely. The properties of general flux-splittings, and especially of
those associated with isentropic Euler systems of gas dynamics are studied below.
We also address the questions of stability and convergence of the corresponding
schemes. We shall return to the gas dynamics systems in [9].

Let us consider a system of p conservation laws in one space variable

(1.1) Syu + O f(u) =0, u(t,z) € 0, t>0,zcR,
together with the Cauchy data
(1.2) u(0,2) = uox), z € R.

The subset O C R? is assumed to be convex and open, the flux-function f : O — R?
to be Lipschitz continuous at least, and the initial data uy : R — O to belong to
the space L2 (R)? of all measurable and bounded functions. We assume that the
system (1.1) is endowed with a strictly convex entropy pair (U, F): O - R x R.
In particular, for each compact subset K CC O, one has

(1.3) VU >CglI and VF=VU'VJ,

where C is a positive constant depending on K, and each smooth solution to (1.1)
satisfies the additional conservation law:

8U () + 8, F(u) = 0.
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Here we have denoted by V2U the Hessian matrix of the scalar-valued function U,
I the p x p identity matrix, VG the Jacobian matrix of a vector-valued function
G, and BT the transpose of a matrix B. As is well-known, the existence of an
entropy pair implies that (1.1) is hyperbolic, but not necessarily strictly hyperbolic.
This means that, for each u € &, the mairix Vf{u) admits p real eigenvalues
A(u) € Ao(u) < -+ < Ap(u), and a basis of right eigenvectors ry(u), r2(u), -+, rp(u).

We also recall that solutions to hyperbolic conservation laws in general are not
smooth, and must be understood in the (weak) sense of distributions. The weak
solutions in the space L (R4 x R)? are not uniquely determined by their initial
data. The so-called entropy condition is necessary to select the relevant solutions.
Several formulations can be considered; in this paper, we refer to the Lax entropy
inequality [38]:

(1.4) BU(u) + 8, F(u) < 0

understood in the sense of distributions. We also refer to {37, 23, 59] for general
background on hyperbolic equations.

We review first the background on the stability and convergence of finite differ-
ence schemes in conservative form associated with the Cauchy problem (1.1)-(1.2).
Note that the rigorous convergence results below will be restricted to systems of two
equations, while L stability estimates and entropy consistency will hold for gen-
eral systems. OQur results of L stability will be restricted to the systems endowed
with invariant regions (cf. [11]). The entropy inequality (1.4) will be satisfied by
the approximations at the discrete level, and the passage to the limit will be justi-
fied. We recall that the convergence of the Lax-Friedrichs’ and Godunov’s schemes
applied to systems was established by DiPerna [27], and extended by Chen [5, 6]
(also [26]). The L stability of the Godunov scheme for general systems was stud-
ied by Hoff in [32]. The entropy consistency for systems is addressed by Tadmor in
[64]. Also see [10] for high order methods. The case of scalar equations (i.e. p = 1)
has also received much attention. For recent progress on the convergence analysis
of schemes applied to scalar problems, we refer the reader to {29, 30, 31, 33, 37,
42, 49, 50, 51, 62, 63] for the fundamental concepts and results on one-dimensional
equations, and to [7, 12, 13, 14, 15, 16, 19, 61], for the extension to multidimen-
sional equations. To our knowledge, the present paper represents the first attempt
to address the convergence of a class of schemes for general hyperbolic systems.

The present work focuses on the class of schemes based on a flux-splitting, i.e.
a decomposition of the flux-function f in the form

(1.5) flu) = fH(u) + £ (u),

where the functions f* are, at least, locally Lipschitz continuous and £V f¥(u) -
has only real and nonnegative cigenvalues. A scheme based on (1.5) is obtained by
averaging together (cf. Section 3) the Godunov schemes associated with each two
systems

(1.6) O+ (v)=0, and G+ d:fT(w)=0.

Since all the eigenvalues of £V f*(u) have a constant sign (independent of u and
the index of the characteristic field), the Godunov scheme for each of the systems
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in (1.6) reduces to the upwind scheme. So (1.6) yields a simple, but efficient for nu-
merical purposes, method in order to approximate of the discontinuous solutions to
(1.1). Flux-splittings has been mathematically studied first on scalar conservation
laws by Engquist-Osher {29]. The concept of flux-splitting has been also studied
in detail in the paper by Harien-Lax-vanLeer [31]. (See Brenier {1, 2] for a related
approach. )

This idea of splitting is actually well-spread in the literature. The first flux-
splittings were derived for the gas dynamics equations by Sanders-Prendergast,
then Steger-Warming and van Leer [56, 60, 39]. The results therein concern the
polytropic and perfect gas, and were next extended to the so-called real gas (i.e.
with no assumption on the equation of state of the gas) in [58, 66]. The dynamics
of reactive gas was treated in [3] and [36]. We refer to the paper by Lerat [44] for
the first mathematical analysis of the Steger-Warming scheme. Based on a kinetic
interpretation of the gas dynamics equations, numerous flux-splittings were derived
beginning with the works Sanders-Prendergast, Pullin, Reitz, Kaniel, Deshpande,
etc, c.f. {56, 54, 55, 34, 25]. The first mathematical analysis of those schemes was
given by Perthame [52, 53], who proved the entropy consistency of kinetic schemes
for the gas dynamics system. See also [45, 46] for the mathematical analysis of the
kinetic approximation at the continuous level. A related approach is considered by
Bourdel-Delorme-Mazet [4], and Croisille-Delorme [21].

In this paper we attempt to provide a systematic method for the construction
of flux-splittings associated with the system of conservation laws (1.1), and the
analysis of the stability and convergence of the corresponding flux-splitting schemes.
We say that (1.5) is an entropy fluz-splitting if each of the systems in (1.6) is
endowed U as an entropy function. This is actually equivalent to saying that
V2U Vf* are symmetric matrices. When p > 2, the notion depends upon the
choice of the entropy U. We shall say that (1.5) is a diagonalizable fluz-splitting if
the matrices Vf, and V f* have a common basis of cigenvectors.

We say that (1.5) is a genuine fluz-splitting if f*(u) = f(u) and f¥(u) = 0 when
+Vf > +C for C large enough. This condition is weaker than the classical condi- -
tion used by Steger-Warming and van Leer, that f*(u) = f(u) and fF(u) = 0 when
£V f > 0. A genuine splitting leads to an upwind scheme similar to the Godunov
scheme (upwind is often an attractive property for numerical computations), while
a non-genuine splitting leads to a scheme similar to the Lax-Friedrichs scheme, and
generally contains more numerical diffusion than an upwinding scheme.

At first glance, these definitions may seem rather restrictive. Actually, one of
the main results in this paper is the ezistence of a family of entropy fluz-splittings
for many systems occurring in physics. As we show it, diagonalizable splittings can
be constructed for certain systems. For those splittings, the systems (1.1) and (1.6)
have the same Riemann invariants, i.e. the same invariant regions.

We complete this introduction with a brief presentation of the results established
in this paper.

Section 2 contains the general properties satisfied by an entropy flux-splitting.
We show that any system of conservation laws admits a family of entropy flux-
splittings, i.e. the Lax-Friedrichs type splittings as we call them. Namely, those
splittings lead to a variant of the Lax-Friedrichs scheme (first suggested by Shu [57]
for the computation of phase transitions). This splitting is not a genuine splitting,
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however.

A scalar conservation law admits a family of genuine flux-splittings. We recover
the Engquist-Osher’s splitting as an “extremal” case in this family. With regard
to the entropy inequality (1.4), we observe that any flux-splitting is actually an
entropy flux-splitting. In other words, in the special case of scalar equations, the
condition +V f¥(u) > 0 is enough to imply the consistency of the splitting scheme
with the entropy inequality (1.4). The result does not hold for systems, and is
related to the fact that any function is an entropy when p = 1. (An entropy must
satisfy an —overdetermined, in general- set of compatibility relations when p > 2.)

We prove in Section 2 that the p-system of isentropic gas dynamics in Lagrangian
coordinates admits a family of entropy flux-splittings. With any entropy flux-
function to the p-system, we can associate an entropy flux-splitting. Note that the
p-system does not admit any genuine flux-splitting: this is due to the fact that the
two eigenvalues of the p-system have distinct signs.

Next the isentropic Euler system for the so-called y-law gas is fully studied.- We
prove in Section 4 that this system admits a whole family of entropy flux-splittings
associated with the mechanical energy function (which plays the role of an entropy
function for that system). Moreover, among those decompositions, there exists a
unique splitting which is consistent with ell the entropy functions associated with
the Euler system. As a matter of fact, we show that two entropy functions are
enough to characterize a unique splitting. It is noteworthy that this splitting can
also be characterized as being the only diagonalizable splitting. Our results also
show that the class of the so-called kinetic splittings contains a single flux-splitting
that satisfies all the entropy inequalities. This later splitting was first pointed out
by Khobalatte-Perthame [35] in the (slightly different) situation of the full 3 x 3
system of gas dynamics. We refer to Chen-LeFloch [9] for the extension to the full
3 x 3 system of gas dynamics, and to arbitrary equations of state.

The main results of stability and convergence in this paper are as follows. In
Section 3, we consider a strictly hyperbolic system of conservation laws, and prove
that a scheme based on an entropy flux-splitting is consistent with the entropy
inequality (1.4), and so can converge to only an entropy solution. We next restrict
ourselves to a system of two equations endowed with bounded invariant regions,
and show that the flux-splitting scheme is stable in the L% norm if (1.5) is a
diagonalizable splitting. From DiPerna’s work {27] based on the compensated
compactness method developed by Murat and Tartar [47, 48, 65], it follows that
the entropy flux-splitting schemes converge in the strong L' sense to an entropy
weak solution. For general flux-splittings, we use the notion of nonconservative
product due to Dal Maso-LeFloch-Murat [24] and LeFloch-Liu [43], and derive a
discrete cell entropy inequality in nonconservative form.

Section 5 is devoted to the proof of convergence of a flux-splitting scheme for the
isentropic Euler system. The solutions can include the vacuum state, at which point
the system becomes nonstrictly hyperbolic. The proof is based on the compactness
framework due to DiPerna [27] and Chen [5, 6, 26]. For the analysis, we have to
determine the regions where systems (1.6) are strictly hyperbolic and/or genuinely
nonlinear in that case. The solution to the Riemann problem for both systems in
(1.6) is shown to exist for arbitrary large jump in the initial data, and satisfy the
Lax entropy inequalities.
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Finally, let us recall that the flux-splitting schemes provide some alternative be-
tween the more classical Godunov and Lax-Friedrichs schemes. They combine the
upwind feature of the Godunov scheme, without the complicated and costly resolu-
tion of Riemann problems. The numerical flux-functions of flux-splitting schemes
are provided by explicit formulas, as is the case of the Lax-Friedrichs scheme, but
still they contain limited numerical viscosity, and so allow a satisfactory computa-
tion of discontinuities. Furthermore, the numerical flux-function of a flux-splitting
scheme can be of class C', and even sometimes of class C%, while most schemes
have only Lipschitz continuous flux-functions. This latter property is useful for the
computation of steady state solutions using a time-dependent method.

The content of this paper was announced in [8].

2. Definitions and Examples

In this section, we introduce several definitions, and derive the main properties
satisfied by an entropy flux-splitting. As an illustration to the definitions, the
existence of such splittings is checked for the scalar conservation laws and the
system of isentropic gas dynamics in Lagrangian coordinates.

2.1. Definitions and Main Properties. We consider the system of conservation
laws (1.1) endowed with a strictly convex entropy pair (U, F) satisfying (1.3). Let
us recall the following definition, which is classical.

Definition 2.1. A flux-splitting for the system (1.1) is a decomposition of the
form

(2.1a) f(u) = fH(u) + f~(u), u € O,

where the functions f* : © — R? are locally Lipschitz continuous, the Jacobian
matrices V f* have only real eigenvalues /\;-E, 1 < j £ p, and a basis of eigenvectors

r;-", 1 €3 < p, and satisfy:

AT () S A5 () - < A7 (w) <0

We shall use the notation +V f* > 0 if the matrix £V f* has only real and
nonnegative eigenvalues, and possesses a basis formed by eigenvectors. The follow-
ing definition contains the new concept which is at the origin of this paper. The
definition involves the entropy function U of system (1.1) and the following two
systems

(2.2a) Ov + Bzf+(v) =0, v€0,

(2.2b) Bpw + 0, f(w) =0, weO,

Note in passing that Definition 2.1 implies that (2.2} are hyperbolic systems. Def-
inition 2.2 is concerned with the entropy inequality (1.4).
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Definition 2.2. We say that (2.1) is an entropy flux-splitting for the system (1.1)
if the function U is an entropy function for both systems (2.2a) and (2.2b). In
other words, there must exist entropy flux-functions F£ : © — R such that all the
smooth solutions v and w to (2.2a) and (2.2b) also satisfy

(2.3a) 8 U(v) + 8, Ft(v) =0,
(2.3b) 8 U(w) + 8, F™(w) =0,
respectively.

If the condition in Definition 2.2 holds for an arbitrary decomposition like (2.1a),
then the systems (2.2) necessarily are hyperbolic, although the sign conditions
(2.1b) need not hold. When necessary, we shall specify that (2.1) is an entropy
splitting associated with the entropy U. For some systems, we shall be able to
derive splittings that satisfy Definition 2.2 for all entropy functions. As we prove it
below (Proposition 2.1), this is the case of the diagonalizable splittings, as we call
them.

Definition 2.3. We say that (2.1) a diagonalizable flux-splitting if the three ma-
trices Vf, VfT, and Vf~ have a common basis of eigenvectors.

We introduce yet another definition.

Definition 2.4. We say that (2.1) is a genuine flux-splitting if for each compact
subset K CC O, and for some positive constant Cy, and all v in K,

fr) = flu), f(u)=0, i I(u)>Ck,

(24) _ ,
frw)=0, f(u)=Ff@), i M(u)<-Ck.

Our primary interest in this paper concerns the genuine flux-splittings. Note that
Definition 2.4 is of interest only in the case of systems whose eigenvalues change
their sign, as is the case of the system of gas dynamics in Eulerian coordinates.
A system, whose all eigenvalues are either non-negative or non-positive, admits
a trivial splitting (Proposition 2.2). A system whose eigenvalues have a constant
sign independent of u, but whose not all eigenvalues have the same sign can not .
admit a genuine splitting. This latter case arises with the system of gas dynamics
in Lagrangian coordinates to be studied in Proposition 2.6. Proposition 2.5 below
will give a full description of the genuine entropy flux-splittings associated with a
scalar equation.

The following proposition provides a characterization of the entropy flux-splittings
that will play a central role in this paper. From now on, we tacitly assume that the
flux-function f and the entropy U admit locally bounded second order derivatives.

Proposition 2.1. (i)- The decomposition (2.1) with f* € W%°°(O)? is an entropy
flux-splitting if and only if

(2.5) V2UVft and VEUV ™ are symmetric matrices.
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(ii)}- In particular, a diagonalizable splitting is an entropy flux-splitting for any
choice of entropy function U. Furthermore, the three systems in (1.1) and (2.2)
possess the same set of Riemann invariants.

The proof of Proposition 2.1 is based on the following classical fact: since U is
an entropy function to system (1.1), VF = VUV f is a gradient, and thus VZUV f
is a symmetric matrix. The latter condition is also a sufficient condition for U to
be an entropy. This characterization of an entropy function can applied to each
system in (2.2) as well.,

We can prove that any system of conservation laws admits a large family of
entropy flux-splittings. The proof relies directly on Proposition 2.1,

Proposition 2.2. (i)- Let (1.1) be a system of conservation laws endowed with a
strictly convex entropy function U. Consider the decomposition:

(26)  fH(u)=Af(u)+Bu, f(u)=({—-A)f(u)-Bu, ueo,
where, for all u € O, the constant p X p matrices A and B satisfy

(2.7)  V2U(wAVf(u), and V?*U(u)B are symmetric matrices,
and

(2.8) B+ AVf(u) 20, B+{(A-IDVf(u)20.

Then (2.6) — (2.8) defines an entropy flux-splitting for the system (1.1).
(ii)- Conditions (2.7) — (2.8) are satisfied (at least on any compact subset of O)
with the choice:
.

(2.9) A= 2I , B =0bI with b positive large enough.

In that case (2.8) is a diagonalizable splitting.
(iii)- Let (1.1) be a system whose characteristic eigenvalues \;(u) have a constant
sign independent of both t and u, say A;(u) > 0. Consider the decomposition:

(2.10) fr(u)= f(u), and Ff (u)=0, ueO.

Then (2.10) defines a (trivial) entropy flux-splitting.

The splittings found in Proposition 2.2 will be called the Laz-Friedrichs type
splittings. The scheme designed from (2.6) (cf. Section 3) turns out to be a simple
extension of the Lax-Friedrichs scheme. This generalization of the Lax-Friedrichs
scheme was first proposed by Shu [57] for mixed (hyperbolic-elliptic) problems.

By contrast to the result in Proposition 2.2, we observe that an arbitrary system
need not admit a genuine entropy flux-splitting. At the end of this section and in
Section 3, we shall derive such genuine splittings. Note also that a given system
admits several distinct splittings. However, it will be shown in Section 4 (cf. also
[9]) that the system of gas dynamics admits a class of genuine entropy splittings,
and that a unique splitting can be selected among those. The general definitions
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above assume the splitting to be Lipschitz continuous only, however smoother flux-
splittings often exist as we shall see below.

2.2. Actual Derivation of Flux-Splittings. The actual construction of

TR« SRS ¥ 1 ia b A +% 1. : 3 i its
entropy fux-splittings is based on the characterization in Proposition 2.1. Let us

comment upon the general splittings first, and the diagonalizable ones next.

Consider first the case of a symmetric system (1.1), i.e. that Vf is symmetric.
Then the function U(u) = |u[?/2 is an entropy function. Since Vf is a symmetric
matrix, there exists a scalar function ¥ : @ — R such that: f = V. The entropy
inequality (1.4) then becomes:

(211) 0:(1) + 0, (u- Vow) - v(w) <0

With that choice of entropy, (2.5) is equivalent to saying that each matrix V f*is
symmetric. So we can search for f* in the form:

(2.12) fE =yt vt Lo =9, with ¥ : 0 — R.
It is easily checked that the sign conditions (2.1b) are equivalent to saying that:
(2.13) ¥t and ¥~ are convex and concave functions, respectively.

Therefore the question of the construction of flux-splittings is reduced to the ques-
tion of finding a decomposition of the function ¢ as the sum of a convex function
and a concave function. As we will see, this can be done geometrically in the scalar
case. However, such a decomposition need not be possible for systems.

The case of non-symmetric systems is slightly more involved. We observe that
any system can be put in symmetric form by using the so-called entropy variable.
By Definition 2.2, the three systems under consideration have a common entropy
variable. By setting v = ¢(u) = VU(u), the system (1.1) takes the form:

(2.14) O:g(v) + Oz h(v) = 0, v(t,z) € O,

where @' = $(0), g(v) = ¢~1(v), and h(v) = f(¢~1(v)). It can be checked that
Vg and V,h are symmetrix matrices. In view of Proposition 2.1, the entropy
flux-splittings associated with system (1.1) are those of the form:

(2.15) h(v) = k¥ (v) + 2~ (v) with V,h%(v) symmetric.

Therefore, a similar argument as above leads us to the following result:

Proposition 2.3. The entropy flux-splittings (2.1) associated with a system of
conservation laws (1.1) endowed with a strictly convex entropy function U are
given by the formula:

(2.16) fHu) = Vopt(v), f )=V (v),
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where we have set v = V,U(u), the scalar-valued function 1(v) is defined by the
relation f(u) = V43(v), and

(2.17a) ¥(v) =97 (v) + 97 (v)

is any decomposition of the function 4 in the sum of a “convex function” ¥+ and
a “concave function” ™, in the following sense: '

(2.17b) 4V VU > 0.

Decompositions of the form (2.17) were first pointed out by Bourdel-Delorme-
Mazet [4] in their work on the so-called K-diagonalisable systems, which indeed
admit naturally an entropy flux-splitting in the form (2.17).

We now consider the derivation of diagonalizable fluz-splittings. Without further
restrictions, we shall set

(2.18) ri(u) =rf(u) =77 (u), 7=1,2,---,p.

The eigenvalues of the systems (1.1) and (2.2) satisfy the relation:
(2.19) Ai(w) =2 (@) + A7 (), veO,1<j<p
We also set:

(2.20) P = (ry,ra, - ,1p), A = diag(A1, Az, - Ap).

In practical computations, we shall derive the diagonalizable splittings by searching
for a decomposition of the diagonal matrix A in the form

(2.21) A=At + A~  where A* = diag(\E, \f,- -, ),) > 0,
with the restriction:

(2.22) PA*P~' =V f*  for some functions f%:0 — R?.
Condition (2.22) is equivalent to saying:

(2.22) V(PA*P™') is a symmetric matrix.

Finally we comment upon the positivity conditions (2.1b). Throughout this
paper, all matrices under consideration will have real eigenvalues and a full set of
eigenvectors. This is the case of the Jacobian matrices V f* in the systems (2.2)
provided that the condition in Definition 2.2 holds. In the examples, we shall have
to verify the positivity condition (2.1b). Observe first that the condition (2.1b),
ie. £V f* > 0, is weaker than the more classical requirement +r'V f¥r > 0, for -
all » € R?. The latter condition implies the former one, but the two conditions are
distinet when applied to non-symmetric matrices, which is generally the case here.
For further references, we state the following elementary lemma:
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Lemma 2.4. Let us restrict ourselves to matrices having real eigenvalues only.
—(i) Suppose that p=2. Then the matrix

a b ..
A= ( \ has non-negative eigenvalues

\¢ a)
if and only if:

(2.23) tr{A) =a+d>0, det(A)=ad—bc>0.

~(i1) Suppose that p=3. Then the matrix

aq b1 C1
A=1bs a2 dy has non-negative eigenvalues
C2 d2 ag

if and only if:
(224) tr(A) > 0, ayas + agaz + azay + bibs + cicx +dids > 0, det(A) > 0.

By contrast, the condition +r' Ar > 0, for all r € R?, is equivalent to saying
(when p = 2):

(2.25) tr(A) =a+d>0, det(A+ A")=4ad— (b+¢)* > 0.
Condition (2.25) implies that ¢ and d are non-negative, but this is not equivalent .
to the condition (2.23). For instance, the matrix A = _31 _f /2 has two real

positive, distinct eigenvalues: it satisfies the inequalities (2.23), but not (2.25).

Finally, we observe that, when a diagonalizable splitting does exist, the system
(1.1) must satisfy very peculiar properties. For instance, consider the case p = 2,
and suppose that a diagonalizable splitting exists. In view of Proposition 2.1, the
systems (1.1) and (2.2) have a common set of Riemann invariant coordinates, say
(wy,wy). In that situation, the entropy function U has to satisfy simultaneously
the following three linear PDE’s:

(2.26) (/\2 — ,\1)83)11,,2U -+ 6,,,1 )\23sz + 6w2)«13wlU =0,
and
(2.27) (AF = A5)02, 1, U + 8y AL 0w, U + 80, M 80, U = 0.

In other words, the above PDE’s have one common solution, at least. In the
significant case of the gas dynamics system, we shall show that equation (2.26) is
actually a linear combination of the equations in (2.27).

2.3. Examples of Entropy Flux-Splittings. We now turn to the study of two
significant examples, the scalar conservation laws and the p-system. In both cases,
we establish the existence of a large family of genuine entropy flux-splittings. We
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treat first the case of a scalar conservation law. A genuine splitting by definition
satisfies

[ = f(u) i )2,
L) =) i f(u) =,

~~
o
]
[+
S’

for some nonnegative constant Ap. Non-genuine splittings correspond to the limiting
value Ap = oo, With the choice Ay = 0, (2.28) selects a unigue splitting, namely:

a1
I ) = 27 () £ 1 @),
and so
(2.29) W =3 [ @£ IF @b+ 310 2

We define the flux-functions up to a constant, and so we can drop the parameter
a. When the function f is convex and achieves its minimum at the point u = uy,

we find

%f(u*), for u < uy,

a T(u) =
(2:302) Fo={ - Lf(w), foruui,
f(u) - %‘f(u*): for u < u.,
%f(u*), for u > uy.

(2.30b) F(w) = {

Formulas (2.29) and (2.30), which correspond to Aq = 0, are due to Engquist-Osher
[29]. It follows from the results in [29] that (2.29) and (2.30) are indeed entropy
flux-splittings. In fact, Definition 2.2 is easily seen to provide no restriction on the
splittings when p = 1.

For arbitrary values of Ag, we state the following result:

Proposition 2.5. The flux-splittings of class W1'> associated with a scalar con-
servation law have the form:

(231) f%(u) = g(u)s f+(u) = f(u) '"' g(u),
where ¢ is any function satisfying:

(2.32) g € W™ with ¢’ > max(0, f'), and ulirfmg(u) = 0.

All these splittings are entropy flux-splittings. Moreover, (2.31)—(2.32) is a genuine
splitting iff, for some given constant Ay > 0,

(2.33) ¢'(u) = max(0, f'(u)) when [f'(u)] > Ao.
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Furthermore, a scalar conservation law admits a unique genuine entropy flux-
splitting satisfying condition (2.33) with the extremal value of the parameter A,
1'.e. /\0 = 0.

Geometrically, it is not hard to determine the functions ¢ that satisfy the condi-
tions (2.32)-(2.33). Consider the graph of the function f'. The graph of the function
¢' must lie above both the u-axis and the graph of f’. Moreover, the function g'(u)
coincides with f'(u) as those points u where f'(u) is larger than )¢, and coincides
with the u-axis when — f'(u) is larger than Aq. Note that ¢' is defined almost ev-
erywhere only. The function ¢' can be constructed to be piecewise continuous only. .
Note that the normalization ulimw g(u) = 0 is chosen for definitness only. Finally,

we observe that the numerical viscosity of the difference scheme associated with
the flux-splittings in Proposition 2.5 is minimal exactly for the choice Ay = 0. This
can be checked from the definition in [62], for instance.

Next we treat the case of the p-system, which is the isentropic system of gas
dynamics in Lagrangian coordinates:

(2.34) Syw — Gzv = 0, O + Oyp(w) = 0.

Here w > 0 and v represent the specific volume, and the velocity of the gas, respec-
tively. The pressure p = p(w) is a given function satisfying

dp
(2.35) € Wi P(R) end == <0,

which implies that (2.34) is a strictly hyperbolic system. We do not assume that
the system is genuinely nonlinear. The system (2.34) has the form (1.1) with

w=(w,0), and f(u)=(-v,p(w)).
The eigenvalues and a set of eigenvectors are given by:

{ M(u) = —c(w) <0 < Ag(u) = o(w),
ri(u) = (Le(w)),  ra(u) =(1,—c(w)),

where c(w) = /~—p'(w) is the sound speed. We recall that (2.34) admits an infinite
set of entropy functions U. They are obtained by solving the linear hyperbolic
PDE:

(2.36) &2 U+ p'(w)d2,U =0,

which can be done locally in the phase plane, at least. Among them is the physically
meaningful entropy, the mechanical energy, (Us, Fy) defined by

Uy(w,v) = Wi(w) + =, Fu(w,v) = p(w),

where W, (w) = — [ p(s)ds is the internal energy of the gas.
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Proposition 2.6. Let us consider the flux-splittings of class W associated with
the p-system of gas dypamics (2.34).
(i) — The splittings consistent with the mechanical energy (Us, F\) are as follows:

o e = () e = (M),

where G is an arbitrary function of class W2™ satisfying the positivity conditions:
pd ymng p

Ow(c28,G) + 82,G > 0,

2.38
(2.38) ?0y (¢7%0,G)82,G — max (182,G|%, |¢* + 85, G|*) < 0.

(i) — A splitting consistent with the mechanical entropy U, and the dual mechanical
entropy U, defined by [28]:

(2.39) Ui(w,v) =wv, Fu(w,v)= —%— + wp(w) + W(w)

is then consistent with all the entropy functions associated with system (2.34).
Those splittings are described by (2.37) —(2.38) where G is an entropy flux function
to system (2.34), i.e. a solution to the linear hyperbolic PDE:

(2.40) 0w (c728,G) — 02,G = 0.

(iii) — The class of diagonalizable splittings coincides with the class of splittings
described in (ii).

Proposition 2.6 does not assume system (2.34) to be genuinely nonlinear. We
recover the Lax-Friedrichs type splittings (2.6) with A = o and B = abl, a and b
being constants, with the choice:

G(w,v) = a(Fu(w,v) — bFp(w,v))
(2.41)

= -;—1;2 + avp(w) — b(Wy(w) + wp(w)).

and so:
_f bw—av i bw + (1 - ajv
fru) = (bv + ap(w))’ frw) = (bv - (1 — a)p(w))'
Condition (2.38) holds if
(2.42) b > max (lal, |1 — af) max c(w),

which, for b large enough, is satisfied on sets of the form {(w, v)je(w) < M} (M >0
constant}.
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Proof of Proposition 2.6. Using the entropy variables

VU, = (—p(w),v) = (c(w)*,v),

1t 1e nat B enld 0o cherlr the ciatamant (1\ fraom the reenlt in prnnns OH ‘) ‘2 In

AU AL BAUU LAILLIVIAY UV AT baal DusiuTadaTuaat (d ) ke SR badls LUaD Ay 4dd SApss ira

order to prove (ii), we use the characterization (2.5). The splitting (2.37), which is
consistent with the entropy Uy, is consistent with another entropy U if and only if:

(2.43) U (c72Gw) , + U,,,,UC’M = Upuw 2Gow + UpwGoo.
An entropy by definition satisfies:
8,,U +1p'(w)85,U =0,
thus (2.43) is equivalent to:
(2.44) Uwo{Gww = (¢7*Gu) } = 0.

Clearly, it suffices one additional entropy such that Uy, # 0 in order to get the
equation (2.40). For the dual mechanical entropy, one has: Uyy = 1.

We now discuss the derivation of the diagonalizable splittings. With the notation
in (2.18)-(2.21), one gets

1 1 o 1 1
rw=(1 1) o rar=g (1),
Ao (M 0 _ AP0 L (AT 0N Lt a-
A0 A/ Lo A 0 A/ '

Condition (2.22) here reads

ape1_ L1 1N/XE 0N 1\_ o
PATP T 9% \¢c —c¢ 0 )\g: c -1 =V

for some functions f* and £, i.e.,

and

1 eAF+AT) (AT =2 o
(2.45) 2¢ (62(/\:1‘{: - )\;h) c(,\ih + ,\;h) = VI

The coefficients of the matrix in (2.45) are supposed to be Lipschitz continuous at
least, so (2.45) holds if and only if

8, (\F + %) - 0, (10?: -a) =0
(2.46) 8y (A = X)) - 8, (\F +2F) =0

For convenience, we define auxilliary unknown functions a® and g% by:

M- =ate, M+ A =64
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and system (2.46) takes the form:

(2.47) Owat + 8, =0, o(w)28ya® +8,8% =0,

Equation (2.47) yield a second order linear hyperholic PDE satisfied by the function
a¥

(2.48) 82 o — 82 (c(w)?a™) =0,

which is the equation for an entropy to system (2.34), ¢f. (2.36). In view of (2.45),
the gradient matrix of f is computed in term of the functions o and g+

1 ot
(2.49) Vfimg( ﬁzi:h ;i: )

—CT

Thus there exists a pair of functions (k,!) such that

o= (5)

Namely take k such that O,k = g/ 2 and 8,k = at/2, which is possible since
dwat+8,8% = 0. Similarly, ! satisfies: 8yl = c*at /2 and 8,1 = — 7% /2. Moreover,
for the gradient of f* to have the form (2.49), one need have

Bl = Ok,  Ouwl = —c?,k,

which means that (k, I) is an entropy pair. Similarly, we can check that f* therefore
takes the form (2.37). The proof of Proposition 2.6 is complete. 0

3. Convergence of Entropy Flux-Splittings Schemes

In this section we consider the finite difference schemes defined from a flux-
splitting for system (1.1). We prove that a scheme built up from an entropy split-
ting satisfies a discrete cell entropy inequality, which has the usual conservative
form. The scheme is stable in the L® norm provided (1.1) has bounded invariant
regions and the flux-splitting is a diagonalizable splitting. The convergence follows
by compensated compactness arguments for strictly hyperbolic and genuinely non-
linear systems of two equations. When the scheme is built up from an arbitrary
flux-splitting, we derive a discrete cell entropy inequality which generally has a
nonconservative form. '

Let 7 > 0 and A > 0 be the time and space mesh lengths, respectively. For all
integers n > 0 and j, set A =7/h, Tipl = G+ %)h and ¢, = n7T. We consider finite
difference schemes in conservative form for the approximation of (1.1)—(1.4):

(3.1) uitt =} — Mejys —9iiy) 95y = 9(uf ulh)

for all integers n > 0 and 7, with u} given by

Ty
(3.2) W= / Y o(2)ds.
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The numerical flux g : O x @ — RP? is a locally Lipschitz continuous function.
We always assume that ¢ is consistent with the exact flux-function f, that is,
g(u,u) = f(u) for all u in O. By definition, for a flux-splitting scheme, one has

{(3.3) glv,w) = fH{v)+ f (w)  for allv and win O,
where f = f* + f~ is a flux-splitting for system (1.1).

The following decomposition of the scheme (3.1)—(3.3) will be useful in our anal-
ysis:

n 1 -
4 57 = Lt 90
where
(3.5a) “}!-—1/2 = uj - 2A(f+(u}-‘) — f"*'(u;-‘_l)),
(3'5b) u;+1/2 = u? - 2)\(f_(u?+1) - fﬂ(”?))a

i+1/2
obtained from the initial data uf, by applying the upwind scheme to systems (2.2a)
and (2.2b), respectively. The stability of the scheme requires A to satisfy a CFL

condition:

for all integers n > 0 and j. Note that uj'ul /2 and u are the approximations -

T .
(3.6) 2, max (N () 147 (w)]) < 1.
Decompositions of the form (3.4)-(3.5) were first introduced by Tadmor [62] in his
work on the numerical viscosity of E-schemes, and used by Coquel-LeFloch [15] for

deriving sharp estimates of the rate of entropy dissipation in an E-scheme.
We shall denote by R*(u;,u,) the solution to the Riemann problem:

Ot + 8 fE(w®) =0,
(38.7) u(0,2) = { u for z <0,

u, fora >0,

where u; and u, are given in O. It is assumed that, for arbitrary initial data
in the set O, the Riemann problem admits a unique solution satisfying the Lax
entropy inequalities [38]. Throughout this section, the functions FE are assumed
to be at least of class W?%°°. For definiteness, we assume that, for each u, the
characteristic eigenvalues of the gradients V f*(u) are either genuinely nonlinear or
linearly degenerate and, moreover,

(3.8) NE(u) = AF(u) = VAT (u)ry(u) = 0.

In other words, if strict hyperbolicity fails at some point u, the corresponding
characteristic fields have to be linearly degenerate at that point. This is indeed a
sufficient condition for the Riemann problem (3.8) to have a unique solution in the
class of piecewise smooth solutions composed of constant states separated by shock
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discontinuities (satisfying the Lax entropy condition), rarefaction fans, or contact
discontinuities. We refer to Lax [38] for an explicit construction. In view of (2.1b),
the Riemann solution R¥(ui,u,) (respectively R~ (ui,u,)) contains non-negative
(resp. nonpositive) wave speeds, only. In particular, we shall use:

FHER* (un, ur )t e = 0) = 7 (w),
TR (wur)(t, 2 = 0)) = f(ur).

The assumption (3.8) above will be satisfied in the applications we have in mind
(cf. Section 4).

We now define the approximate solutions u
splitting scheme. In each elementary rectangle {(t, z):1z; <z <zj31,0<t< 7'},
we consider the solution u to the Riemann problem

(3.9)

h uf*“, and u” associated with the flux-

Btui + &;f"*“(uﬁ,) =0,
ul, T <01/,
s {5 7o

Ujr1, > Tjpr/2,

and the solution u® to
Bl + 8, f(ut) =0,

0
U $<$'+12
uf‘_({),m):{ J? it1/2

Wi 2> 2

The function u”(t), for 0 < t < 7, is defined by
(3.10) uh(t,z) = %(uf;(t,a:) +ul(t,2).

In view of (3.9), one easily checks that

1 itz
u} = w/ ut(r — 0, z)dz.
h T

j-1/2

Suppose that u"(t) has been defined for all ¢ < ¢,,. Then we define u" on the cell
{(t, ) 2; <T < Tijp1, tn <t tn+1} by the formula above where uf‘,_ and u® are
the solutions to the Riemann problems

Btui + 3,,f'+(uf;_) = 0,

(3.11) Wl (b 2) = { ul, T < zjgag,
Ui, T > Tipifa,
and
Bpul + 8, (uk) =0,
(3.12) uf, & <zjpi,

uh (tn,z) = {

'u.?+1’ z >$j+1/2,
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respectively. Again, with (3.10), we have

1 f%it+i/2
(3.13) wrtt = L / Wh(tnys — 0, 2)da.
J b,
§—1/2
This completes the construction of the flux-splitting approximation. ;From now on
we assume that the conditions {3.6) and (3.7) are satisfied, and (3.3) is an entropy
Hux-splitting. :
The following result concerns the entropy consistency.

Proposition 3.1. Let (3.3) be defined from an entropy flux-splitting. Then the
scheme (3.1)—(3.3) satisfies the local discrete entropy inequalities:

(3.14) U(ufyy ) — Uu}) + 20 (F*(ufy,) - FE(u})) <0,
and thus:
(3.15) U(u?*') = U@u}) + A(F(u})+ F(u}yy) — Fr(uj_,) - F~(u})) < 0.

If the family (u®) is uniformly bounded in the L°° norm, and converges almost
everywhere to an element v € L°°, then u satisfies (1.1), (1.2), and (1.4) in the
sense of distributions.

Proof of Proposition 3.1. By assumption, U is an entropy function for both
systems in (2.2): we denote by Ft the corresponding entropy flux-functions. The
Riemann solution R*(u;,u,), by construction, satisfies the Lax shock entropy in-
equalities. According to [38], it also satisfies the distributional entropy inequality:

(3.16) AU (ut) + 8, FE(u¥) < 0.

Indeed, thanks to the assumption (3.9), (3.16) holds even if strict hyperbolicity fails
at some point. Inequality (3.14) follows by writing (3.16) with the functions uf}, and
integrating it on the rectangles: {(t,m) P2y < T < Tipyyate <E< tn41}. Finally
(3.15) is a consequence of (3.14) and Young'’s inequality for the convex function U,
The passage to the limit into (3.15) is a classical matter by Lax-Wendroff theorem
since (3.14) has the usual conservative form. O

Using the principle of invariant regions due to Chueh-Conley-Smoller [11], we
can check the L° stability of the scheme. As shown in Section 2, systems (2.2)
and (1.1} have the same Riemann invariants, and invariant regions. Based on the
decomposition (3.5), it is easy to see that:

Proposition 3.2. Assume that system (1.1) admnits a set of convex and bounded
invariant regions, and (3.3) is based on a diagonalizable flux-splitting. Then the
scheme (3.1) — (3.3) preserves the invariant domains. and so is stable in the L™
norm: if the initial data ug takes its values in a bounded invariant domain, then so '

does u®*.
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Remark 3.1. Partial results of L stability can be obtained for nondiagonalizable
splittings, provided there exists a (not necessarily bounded in all directions) region
left invariant by systems (2.2) and (1.1). This is actually often the case in the
applications: for instance, the non-negative sign of the mass density in the systems
of gas dynamics is usually an invariant.

Our main result of convergence is as follows.

Theorem 3.3. Let (1.1) be a strictly hyperbolic system of two conservation laws
with genuinely nonlinear characteristic fields. Assume that the system admits an
entropy flux-splitting that satisfies the conditions in Definition 2.2 for all convex
entropy functions. We also assume that the Riemann problem for systems (2.2) can
be solved for large data, and the solutions satisfy the Lax entropy inequalities. Let .
u* be the family of approximate solutions defined from the flux-splitting scheme
(3.1) — (3.3). Suppose that either the splitting is a diagonalizable one, and system
(1.1) admits a convex and bounded invariant region and ug takes its values in this
domain, or instead u® is uniformly bounded in L. Thenu®* converges in the strong
L? norm (p < o0) to an entropy weak solution to the Cauchy problem (1.1)—(1.4).

Proof of Theorem 3.3. In view of Proposition 3.2, u® satisfies

(3.17) [u*ll e (my ) < O(1),

where O(1) is independent on h. Following DiPerna [27}, we only need observe
that, for any C? entropy-entropy flux pair (V, G), the dissipation measure satisfies:

(3.18) AV (™) + 8,G(u*) € compact set of H; !,
and
(3.19) 8V (u") + 8,G(u™) < E* — 0in the distrobutional sense as k — 0.

Indeed conditions (3.18) and (3.19) follow from the entropy inequalities derived
in Proposition 3.1. Properties (3.17)-(3.19) together imply that u® verifies the
assumption of the compensated compactness framework for strictly hyperbolic sys-
tems established by DiPerna. According to the results in {27], u® converges strongly
to an entropy weak solution. The proof of Theorem 3.3 is completed. O

Remark 3.2. Theorem 3.3 applies to the example of the system of gas dynamics
in Lagrangian coordinates, studied at the end of Section 2. It also applies to the
system of gas dynamics in Eulerian coordinates provided that attention is restricted
to solutions without vacuum points. Arbitrary solutions including possibly the
vacuum are treated in the next section.

We now extend the result in Proposition 3.1 to arbitrary flux-splitting schemes.
In that case, the entropy inequality has a nonconservative form and is derived by us-
ing the notion of nonconservative product due to Dal Maso-LeFloch-Murat [24], and
LeFloch-Liu [43]. We introduce first some notation. Let u; = mZ, mt, .. ,m;,‘: =

u, be the constant states associated with the Riemann solution Ri(u;,ur). For
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each real- or vector- valued function a, the integral of a along the path naturally
associated with R¥(u;,u,) is defined by

(3.20) [ a= Y [a(mf,(S))ds,

J'R:h(u;,u,.)

k-—wa.ves

where m¥(s) = (1 — s)mi_, + smi if the wave connecting mf , to mi is a shock

or a contact discontinuity and, if it is a rarefaction wave, mE . satisfies the following
ordinary differential equation for some C' > 0:

(3.21) 5‘5’%(3) = Cri(mi(s)), mi(0) =mi_,, mi(l)=mj.

Given a pair (u, ur), we denote the corresponding path by ¢(ui, u,). It is not hard
to see that the family of paths qS satisfies the assumption made in [24]. Henceforth
a nonconservative product a(u) 2 of a composite function of a function of bounded
variation u by the measure d is well defined as a locally bounded Borel measure.
Following the notation in [24], we denote this measure by [a(u) du] 4 Observe
that the product depends upon the choice of the family of paths. Using the paths
described above based on the Riemann solution is essential in what follows. (Note .
that the so-called Volpert’s product would not be sufficient for our purpose.)

Theorem 3.4. Let (1.1) be a system of p conservation laws and (3.1)—(3.3) be a
scheme based on an arbitrary flux-splitting for system (1.1). Suppose that the set
Q is small enough. Then the following local discrete entropy inequalities hold:

(3.22) U(ufyyn) — Uu}) +2) e aran )vuv £ <0,
Lt ELEESY
and thus
(3.23) U(uj*')—U(u})+2 / VUVSFt + A VUV~ <0,
R+(u;‘l...1s“})) R_(”F)u}‘.}.l)

Theorem 3.4 provides a weak form of the entropy inequality (3.4). Note that
(3.23) has a nonconservative form and, in general, it is unclear whether (3.4) can
be deduced from (3.23) even under the assumption of strong convergence of the
scheme.

Remark 3.3. A similar inequality was proved in [50] for the so-called Osher-
Solomon’s scheme. Actually although this scheme is not quite a flux-splitting, it
nevertheless shares many of their properties. Observe that the inequality in [50]
has a conservative form however.

Proof of Theorem 3.4. The proof i similar to the one of Proposition 3.1. We
have to prove that the solution u® to the Riemann problem B*(u;, u,) satisfies the
following nonconservative version of the entropy inequality (3.4):

(3.24) 8:U(u*) + [VUVfFd,u] , < 0.
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Inequalities (3.22) and (3.23) follow by integration of (3.24).

In view of the definition of the paths in (3.20), the inequality (3.24) clearly holds
in the rarefaction fans since a rarefaction is a smooth solution to system (1.1). We
only need to check (3.24) across a shock discontinuity. By computing its Taylor
expansion, we now prove that

(3.25) Q(ur) = —o(ut, ur)U(uy) — Ulur)) — fo VU (4,)V £ () (ur — u)ds <0,

provided that |u, — u| is small enough with u; kept fixed, and the left and right
states satisfy the Rankine-Hugoniot relation and the Lax entropy inequalities.

We have
Qup) = /0 VU (u())( = out, u)] — VFE(u(s))) (ur — ur)ds

since u'(s) = u, — w1, where I is the unit matrix. The Rankine-Hugoniot condition
vields the relation

[ (= ot )1 = V@) r ~ uis,
so that
Qur) = /e (VU (u(s)) = VU(w)) ( — o(ut, ur)] — V fE(u(s))) (ur — ui)ds.

At this stage we make use of the linearity of the path u(s) and, setting u(s,7) =
(1 — 7)u; + Tu(s), we observe that u(s, ) — u; = 7s(u, — ur), thus

Quy) = /0 /0 (ur — ) V2T (uls, 7)) = oty wr)T = Y FE(u(s))) (ur — ur)rsdsdr.

Finally, after decomposition of u, — u; on the basis of eigenvectors for V f*, specif-

ically
wp—uwr= Y aw(s)ry (uls)),
1<k<p

we get the following formula
(3.26)

Quy) =

3 / f v (u()TV2U (u(s, 7)) — oty ur) — AE(u(s))) i (u(s))r sdsdr,
1<k<p

where the integral is over (0,1) x (0,1). Consider first a genuinely nonlinear z-
characteristic field. Then it is known after Lax [37] that:

up = ug + erF(u) + O(e),  o(us,ur) = A (w) + & VAT (u)r (u) + O(),
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where ¢; <0, so (3.26) gives
(3.27) Q(ur) = (&)* (VAT (wi)ri ()i (w(s)) VU (u(s, 7))y (u(s)),

which is clearly non-positive.

The case of a linearly degenerate characteristic field is trivial, since then $2(u,)
vanishes identically.

When two or more eigenvalues coincide, part of the integral in (3.26) vanishes
while the other is nonpositive. The proof of (3.25) is complete. O

Finally we mention briefly that some results in this paper, in particular Theorem
3.4 remain valid for the class of schemes of the form [18]:

u? ulyy
(3.28) W = gt ) / " AT (@)da — A f A (w)da,
u;-‘_1 ul
where the matrix-valued functions A satisfy
(3.29) At(u)+ A (u) = Vf(u), forallu in O,

and the above integrals are performed along a given family of paths in R?, say
$(s;uF,ulyq)ys € [0,1], for all (u},u},). In other words, for instance,

LS 1
f At () dit = /0 AF(B(s;u2, 02, 1))0, (55wl ulyy s,

n
i

Note that in this case the underlying systems have the following nonconservative
form:

(3.30) O + AT (v)0,v =0 and Omw+ A (w)0,w =0.

This idea of paths is due to [24}, where the hyperbolic systems in nonconservative
form are studied. This approach has been proposed and investigated recently by
Coquel-Liou [18] for designing new schemes adapted to treat systems with linearly
degenerate fields, as is the case for most physical systems.

Remark 3.4. 1) It would be interesting to extend the results in this paper to
the high order accurate schemes based on a flux-splitting. Higher order accurate
versions of the flux-splitting schemes can be constructed according to the so-called
corrected antidiffusive flux approach. The entropy consistency can be proved by
combining the results in the present paper and the techniques in [10, 14, 15]. Prov-
ing the L°® stability for high order schemes however seems difficult since the usual
formulations destroy the invariant regions of the system. See [10] for a possible
technique to deal with the difficulty.

2) Another open issue concerns the existence and the asymptotic stability of the
discrete shock profiles associated with an entropy flux-splitting scheme.

3) One can use the Glimm scheme instead of the upwind scheme to approximate
the systems (2.2a) and (2.2b) associated with flux-functions 1 and f~. This does -
not seem to be of pratical interest however. It would be interesting (at least from
a theoretical standpoint) to search for a decomposition of the flux-function, similar
to the one given here for difference schemes, which would simplify the analysis of
the Glimm scheme.
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4. A Family of Entropy Flux-Splittings for the Euler Equations

In this section we prove, Theorem 4.1, that the system of isentropic Euler equa-
tions admits a family of genuine entropy flux-splittings, associated with the me-
chanical energy, which plays the role of an entropy function here. The general
result is illustrated in Proposition 4.2 with an example, that can be seen as an
“entropy modification” of the van Leer splitting. Our formula is very similar to the
formula in [39]: a polynomial form with a few terms only.

Next we prove in Theorem 4.3 that there exists a unique genuine entropy flux-
splitting that satisfies all the entropy inequalities. Several properties of this split-
ting are pointed out, e.g. it is the only diagonalizable splitting. It is also the only
splitting that satisfies two nontrivial entropies, at least. When vy = 1+ m, m>2 -
integer, it is actually a polynomial function of the Mach number. Finally we check,
Theorem 4.4, that the latter splitting can be derived as well by using the kinetic
formulation proposed recently by Lions-Perthame-Tadmor {46].

In the present paper, we restrict ourselves to the case of a polytropic perfect gas
with adiabatic exponent 1 < v < 3, refering to [9] for the treatment of the real gas
case, and the system of non-isentropic gas dynamics.

Our results here, as well as in [9] on the real gas, are expected to extend to
situations where no kinetic formulation is available. Furthermore, we can argue
that our variant to van Leer splittings are fully explicit. Kinetic splittings are
often given by integral formula, that can be integrated out for special values of the
adiabatic exponent v only. Numerical tests are in progress, and will be the subject
of a future publication.

We consider the system of isentropic gas dynamics [22]:

Bp + O5(pv) =10,

(41)
By(pv) + Bz (pv* + p(p)) = 0,
where p > 0 and v are the density and the velocity of the gas, respectively. We -
restrict ourselves to the polytropic perfect gas:

7
(4.2) plp)=— withy 21
v

System (4.1) has the form (1.1) with u = (p, pv)7 and f(u) = (pv, pv? + p(p))'.
The following notations will be useful: m = pv (moment), ¢ = 1/p'(p) = p? (sound
speed), and M = v/c (Mach number). Here § = (v —1)/2. Eigenvalues and a set of
eigenvectors for system (4.1) are given by: Ay =v—¢, gy =v+e¢,r = (Lv—¢)T,
and rz = (1,v 4 ¢)'. The flux-function can be written in the form:

(4.3) Flu) = ( ;;(%)2‘2%))), a(M) = M, b(M) = M? + ﬁ

System (4.1) is strictly hyperbolic everywhere except at the points where p'(p) = 0,
which occurs only at the vacuum state p = 0.
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Our first objective is deriving a large family of entropy flux-splittings for system
(4.1). For simplicity, we shall be mostly interested in tha case that the flux-functions
F* have the form:

(4.4) FE(u) =

The actual restriction is that the functions a and b are independent of p. This
choice is consistent with (4.3). For a real gas, the functions a, a¥, etc, also depend
upon p as well, cf. [9]. For a v law gas, one can construct indeed more general
splittings than (4.4). Since

at(M)+a (M)=M

(4.5) 1

+ — (M) = M2
Br(M)+ b (M)=M +29+1

it is enough to determine one of the two sets of functions (at, b*).

The following theorem describes all the possible entropy splittings. For definit-

ness, we consider those consistent with the (physically meaningful) entropy Ul:
m? ¥

P
Uulpym) = 2o 4 — L
’ 2 A-1

The corresponding entropy flux is chosen to be:

Fi(pym) =m®[2p* +mp"™" [((y — 1)),
The result below can be easily extended to other entropy functions.

Theorem 4.1. The system of isentropic Euler equation for a polytropic perfect
gas admits a family of entropy flux-splittings f = f* + f~ associated with the
mechanical energy Uy. The splittings take the form:

(46) fﬂ:(P, m) = Vw,z'ﬂbi(w’z)s

where (w, z) denotes the entropy variables defined by:

(4.7) w=u, z=

and the functions % are of class C* and satisfy the consistency condition:

me(p)®

(482) W (w,2) + 97 (0,2) = (w,2) = T

and the positivity condition:

(4.8b)

n 'waww";bﬂ: + awz"pi wawz‘pb:t + azz'(,bi >0
(0 + Dw? 4+ 202)8yu v — WOyt  ((6 + Dw? + 202)8y bt — wdypt | =
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In the case of the splittings (4.4), the functions at and bt (the formulas for = and
b~ then are deduced from (4.5)) have the form:

at (M) = (30 + 1)k(M) — 6ME (M),

YA — (38 L NME(MY - (1 — 8MAE' (AN
LSFEJ TTARY T SRR AR AT S A A

(4.9)

where k : R — R is any function of class W% satisfying (4.8b). The splitting is
a genuine splitting if, moreover,
0, for M <—-M,,

k(M):{ jor M > M,

for some M, > 0. Moreover, if the function k is of class C*t1 then the splitting is
of class C¥.

Proof of Theorem 4.1. Using the entropy variables (4.7), system (4.1) takes the
following symmetric form:

_—‘M—
20-+1°

(410&) atvw,z¢ + a:svw,z",b =0,
with
2041
dw, z) = 1 (6w® +292)2” ,
26 +1
(4.10b) 0t
P(w,z) = s (fw? + 26z) * .
’ 20+ 1
Note that fw? 4 260z = ¢2, so that:
o ep)? _ . ep)
$=rr1 YT 1

By Proposition 2.3, the splittings have precisely the form (4.6), (4.8). The positivity
requirement Vo, fE = V, o (w, 2) Vu, f£ > 0 is equivalent to (4.8b) in view of:

1 —w 1
Vim(w,2) —;((9+1)w2+26’z —w)'
The proof of Theorem 4.1 is completed. O

It can be checked that the classical Steger-Warming splitting, and the van Leer
splitting are not entropy satisfying, even for another entropy than U.. One can
check that the function % in Theorem 4.1 can not be taken to be linear. However
k can be taken to be quadratic, and one recovers a variant of Van Leer splitting.

Proposition 4.2. Consider the system of isentropic gas dynamics for a v law gas.
The following formula defines a genuine entropy flux-splitting of class C' consistent
with the entropy U.:

at (M) =a((0 +1)M? 4+ 2(20 + 1)AM + (30 + 1)A2))
bH(M) = a((6 + 1)M® + 2(26 + 1)AM® + (36 + 1)A%)M + 2M + 24)
with 1/ac = 4(26 + 1)A and A > 0 is any number such that:
8
. 25 -
(4.12) A® > 202
Our next result concerns the existence and uniqueness of an entropy flux splitting
for the Euler equations, that satisfies all the entropy inequalities.

(4.11)
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Theorem 4.3. 1) — The system of isentropic gas dynamics (4.1) for a y-law gas
admits a unique genuine entropy flux-splitting f(u) = f*(u)+ f~(u), that satisfies
all the entropy inequalities, and have the form (4.4).

2) — Moreover this splitting admits a closed integral form (given after the statement -
of the theorem), and satisfies the property:

f+(u):f(u‘)’ f_('u.)=0, if MZ'U/C?_ 1/9a
(4.13) )
fFlw)=0, f(u)=fu), i M=vlc<-1/6.
i 2
When 1 < v < 3, the functions (a*,b%) are of class C¥-0(R)?, and the systems
associated with the flux-functions f+ and f~ are strictly hyperbolic in the regions
{M > —1/6} and {M < 1/6}, respectively. Whenvy = 1—{-—2—“—%’-_?, m being a positive
integer, the restrictions of the functions a* and b* to the interval (—1/6,1/8) are
polynomial functions of degrees 2m <+ 2 and 2m + 3, respectively.
3) — This splitting can also be characterized as the only splitting that satisfies —at
least— the entropy inequalities associated with the two entropy functions:

v m
Un(psm) = 2 + 25, and - Usslpym) = =
In other words two non trivial entropies are sufficient to select a unique splitting.
4) — This splitting is also the only splitting that is diagonalizable, i.e. such that
the matrices V f* have the same eigenvectors as Vf. In other words the latter is
the only splitting consistent with all the invariant regions associated with system
(4.1).

As opposed to the splitting found in Proposition 4.2, the splitting above is given
by an integral formula, that may be inconvenient in numerical computation. More-
over, even though one entropy is not enough to get a convergence proof, one entropy
inequality is believed to be sufficient to ensure uniqueness of the solution. These
two arguments argue in favor of the splitting in Proposition 4.2.

We shall see in the proof of Theorem 4.3 that the function a*(M) and bt (M)
in Theorem 4.3 are given by:

0, 6M < -1,
(4.14) (M) = oM [O (1- 51—y F dy, |6M]<1,
M, M >1.
and
0, 6M < -1,
(415)  BHM) ={  co [TV (M2 41— BL2)(1-y2) T dy, |0M] <1,
MY b, M >1.
with

1
Cp = (1 — yz)l':”ﬂ dy.
-1

The expressions for the functions ¢~ (M) and b~ (M) are similar, and can be deduced
from (4.5).
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Proof of Theorem 4.3. The Jacobian matrix of f*(u) is computed by differen-
tiation of the formula (4.4):

+

(4.16) DFfE = [ 8+ {a* - MfiM) tfiiri% \ ,
Y ’ \c?((20 + 1)b* — (8 + 1)Mf“'”‘ cd= )

Let U be an arbitrary entropy for system (4.1). The matrix V2UV f * is symmetric
if and only if the coefficients a and b (we drop the indices from now on) satisfy the
following first order differential equation:

95, Ud—a+c U((6+1)(M—

(4.17) aM

da - db)
am

+ RO U((0+ DM

— (26 +1)b) = 0.

On the other hand, U, being an entropy, satisfies the second order hyperbolic
equation:

2 2 2 2 _
(4.18) U +2eMI, U+ (M -1)0;,,U=

Combining (4.17) and (4.18), we get
cd? U((e—l)M -0+ Va+ — db
dM

(4.19) &b
+c2 82, U((1 —Mz)d +(0+1)M o — (26 + 1)b ) =0.

Plugging in (4.19) the Hessian matrix V2U, of the mechanical energy:

VU, (u) = p( S ) _CIM),

formula (4.19) becomes:

db

(4.20) (1- 9M2) + (6 + 1)Ma + HMdM

(26 + 1)b = 0.

Note in passing that, plugging (4.9) in (4.20), we see that (4.20) indeed hold for -
any choice of cuntion k. This provides us with an alternative way to derive (4.9).
Plugging now the entropy U, in (4.19) and since

1 /20cM ~1
VBIT _ pC
o (4) p* ( —1 0 )’

we have:

(4.21) (1—M2)%%; (1+9)M£ ~ (264 1)b = 0.
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Therefore, in view of (4.20) and {4.21), the functions a and b satisfy the following
two equations:

da® db*E
(4.22)
(1 - Mz)gcf +(1+ H)Milfi — (20 +1)b=0.
dM dM

We now derive the conditions corresponding to the diagonalizable splittings. In
view of (2.22), the flux-splitting have the form:

-1
£ _prxp-t[ 1 1 Moo 1 1
VfT=PATP _(v—c v+c)(0 )\2:,‘1: v—¢c v4ec ’

that is,

_{ (MADA+(-M+1)F (25 X)e
(4.23) VfE= ((M2 C1)oAE 4 (—M? + D)AE (<M 4 DAE + (M + 1)1\3‘) '

iFrom (4.4) and (4.23), we obtain a set of differential equations for the coefficients
)\;TE, a®, and b*. Using the new unknowns /\?: = -15)\?:, one has:

da* N ~
(k + Da* — (k + I)Mﬁ = (M + DX 4+ (=M + DA,
da* ~ .
ang =N
+ dbi 2 Tt 2 eSS
dbE T4 4
T = (=M + DX + (M + DAF.

By elimination of the :\ii’s, and after some additional computation, we conclude
that a® (M) and b (M) must necessarily satisfy the same set of equations as before,
cf. (4.22)! The proof of the part 3) of the theorem is completed.

We shall use below the following formula for the eigenvalues )\jt:

da® = db*
MN=c((l- M)—r + m),
da®*  db*

a
ar T a)

(4.24)
Mo=e(-(1+ M)

We now solve the system of partial differential equations (4.22). The functions
a* can be determined first, and the functions b* be deduced from the a®’s. Namely,
a® solves the following second order P.D.E.:

-+

d%a
 ag2p2
(4.25) (1— M-8 )dM2

(M) + (0 + )M S5 (01 - 6(6 + )+ =0,
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and b (M) satisfies a first order PDE system:

dbj: :l:

R Y g
(4.26) ot =19 dM i

(20 +1)b=(1—8 )m+(1 +6)* Ma.

+(1+8)q,

The first equation is automatically satisfied, and b* is an explicit function of a:
+
(4.27) b (M) = {(1 92M2 7 M)+ (0 + 1)’ Ma(M)}.

We now give the construction of the function at(M); the case of a~(M) is
similar. We consider the domain A = {M / |M] < 1/6}, and in its complement
Ac. We first solve the differential equation in the domain A°, with the following
condition at infinity:

(4.28) at(M) — M, resp. 0, as M — =oo.
It is a simple matter to check that @ is then the trivial solution:
(4.29) at(M) =a(M), forall |M]|>1/6,

The condition at infinity (4.28) is thus sufficient to show that the splitting is a
genuine flux-splitting. We next solve the system in A using suitable boundary con-
ditions deduced from (4.29). Specifically, we have now to find a function a* defined
in the domain A, that is a solution to (4.25), satisfies the positivity conditions

(4.30) A7 €0, and Af >0,
and the two boundary conditions at the boundary 0A:
(4.31) at(-1/6) =0, a*(1/8)=1/8.

Equation (4.25) is a singular O.D.E.: the coefficient of the term d*a™/dM?*
vanishes at the end points M = +1/6. Existence of a solution to this two-pomt .
boundary problem does not seem to be a standard matter. However it is not hard
to show by a direct calculation that there is a unique solution to the boundary
value problem (4.25), (4.31), given by the following formula:

ong [M =0 g
(4.32) ot (M) = - S

8(6+1) J7, (1 - 622) 5" dy

for all M # 0 in the interval (—1/68,1/6). After integration by parts in the above
formula, we finally get:

(4.33)
(0, M<-—13,
441 1—¢
(1-*M*)20 +e(e+1)M [ (1-6%4) 20 dy
a+(M):< { + 91—9 }’ “%SMS%,
8(6+1) [, (1—-62y2) 27 dy
)
| M, M>3
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The corresponding function 5% is:

(4.34)
(0, MZ< —%
) {(9+1)2M(1 92M2) 35 +e(9+1)(1+(29+1)M”)f (1 T e dy]{ ] .
b+(M)=< ’ _%SMS"E:
9(9+1)(29+1)f_91(1 —62y2) 70 =Ta dy
[]
[ Mt ggm, M2y

It remains to show that the Jacobian matrix D ft is non-negative; the treatment
of Df~ is similar. It suffices to consider the range of values —1/6 < M < 1/6. We
want to show that

(4.35) Dft(p,m) = —’5(—5—7—7—5 (g:gﬁ;) > 0.

The eigenvalues of Dft(p,m) are given by:

da™*

+_ +_
(4.36) Al =c(fA+a dM)

aa +
v and A} = c(fA+at +

where the function A = A(M) is defined by
AM) = -—Mw(M) +at (M)

(4.37) _ (1 _ 92M2) 2,,
66 +1) [7,(1— 62y2) Pt dy
[}

We observe that

g(M)
ff%(l - gzyz)%dy

OA(M) +at (M) £ %(M) =

where we have defined the function ¢ = ¢(M) b
o(M) = (1 — 62 M2) 5 4 6(M + 1)/ (-6 ay.
7
Since the function ¢ satisfies the conditions

o(~5)=d(~3) =0,
g'(M) = 8(1 - 9)(1 + 6*)(1 - *M*)* 5 >,

we have . 1
/\i">0, )\;>0, —-—9*<M<§,
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which proves (4.35) for —1/6 < M < 1/8.
Furthermore, in view of (4.36), we have

S -2y dy
S5, - 622y 'Rt dy

It follows that the system associated with the flux-function f* is strictly hyperbolic
for all M > —1/6. We can also check that Df~, and the system with the flux f~
is strictly hyperbolic for all M > —1/6. This completes the proof of Theorem 4.3.
0

Remark 4.1. 1)- The assumption made in the beginning of Section 3 in order to
solve locally the Riemann problem is satisfied here.

2)- When 1 < 4 £ 2 which is the typical range of values for « in gas dynamics,
we have (at least) (ai,bﬂ‘) € C?. Steger-Warming’s splitting is only Lipschitz
continuous, while van Leer’s splitting is of class C?. The regularity of the splitting
is a desirable property for the computation of steady state solutions based on a
time-dependent scheme (e.g. van Leer [39] and Osher-Solomon [50}).

3)- Wheny=1+ -2m2—+1, the functions a*(M) and b*(M) are polynomials, and
our splitting is then similar to the splittings in {60, 40]. For instance, let us consider
the case mm = 1, i.e. v = 2. The formula (4.17) becomes:

0, M <-3,
at(M)=3{ M M 4 i -3<M<3,
M, if MZ>3.

It is easy to check directly that a* € C?, but a};, € Lip, only.

1 1
G, —§<M<§.

Finally, we show that the splitting we derived in Theorem 4.3 could also be de-
rived by the so-called kinetic approximation. We follows here the approach adopted
by Perthame [52] for the systems of non-isentropic gas dynamics, and extend his -
idea to our case, i.e. the isentropic Euler system.

Theorem 4.4. The kinetic flux-splitting that is associated with the kinetic for-
mulation due to Lions-Perthame-Tadmor, coincides with the entropy flux-splitting
consistent with all entropy functions derived in Theorem 4.3.

Proof of Theorem 4.4. In view of the formulation in [46], and using the notation
introduced in the beginning of this section, we obtain:

+ c(p)* 2y 55
(438) (o, M)= [ 06+ -0p) (g —(E-v)") 7T d,
(€20 6
where, by definition, 2 = max(0, z). The formula (4.41) can be written as:
o [ 1 )
(4.39) (o, M) = 165 [ 4 0) (g =) T
M

This is exactly the formula (4.36). Checking b is similar. The proof of Theorem 4.4
is completed. O
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5. Convergence of a Flux-Splitting Scheme for the Euler Equations

In this section, we extend to the Euler equations the result of convergence of the
flux-splitting schemes proved in Section 3.

QOur objective is to prove the strong convergence of the difference scheme as-
sociated with the flux-splitting derived in Theorem 4.3, cf. formulas (4.22)-(4.23).
Section 3 already guarantees the convergence of the scheme provided that the initial
data takes its values in a small neighborhood of a given point away from vacuum.
We are going to show that the convergence holds for arbitrary large initial data
possibly containing the vacuum. For the analysis of the flux-splitting scheme, it is
convenient to study first the Riemann problems associated with flux-functions f+
and f~, respectively.

Theorem 5.1. The Riemann problem associated with the system with the flux-
function f+ given by (4.22) (respectively f~ given by (4.23)) and corresponding
to arbitrary left and right states admit a global solution composed of two elemen-
tary waves that are either a shock wave or a rarefaction wave. Kach wave has a
non-negative speed (resp. non-positive speed), and each shock wave with speed o
connecting the left state (p—,m_) to the right state (p—, m_) satisfies the entropy .
inequality:

(5.1) o(U(pr,mr) — Ulpr,mi)) — (Fpr,mr) — F(p1,mi)) 2 0,

for any convex entropy-entropy flux pair (U, F'} of systemn (4.1). Furthermore, the
system admits bounded and convex regions that are invariant for the Riemann
problem (i.e. if the Riemann data lies in such a region, so does the Riemann
solution. )

In particular, it follows from the proof of Theorem 5.1 that the systems with
flux f* have genuinely nonlinear characteristic fields (except in the region where
they vanish identically).

Proof of Theorem 5.1. For definitness, we treat the case of the function f¥, and
for simplicity often write a for a™, ete. First of all, since the system with flux f1
has the same right eigenvectors as the original system (4.1), they have the same
set of rarefaction curves. In particular, the rarefaction curve are globally defined
and convex. In order to solve the Riemann problem, we only need prove that the
shock curves exist globally and are convex (so that there will be a unique point of
intersection), and that the entropy condition is satisfied all along the shock curves.
We consider the shock wave curves in the phase plane (p,m). Let (po,mo) be .
the state on the left of a discontinuity traveling with speed o. For definiteness, we
only consider the case that (pg, mo) belongs to the region D = {|M| < 1/6}, i..

1+6My >0, 1-—8My>0.

Other cases are trivial or much simpler.
The state (p,m) on the right of the discontinuity must satisfy the Rankine-
Hugoniot relations

clp—p) =3 (o6t (GB) — et ()

(5.2)
o(m—my) = % (p”“b”*(;-}";;) _ P39+1b+(j_£%)) ,
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and the Lax entropy condition (¢ = 1,2):
(5.3) M (p,m) < of <X (po, o).

‘We shall focus our attention on the part of the shock curve which lies mside the
region D, and we use the abreviated notation (a, b, A, 0) = (at, b, At,07). (Other
regions and other cases for My are similar or much simpler.)

In view of (5.2), we get the equation for the state on the right of the discontinuity

m—my _ p*TIH(M) — g b(My)

5.4 = )
54 o P Tia(M) — T a(My)

or equivalently

tVIM — My 20 (M) — b(My)
t—1 © 0 H1g(M) — a(My)’

(5.5)

where we have set t = p/py.
Let us check first that the equation (5.5) has two roots denoted by

(5.6) M* = M*(t, M), for cach value >0, t# 1.

Clearly, one has Mi(l_, M) = M. It sufficies to prove that, for any ¢ > 0,% # 1,
there exists a unique M (¢, M;) such that

(6.7) (M — M)Fy(M,t; M) >0, M#M,
where the function F is defined in view of (5.5) by

F(M)t;MU)

58  _ (M — Mp)(PH a(M) — a(My)) = (¢ — 1)(E* T B(M) — b(My)).

The first and second order derivatives of F' with respect to the variable M are
found to be:

Fa(M,t; M)
B9 _ e (10 a(01) - o) + & UYE M - M) - (2= DH (D)),
(5oby  TMm(Mo6 Mo) = t"TH21a! (M) + (#°(6¢ +1 = )M — My )a" (M)}

= G(M,t; My).
Using the O.D.E. satisfied by the function e, we can compute explicitly the first
order derivative of the function G = Fyas:

1—

gd
- H(M,t; M),

(5.10) Gu(M,t; My) = Co(1 — 6*M?)



36 CHEN AND LEFLOCH

where we have defined Cy and H by
20(6 + 1)
CU = T ¢ 3
(5.11) 0(6 +1) [2,(1 —6%y?) 5 dy
H(M,t; My) = —6t°(6t + 1+ O)M? + 6(1 — )Mo M +t°(6t + 3 — 6).

In the case My < 0, we have

] =

2089H(M,t;Mg)>0, foral M €[-

1

Gu(M,t; Mo) = Co(1 — 62 M?) 7

0,

and

1
G(—a,t; Mg) = 0,

Gu{M,t; My) >0, forall M2>0.
Therefore, if My < 0, we obtain
(5.12) G(M,t; My) 2 0.
In the case My > 0, one easily checks that for all M > t—,zgf-/[_;%":g)*:
Farae(M,t; My) = 2T {2¢% (o' (M) — Ma" (M) +(t° (6t +3—0)M ~ My)a" (M)} > 0,

and there exist two values My and Mz with —% < M1 < 0 < ia—gy < M2 < 3,
such that

(5.13) Gu(M,t; M) >0, forall M e (M, M)

From (5.12), (5.13), and the relations

1
FM(—gat;Mo) = —t"a(M,) < 0,
Fy(M,t; Mp) — 00, as M — oo,

we deduce that there exists some point M € (—%,00) such that
(5.14) (M — M)Fy(M,t; M) > 0.

This completes the proof of (5.7), and thus establishes the existence of two curves
satisfying the Rankine-Hugoniot. In the following, we consider py and M; as fixed
and p (or equivalently t = p/py) as a parameter along the shock curve. The shock
curves (actually half curves) are selected as follows:

— Along the 1-shock curve: ¢t > 1, M > M,

— Along the 2-shock curve: ¢ > 1, M < M,

Next we prove that the shock curves are convex. It is convenient to show that
the slope of the curve in (p,m) is a monotone function of ¢. By a lengthy but
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direct computation, we obtain the following expression for the derivative of the
slope (m —mo)/(p — po):

d(—’l'.f;.‘l) 10+ g/ (M) 2o /t"M M\
dp " po(tF (M) < ag(M)): Fay Y e )

where M* = M*(t, My). One can check (see Appendix, Lemma 1) that

420 _ (t”M*(t, Mo) — My

2
] )751, for all ¢+#£1,

which implies that

d m—mo)

(5.15) d—p( Py

£ 0.

Henceforth, the two shock curves are convex curves in the p — m plane.
Furthermore, after a tedious but direct computation, the derivative of the shock
speed o(p) along the shock curve is found to be:

. _ _é_ p6+1a(M) “,08+1CL(M0)
2a(P)—dp( T )
6—1,6+1 6+1, — al My 3 )
= pUF;J {(t (Ifll (M)»{«tg(BMa'(M)m(G—l—l)a(M))) _tZG(ai(M))-}'

It can be checked (cf. Appendix, Lemma 2) that the term in the left hand side
never vanishes for ¢ # 1. In view of the Lax entropy condition (5.3), we thus obtain

(i)— along the 1-shock curve:  p > po, o'(p) <0,

(ii)- along 2-shock curve: p < po, o'(p) 2 0.

Therefore the Riemann problem for the system with flux f and arbitrary initial
states admits a global solution that satisfies the entropy condition (5.1). This
comnpletes the proof of Theorem 5.1, O

Finally we state and prove the convergence of the flux-splitting scheme.

Theorem 5.2. Consider the system of gas dynamics in Eulerian coordinates (4.1)
with an initial data satisfying 0 < p* < M and 0 < |ve(z)| < M for some M. Let
(p*,m*) be the approximate solutions given by the flux-splitting scheme (3.1)-(3.3)
and (4.22)-(4.23). Then the sequence (p*,m"*) converges strongly to an entropy
weak solution to (4.1).

Proof of Theorem 5.2. We use the compactness framework developed in [6,26].
It is sufficient to prove that the approximate solutions u® = (p*, m*) satisfy the
following three conditions:

(41) 0 < p*, |25 < M < oo,

(A2) 8,U(uh) + 8, F(u*) € compact set of Hj,

loc’
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(43) 8,U(p*, m*)+ 0, F(p*,m*) < E* — 0 in the distributional sense as & — 0,
for any C? convex weak entropy pair (U, F').

The condition (A;) is a consequence of the convex decomposition (3.4)-(3.6),
and the property of the Riemann solutions. We recall that the Riemann problem
admits bounded convex invariant regions.

In order to check the conditions (A,) and (A3 ), we study the dissipation measures
8 U (u™) + 8, F(u") for any C? convex weak entropy pair (U, F'). For any ¢ > 0,4 €
Ci(Qr) with Qr = (—o0,0) x [0,T),T = mh, we can use Green's formula and
obtain:

f / (U(u*)0é + F(u™)0,¢) dzdt + / $(0, 2)U(u(0, z))dz
Qp R
= S*(¢) + L1 (4) + L3 (¢) + M*(4).

Here one has set:

) |
Sh(4) = ] S {olU] - [FI}o(a(t), D,
L}(¢) = Zqﬁ}‘ / me(U(ut_“) — U(ulr))dz,

Tjuife
L(¢) =
; z: /

Mh(qﬁ)mf gb(m,T)U(uh(m,T))dm—/ #(0,z)U (uh(0,z))dz
R R

(5.16)

Ut - U ))($ — #2)ds,

Tjgt/

i—1/2

where u'™ = u*(t, — 0,z) = (ufh(tn - 0,z) + u:h(tn —0,2))/2, ¢} = ¢(ta,z;),
and the summation in S*(#) is taken (for each t > 0) over all shock waves in u®(%)
with location ().

Due to the finiteness of the propagation speed associated with the scheme, we can
assume without loss of generality that the initial data (po(2), mo(z)) has compact
support. Say u® = (p*,m") are compactly supported in the region 7 and

o
/ U, (u0(2))dz < C < oo.
For simplicity in the notation, we drop the index & in u*(¢,z). Let us substitute
1 1
U=U, = = 2 a7 F = F* — 3
Lo 2P T
and ¢ =1 in the identity (5.16). We find

P,

i+

z 2 T
3 / (Us(u'™) = Ua(ul))de + f 3 (olU.] - [Fu]}(, o(2))et
gn VE-1/2 0

=f U*(uh(O,ac))d:c——/ Un(u(z, T))dz
R R

< LU*(ug(O,:c))dw <C.
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Note that U, is a convex entropy for both splitting systems and the original
system. The Riemann solutions are constants in one of half cells (z;—1,2;_1/2) X
(tnytat1) and xj_y3,2;) X (ta,tat1), therefore satisfies the entropy condition :

o[U] = [F] >0

across the shock waves. Moreover, using the averaging feature of the splifting
scheme, we have

Z " / " () - Ua(u?))ds

Tj-1f2
Tit1f2
=24 / dz f (1~ 8)(ulr —u}) VPUL(u} + 6(uln —ul))(u'r — ul)df > 0.
hn Tj-1/2

We get:

T
f > {o[Ui] - [R}é(t, z(2))dt < C,
Sl

Tjm1/2

" do f (1= B)u'™ — u) VPO (Ul + 6(u’ — u™))(u' — ul)dd < C.

In particular, we have
itz
Z/ ulr —uf2de < C.
jon YV Ti-142

Consider a function U, that is a convex entropy function for both systems (1.1)
and (2.2). The Riemann solutions take constant values in one of the half cells

(Zj—1,%j-1/2) X (tn,tn+1) and (Tj-1/2,%;) X (tn,tat1), and satisfy the entropy
condition. So, for any ¢ > 0,¢ € C3(2r), we get:

S*(¢) >0,

and

Ei-1/2
jt1/2 1
_ qu, / d ] (1= B)(ul — w2 VU] + (ut — uD))(u'n —ul)dd > 0.
Tio1fz \)
Moreover, for any ¢ € C’{,"(QT), 1 <a <1, we have

@IS [ o) - 5100) - Ul

Tj—1f2

(J+1/21) s
< les | [t

i—-1f2
< Ch* 2| gl cs
<RVl s, P>

1——(2;
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that is,

n < n
n—1l+a n-1

IL2 () lw-100 < CR*TVZ 50, (h—>0), 1<g<

TXIr

Ve have

|M*($)] < Cllgllco,

which implies:
M" ¢ compact set of Wb,

Note that
E*=S* 4 L* 4+ L2 4+ M" € bounded set of W™, 1< p< oo,

so that we have

E* — L} — M"* ¢ bounded set of W19,
E* Lt - M">0 in W%,

Using Murat’s Lemma [47], i.e. that the embedding of the positive cone of W—1:9
in W= is completely continuous for all ¢; < ¢p, we have

E* — L — M" € compact set of Wh,
Therefore we obtain:
Eb = Sh 4 L* + M* € compact set of W12,

Using a result by [26], we have that the embedding of a compact set of W~1:¢ and
a bounded set of W17 is compact in H™! for 1 < ¢ € 2 < r < co. From the
above, we deduce that

S* 4 LP + M* € compact set of H; !

loc”

This proves the condition (Az). The condition (A3) can be obtained similarly as in

[6].
This completes the proof of Theorem 5.2. J
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APPENDIX: GENUINE NONLINEARITY OF THE FLUX-SPLITTING IN SECTION &

In this appendix, we give a proof of the following two lemmas whose results were
used in Section 5. We use the notation introduced in the proof of Theorem 5.1.

Lemma 1. Forallt # 1, My € (—1/6,1/8), and M = M*(t, M) € (—1/6,1/8),

we have
M — My \>
£26 _ (__E______i___ﬁ) £ 0.

Lemma 2. Forallt # 1, My € (—1/8,1/0), and M = M*(t,M,) € (—1/6,1/6),
we have

(tﬂﬂa(M) — a(M,

. ) +t9(0Ma’(M) — (8 + 1)a(M))) _ t29(al(M))2 £ 0.

Proof of Lemma 1. It is equivalent to show that

1
gi(t:MU)%O for any MyMO e(_';_va'): t%oa

where the function ¢ is defined by:
gE(t, My) = (Mo £ 48 a(M) — a(My)) — 20T 10(M) + b(My),

with M =¢t"My + (¢t — 1).
Then

gi(laMﬂ) =0,

gE(0, My) = b(My) — Moa(My) > 0, for M,Mge(—%,%).

The t-derivative of the function g, 8,9%(¢, My), is computed as follows:

Deg(t,Mo)
=t2{ £ (8 + D" a(M) — a(Mp)] -+ (6 + 1) (Mo £ t*TH)a(M)

+ (My £t (=0t~ My + t)d' (M)
— (26 + D)t?o( M) — %6 (M)(~6t~% My + t)}

= t7{ £ (8 + D[ta(M) - t~%a(Mo)]
+ (6 4+ 1)t~ My £ t)a( M)
(t7O My & t)(—6t=° My +t)a' (M)
— (20 + D)B(M) - b (M)(—6t~° My £+ 1)}.
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Since, by definition, M £ 1 = ¢"M, ¢, and t 7?Mp = M £ (1 — ¢), we obtain

tuzeatgﬂ:(ta Mﬁ)

=4 (6 + 1)(ta(M) — t™%(Mp)) + (8 + D)(M £ 1)a(M)
+ (M +D){(—6M £ 6(t — 1) +t)a'(M)
— (20 + D)b(M) — [—-6M £ 6(t — 1) + £]6'(M)

=4 (6 + 1)fta(M) -t a(Mo)] + (6 + 1) (M % 1)a(M)
+(M+D)(—8(M+1)+(6+1)t)d' (M)
— (20 4+ 1)b(M) £ (6(1 £ M) — (6 + 1)) ¥ (M)

Note that

{ (20 + 1)b(M) — (0 + 1IMY (M) = (1 — M2)a'(M),
(M) = (1 - 8)Ma'(M) + (6 + 1)a(M),

and therefore

(20 + 1)o(M) = (1 — M*)d' (M) + (6 + )M ((1 — )Ma' (M) + (6 + 1)a(M))
=(1-M+(1 - IMHd' (M) + (6 +1)*Ma(M)
= (1 - 62 M*)d' (M) + (6 + 1) Ma(M).
We deduce that:
t~299,g%(t, My)

= (6 4+ D(ta(M) —t~%a(My)) + (8 + 1)(M + 1)a(M)
+ (M £ 1)(—0(M £ 1) £ (6+ 1)t)d' (M) — (1 — 6°M*)a' (M) — (8 + 1) Ma(M)
+ [0a(M £ 1) F (6 + D))I(1 — O)Ma' (M) + (8 + 1)a(M)]
=+ (8 + 1)(ta(M) — t*a(My))
+a(M[(0+1)M+1)— (6 +1)°M +6(8 + 1)(M £ 1) F (0 + 1)62¢]
+d (M)[(M £ 1)(—8(M £ 1) + (6 + 1)t) ~ 1 + 62M? + (1 — O)M(6(M + 1) F (8 + 1)¢)]
=+ (6 + V)fta(M) — t~%a(Mo)] + a(M)(6 + 1) (M £1 - M F¢)
+a' (M{-1+6M> T 6(M £1)+ (8 + 1)t — P M(M £ 1) £ 0M(6 + 1)t}
Therefore, we have
—~28

f+1

atg:b(taMﬂ)

= +(ta(M) — t~%a(My) — (6 + 1)(¢ — Da(M)) + (t — 1)(1 £ 6M)d' (M)
= +{[(—0t + 8 + Da(M) — t~%a(M;)] + (t — 1)(1 £ 0M)a' (M)}
= 417 {—a(Mp) + t%(—6t + 6 + DA(M) + ta'(M)[M(—6t + 6 + 1) £ (¢ — 1)(1 £ 6M)]}

= £t~ —a(Mo) + (0t + 6 + 1)A(M) + (M + (¢ = 1))d' (M)}
= +t70hE (L, My),
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since a(M) = A(M) + Ma'(M). Here the function A is defined by:
hE(t, My) = —a(Mp) + t9(—8t + 8 + Da(M) £ %(¢t — 1)(1 £ 6M)a' (M),
with M = ¢7%M, & (t — 1). The function h satisfies:
hE(t, Mo)|e=1 = 0.
The t-derivative of the function M is:
tMy=£(04+ 1)t —-1)— M + 1,
so we find:
A hE(t, My)
=[6t°71(8 + 1 — 6t) — 6t°)a(M)
+{t9(0 + 1 — 0)M, + ((6 + 1)t% — 8¢5~ 1) (1 + OM) + 6:°(t — 1) M, }a' (M)
+1%(t — 1)(1 £ 6M)M,a" (M)
=0(6 + 1)t*71(1 ~ t)a(M) ,
+ 0 [—OM £ O(t — 1) £ tJ(0+1— 0t + 0t — 6) + ((6 + 1)t — 8)(6M + 1)}a' (M)
+ 971t — D)(1 £ OM)(FOM + 6(t — 1) + t)a" (M)
Therefore, we have

OchE(t, My)
t&-—l

=8(0 + 1)(1 — t)a(M)
+ [8(0 + 1)(t — 1M £+ 2((6 + 1)t — 8)]d' (M)
+a" (M)t — 1)1 —*M* + (6 + 1)(t — 1)(1 £ 6M))

=8(8 + 1)(1 — t)A(M) — A'(M)(t — 1[I —M? + (6 + 1) — 1)(1 £ 6M)]

+ a'(M)[8(6 +1)(t — 1)M +2((0 + 1)t — 8) + 6(6 + 1)(1 — ) M]
= 4 2((8 + 1)t — 0)a’ (M)

ﬂ.(.Mﬂ_{)_(t —D{-(1-6"M*)— (6 +1)}(t — 1)1 £ M) +1— 6*M*}
=+ 2((6 + 1)t — 8)a’ (M) + o' (M)(8 + 1)(¢ — 1)*(1 £ M)
by using
(o0 = 400+ i
A(M) = —-Md'(M).
We shall prove now that

11
89

<0, t>1, or t<t €(0,zie):

>0, t€(t,1)

h+(t,M0) #0, when t#1, M,M,e(—

h"(t,Mg) = {
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If this is proven, then we can conclude that

oH(t,Mo) #0, forany MMy €(~3,7), t#1

Proof for the function: ~2t{i, My). We consider two cases depending on i.
Case 1: (6 + 1)t — 8 > 0. In this case we have:

ath+(t,Mg) > 0,
for ¢ # 0 and M, My € (-3, §). This implies that

h+(t,M0)>0, t>1, for M,M;e(— 9 9),

and

6 11
+ < -
Rt (t, My) <0, for 9+1,__t<1, M, Mo € (=3, 5)-

Case 2: (+1)t—6<0.
We first consider the values M < M,. ‘We have:

RE(t, My) =[t(—6t + 6 4+ 1) — 1]a(M) + [a(M) — a(My)]

M 1—¢
+ 606+ )%t — (1 + BM)f (1—6%y%) 7 dy

11
<0, for tE( 9+1) M, M, € ( 9 "é),
because
a(M) —a(My) <0, (use do'(M)>0),
and
at) =t (-0t +6+1)—-1<0, te(0,1),
by using

a(l) =0,
{ a'(t) = 6(6 + 1)t%-1(1 - ¢) > 0.
We next deal with the values M > M. We have
My > E—Bl—(:—;) >0
because
M — My =t7(1 —t%) (M, — %(—1_—_—3;)—) > 0.

We then observe that

R, M) =t°(~6t + 6+ 1)(1 — 62 M) — (1 — g2 M2)'5
M M
+ 2608 + D)tz — 1) (1_92y2)7—5€dy+9(9+1)M0/ (1- 6 2) =2 dy
__71’_ Mo

=p(M; M, 1).



48 CHEN AND LEFLOCH

But we have

Oup(M; My, t) =8(8 + 1)(1 — 2 M) T {—t9(—6t + 0+ )M +2t°(t — 1) + My}
—00 1N _ 2 AR T ar g v Ar 8 W 9u80r 1N AL
ViV T L L v o g 17TUTVE TV T L AVED T b )] T Le (v L B iy
= —8(8 +1)(1 - t)(1 — 2 M2) T {8My + 6°(1 — 8 + 61)}
1

<0, for te€(0, ), 0<My<M<-.

0+1 9
Therefore, p(M; Mo, t) is a monotone decreasing function of M > M, for each fixed
My, >0andte (0, 5_—%). This implies

My
RE(t, M) < [t9(—6t + 0+ 1) — 1)(1 — 62 M2)55 + 26(0 + 1)t°(t — 1) (1—6%2)'F dy
— L
[
1

)y O<My<M<-.

<0, for t€(0 7

8
ar1”

Proof for the function: R (¢, M;). The proof is slightly more complicated
than for the function A%, We still distinguish between two cases.
Case 1: t > 1. We note that

h™(t, Mp) = t(—6t + 6 + 1)a(M) — a(My) — t°(t — 1)(1 ~ 8M)a' (M).

Se we immediately obtain:

h_(t, Mg) < O,

for t > i and M, M, € (--3;, 9)
It remains to treat the values t such that: 1 <t < %l. We have

- t9(1
M - My =01 — )y + 0D
&
<o il 2
<0,
using
t0(t — 1) .t -1) 1
ooy Pz STy Mo =g+ Mo >0,
because

d( 4=y _ OO — (64 1)t + 6]
dt (t0 —1)2

>0, whent>1.
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Then
R(t, My) =[t (0t + 8+ 1) — 1]a(M) + [a(M) — a(My)]
— %t — D1 - 6M)d (M)
<[t0(—6t + 8+ 1) — 1]a(M) - t°(t — 1)1 — §M)a' (M)
=[t (6t + 6 + 1) — 1])(1 — 62 M?) %

+ 006 + D{[t°(—0t + 0 + 1) — 1]M — #°(t — 1)(1 — 6M)} M(l — 6%2) % dy

-
t9(t — 1)

M 1-0
1 Ml (1-6%*) 7 dy

-1
[

< — 86+ 1) — 1)

-1 11
<0, te(l,T), ME(_E’E)")’

using
(-1
(t-1) 1
t#—1 ¢
Case 2: 0 <t < 1, which is the last subcase.
For M < My, that is,

for > 1.

t9(1 —¢
M~ My =171 — ) (M, + 1(——t9)) <0,
which implies
t9(1—1)
My < -2~
15w <0

and, when My = ——15,
1
M < g for te€(0,1).
Now, for each fixed ¢ € (0,1), we have

Ontg b (8, M) =(—8t + 6 + 1)a' (M) — (t — D[(1 — 6M)d' (M) — ba(M)] — o' (My)

1—8 M 1—4
=000+ D41~ (1~ (1~ M T + [ (- 6y R )

=6(6 + 1)w(t, My),
using the relation M =t=%My + 1 —t.
Note that
w(t, M) >0, forfixed te€(0,1),
and

#9001, w(t, Mp) =t°(1 — 2 M2)' 5" + (1 — 6M)(1 — 2 M2) 5" [1 + 6M — 6(1 — )M — 6]

=t?(1 - 2 M2)'T" + (1 — 6M)(1 — 82 M%) [6(1 + OM) + 1 — 26]

>0, for~%<M<MgSO.
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This implies that

e —
Omh™ (8, Mp) >0, for - % <M< My e (—%,—%(—]L——t—;—)—), t € (0,1).

Therefore, we have
ho(t, Mo) >[t*(—6t + 6+ 1) — 1)(1 — 82 M2) 5
M
+26(8 + 1)(1 = £)¢° / (-0 Ry
e
= r(t, M).

Since .
'."(t, —--9') = 0,

and

Bur(t, M) =8(8 + 1)(1 — 82 M2) 5" {260(1 — t) — M[t*(~0t + 6 + 1) — 1]}

>0,
when e( :
2t¥(1 — ¢

M> - ;

7T ey 619(t — 1)

for t € (0,1).
When

O<tg<t<l,

with 36(1 — o)t 448 — 1 = 0,#y € (0,1), which is true when ¢ > #ﬁ—f)—, then

1 2t%(1 — 1)
M>-->— .
2 TET TPy eri—1)

This is because, for B(t) = 36(1 — )t +¢% — 1,

1+ 36
"(t) = 6t°(1 4+ 36 — 3(1 + )t t .
Therefore, when ¢t > 5 > é;(%—is_%’
h—(t, Mo) >0,

)
form%<M§M0§-1M.

1—1¢
When t € (0,%5), we have two subcases.

If ¢ € (0, ?i-%i"]’ we have

Oih(t, My) = 0,
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for M, My € (—%, 3).
If t € (g35,%0) C (355, %), then

Bth‘(t, M{))X(t, MQ) > 0,

where

(0 + 1)(t — 1)2(1 — 6M)(1 — 2 M?)' )

X(t, Mo) = (6 + 1){—2d'(M) + (@+1)—6

Then
0 X (t, My) = a(s):cz + b(s)z + cs),

where

s= (04 D1~ 1) € (6 +1)(1 1), 1) C (5,1),
20t%(1 — t)
1—t0 a0t —1)

a(s) = 0s% — 20+ )s+2(6 + 1),
b(s) = s[s® — (36 +4)s* + (76 + 9)s — 6(8 + 1)],
o(s) = —(1-8)s*(1+3),

z=1+6M € (0,1 -

) €(0,1),

One can prove that

BtX(t, Mn) >0,

for
te (5*_%?*0) C (g i 1’ 3%1++32))’
M€ (~5—m t%ti(]é;(i)m 1y
M, € (M,“ti(et:ll))’

so we have

Oh™(t,Mp) > 0, t€(0,1).
Therefore, there exists a unique t, € (0,%g) such that
R™(t, Mo)(t —ts) >0, t#t,t€(0,40),
which implies that
W™ (8, Mot — ) >0, t#t,,te(0,1).
For M > Mj,

_ _ g0y _ 40
M — My =17°(1 = )Mo + —5——

) >0,
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which implies
(1 - 1)
My > — s
° 1 -0
First we note that

h™(t, Mo) =t°(—6t + 6+ 1)(1 — 2 M?)7 — (1 — 6> M2)"5

M
1008 + )Mo +2(1 — t)t°] f (1 - 02y2) 5 dy
-7
Mo 1-0
— 6(6 + 1) M / (1= 92y2) 5" dy.
-3

and
S h™ (8, My) =(—0t + 0 + 1)a' (M) — (¢t — D[(1 — 0M)ad' (M) — 8a(M)] — a' (M)

1—10 M 18
=08 + 1){(1 — t)(1 — 6M)(1 — *°M*)™5 + fM (1~ 6*y*)2 dy}

1 1
>0, for t@(o,l), —§<M0<M<§:
using the relation M =t=%M; + 1 — 4.

We observe that
t9(1 —t)

- >

from the first subcase.
Therefore, we obtain

(1 —¢)

1
T <My <M< —-.

0
h“(t,Mg) >0, for te€ (m,l) — 7

We conclude that
>0, te(0,1),
h™(t, My) =0, t=1,
<0, te(0,00),
when M, M, € (-3, %)
This completes the proof of Lemma 1. O
Proof of Lemma 2. It is equivalent to show that a root M = M(¢, M) to one of

the two functions Fy defined by
Fyu(M,t,Mo) = —a(Mo) + t°(—=6t + 8 + D)a(M) +t°(t — 1)(£1 + 6M)d' (M),
is not a root for the function relative to the Rankine-Hugoniot relation:

010 - M,

R (#a(M) - a(M)) — 4 H(M) + H(Ma).

g(MataMﬂ) =
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We are going to prove that for ¢t # 1
0
(A.1) é-t-g(M(t,Mo),t,Mg) # 0.

This is enough to conclude, since then the function g is monotone in ¢ and only
vanish at ¢ = 1. We use the notation ¢(¢, My} = g(M (¢, M), t, My). We shall need
below the t-derivative of M, M; = 0M(t,M,)/0t :

(A.2)

tM{a + (¢ —1)(0M £1)a" } +(1-t)(1 - M*)a" + (M £1L(0+1)(t—1))a' = 0.

The t-derivative of the function g is:

ge(t, Mo) =(t — 1)™2((8 + 1)t M(t — 1) — 9T M + M) (#+ (M) — a(Mp))
+(t — DTV M — My)(6 + 1)tPa(M) — (20 + 1)t*6(M)
+(t — D) M {0 (10 a(M) — a(Mb))
+HETIM — M)ttt e (M) — (t — 1) (M)}

Using the expressions for b and b' in terms of the functions a and a', we get after
some additional calculation: '

(A.3) gr =1t — 1) o/ {tM, £ 1+ 6M}{t°M — My F (t — 1)t°}.

Next using in (A.3) the expression of M; given by (A.2), it follows that:

(A.4)

gt = %' {a' +(t—1)(6M £ 1)a"} " {(1£6M)a" £ (6+1)a' } {£* M — Mo F (¢~ 1)t}
Let us now check that each of the three terms appearing in the right hand side of

(A.4) does not vanish.
First we prove that:

(A.5) (0 1) + (£146M)a" >0, forall M & (o, 5).

The “+” case is obvious since a’ and ¢ are positive. We only have to consider the
function:

$(M) = (6 + 1)a’' + (-1 +6M)a".
Using the explicit formula for a”, we have
M) = (1—62m2) PVCY(_ (90 4 1)02 M2 — (1 - 6)6M + 20 +1),

So we have: . ]
¢"(M) < 0, gb'(_T) >0, ¢»’(§) <0,
and since

HZ) =0, d(5)>0,
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the conclusion (A.5) follows.
We now prove that:

(A6) a'+(t—1)(6M£1)a" >0, forall t51, and M = M(t, Mo) € (==, 3).
U

v

It is equivalent to prove that if M is a root to
(A7) d' (M"Y + (t - 1)(6M* £ 1)a" (M) =0,
then the function Fy(M(t, My),t, My) is monotone with respect to the variable

t (and then vanishes only at ¢ = 1). Indeed, making use of (A.7), we find (here
M = M)

-gt—Fi(Ml(t,Mu),t, My) = a"{(1-)(1—6* M?)— (M +1+(6+1)(2—1)) (tml)(BM:tlj}
thus 5
Gl = (1—-)(1£6M)(24 (8 +1)(t — 1)) £ 0,

since ¢t > 0 and 0 < @ < 1. This completes the proof of (A.6).
We finally prove that

(A8) M —MyF(t—1)t° #0, forall t£1, and M = M(t,My) € (:éi% ,

It is equivalent to prove that if M? solves the equation:
M — Mo+ (t - 1)t =0,
then the function Fi does not vanish, i.e.
—a(Mo) + t°(—6t + 6 + L)a(M?) + t5(t — 1)(1 + 6M>)a' (M?) £ 0,
fort £ 1 and My, M € (—-15, %) However, this is exactly what has been shown in

the proof of Lemma 1 for A% (¢, My). The proof of (A.8) is thus completed. This
also completes the proof of Lemma 2.






