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A NOTE ON IMMERSED INTERFACE METHOD FOR THREE
DIMENSIONAL ELLIPTIC EQUATIONS *©

ZHILIN LI 1
Abstract. The Immersed Interface Method proposed by LeVeque and Li [SIAM J. Numer.
Anal. 31, No.4 {1994)] is extended to three dimensional elliptic equations of the form:
V- (8(z)Vu(2)) + s{z)u(=) = f(=).

We study the situation in which there is an irregular interface (surface} § contained in the solution
domain across which 8, k and f may be discontinuous or even singular. As a resuit, the solution
u will usually be non-smooth or even discontinucus. A finite difference approach with a uniform
Cartesian grid is used in the discretization. Local truncation error analysis is performed to estimate
the accuracy of the numerical solution.

Key words. 3D elliptic equation, finite difference methods, irregular interface, discontinuous
coefficients, singular source term, delta functions, Cartesian grid, immersed interface method
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1. Introduction. Solving elliptic equations with discontinuous coefficients is a
fundamental problem in various important applications, for example at the interface
between two materials with different diffusion parameters in steady state heat diffusion
or electrostatic problems. Such problems also arise in multicomponent flow problems,
e.g., the porous media equations used to model the interface between oil and injected
fluid in simulations of secondary recovery in ol reserveirs [1], [2], [10].

Consider the general three-dimensional problem

(1) (ﬁuf")f 'i’(ﬁ“y )y+(ﬂ“z)z +rc(:c,y,z)u = f(:n,y,z), (m!ylz) E Q,

in some region £, where all the coeflicients §, &, and f may be discontinuous across
an interface, which is usually a surface S5t 2 = 2(p,v), y = y(p, v), z = z{p, v). The
interface S divides the solution domain in two parts which we denote as the + side and
— side respectively. By convention the normal direction # points toward the -+ side,
When there is a sources or a sink on the interface, a delta function or its derivative
singularity would appear in the expression of f(z,y, z), for example

() fla,3,2) = ffs Oyt ) 65 (£ = X(p,v)) died,

where & = (z,9,2), X(uv) = (&(u,v), (i, v), 2{s,v)), 6s is a three dimensional
Dirac function and C{g,v) is the source strength. Consequently there would be a
jump either in the normal derivative or in the solution itself or both. To make the
problem (1) well-posed, we assume we know the following jump conditions defined as
the difference of the limiting values between the + side and — side at any point of
the interface

3) [u] = w(p,v),
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() 894) = a(u,0).

Such jump conditions can usually he obtained either from physical reasoning or the
partial differential equation itself.

In the immersed interface method developed in [3], [4] and here, we are able to
handle discontinuities and singularities simultaneously. The computational frame is
finite difference with a uniform Cartesian grid. One obvious advantage of such a grid
is that there is almost no cost for grid generation, and the conventional difference
schemes can be used at most grid points (regular). Only those near the interface,
which are usually much fewer than the regular grid points, need special attention.

Among other approaches in dealing with discontinuous coeflicients problems are
harmonic averaging [2], [10], [12], the smoothing fechnigue, [11], [13], and fluz correc-
tion [6] elc. Some of these methods work well in one dimensional problems but are
hard to implement in two or three dimensions. Almost all of them are only first order
accurate in two or more dimensions.

Another more complicated application with singular sources arises in using Pe-
skin’s immersed boundary method to solve PDEs with complicated geometry [8], [9].
In Peskin’s approach the boundary is immersed in a uniform Cartesian grid and the
boundary condition is converted as a singular force term which usually has the form
of (2). The immersed boundary method has being widely used for many problems in
recent years. In Peskin’s immersed boundary method, the discretized delta function
is used to deal with the singularity in the source term. However this approach would
smooth the solution and hence is only first order aceurate. In a different approach,
Mayo [7] uses an integral equation to get the necessary information to modify the
difference scheme for Poisson and biharmonic equations on irregular regions.

In our approach we make use of the jump conditions to modify the difference
scheme at irregular points near the interface. The local truncation error is controlled
at these points so that the solution of the difference equations maintains second order
accuracy on the entire uniform grid.

Although we only consider elliptic equations here, the immersed interface method
has been used for time dependent problems as well such as heat equations, the Stokes
flow with a moving interface [4] and wave propagations [5] efc. Some other problems
are enrrently being investigated.

This note is an extension of the work by LeVeque and Li [3] to three dimensional
problems. Readers are referred to [3] and [4] for more background on the problem,
and analysis in one and two dimensions.

2. Interface relations.. At a point (z*,y"*,2*) on the interface, we need to
use local eoordinates to simplify the dertvation of the interface relations. The local
coordinates transformation from (z,y,2) to (£,n,() are chosen so that £ is parallel
to the normal direction of the interface pointing toward the + side. The n- and (-
axes are in the tangent plane passing through (2%, y*, z*). In the neighborhood of this
point, the interface can be expressed as

(B &=x{n) with x(0,0) =0, xy(0,0) =0, x¢{0,0)=20.

Similar to the proof given for two dimensional case in [4], we can prove that in the
local coordinates the equation (1) is unchanged, so we will use the same notation for
u, w, ¢, B, £ and f. The jumps w and g in (3) and (4) are only defined on the interface
and they are functions of 5 and ¢ in the local coordinates.
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As we did in [3] and [4], we use the jump conditions and their derivatives as well
as the differential equation itself to get the interface relations between the gquantities

on the two sides of the interface surface. Let us first differentiate (3) with respect to
71 and { respectively to get

(6) {”E}Xn + [ug) = wy,
(7) fuelxe + [ue] = we.

Differentiating {6) with respect to ¢ yields

®) Xo el + xoc ] + Fune] xe + [unc] = .

Differentiating (6) with respect to 7 and differentiating {7) with respect to { respec-
tively we obtain

{9) Xn ;‘_n[uf] + Xnn [te] + Xn [Une] + [tgn] = wyy,

(10) X¢ 5%[‘%1 + xc¢ [ue] + x¢ [uce] + [ugcd = wee.

Before differentiating the jump of the normal derivative (4), we first express the
unit normal vector of the interface S as

(11) i= (1: = Xns ""X()

T VI x?

So the interface condition (4) can be written as

(12) [8 (ue —ugxn —ucxe )] = a0 Q) /1 + x5% + x¢2

Differentiating this with respect to n gives
[(Be xy + B ) (g — uy xn — ucxc )]
d a
(13) + | B { uge Xy + ugn — Xq 55% - X¢ 'a‘;"uc Uy Xan U Xng

Xn Xny
=gy /1 Xo® + X A+ §
! " ¢ VAR Xnt 4 x¢?
Similarly, differentiating (12} with respect to { gives
[(Be x¢ + Bc) (g — wgxn —ug xc )]
a 3
(14) + | B Mee Xe o+ g — X atin T X¢ prte T Uy Xng — Ue X

X¢ X¢¢
=g /1t xR
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At the origin, x5(0,0) = x¢(0,0) = 0, and from (6)-(14) we can conclude that

ut = u 4w,

+ - P

Yo T v + g+’

u,‘;' = u; + wy,

ug“ = u; +w,
ul = U A ug xne = ud Xne o+ w

n¢ n{ £ Ang £ Xn¢ n¢)
“3-17 = gy, + (v — “;)Xfm + Wyp,

(15} ufe = gt (ug ~ u)xee + wee
JE B~ g .

u?-ﬂ = ﬁ_+ufn+ un+_ﬁ_+” Xnn + ”2“’}";{”( Xn¢

By _ ﬁ+
31 T ¢+ —ﬁT’

we = ﬂ—;“s'c**(“i Z+ )er<+(c—g—;“ )X¢<
ﬁc ﬁc q,;

— gt

ﬁ+ U g+t ﬁ+
To get the relation for “fs we need to use the differential equation (1) itself from
which we can write

(16) [B(uge + unn + vee) + Beue + Byuy + Beue + wu ] = [f].
Notice that
A7) kv —gktut =k u” =ty Ty - ktut = —[klu™ — k*[y).
Rearranging equation (16) and using (17), we get
lia (u;*eru,,*,, +u§c) +BF uf + B ut + Bfuf =
18) 5 (e + i + ”Ec) + 0 g
+ By uy + 0 v +[fl+rTuT - wtut,

Plugging the sixth and seventh equations of (15) into (18) and collecting terms finally
we have
+ _ B B _ B -
Yee = g Yee T (ﬁ+ 1) Uy + (EI— 1) et

+ Bt e
Ug | Xon + X¢¢ — EI — g { Xnn T X¢¢— G+

i, _ 1 _
+ar B —ﬁrT“nJ’)+“[§“4.“(ﬁc up = Bfuf)
[£]

ﬁT_wnn_wCC-

(19)

_ﬁé (e~ + x+[u]) +
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3. The difference scheme. At regular grid points, we still use the classical
central difference scheme which has a seven-point stencil. The local truncation errors
at these grid points are O(h?). So we will concentrate below on developing difference
iormulas tor the irregular grid points for which the mterface cubs through the classical
seven-point stencil. Taking a typical irregular grid point, say (z:,y;,2x), we try to
develop the modified difference scheme at this point. Because the interface is one
dimension lower than the sclution domain, the number of irregular grid points will be
O(n?) compared to the total number of grid points, which is O(n%). We can require
the local truncation error for the difference scheme at irregular grid points to be
O(h) without affecting the second order accuracy globally. Let us write the difference
scheme as follows:

(20) Y Ym Uik itimk b + Kijh 4k = figk + Cij,
m
where %, fm, km may be 0,41, 42, . ... Of course we want the number of grid points

involved to be as few as possible. So first we need to determine the stencil, and then
find the coefficients vy, and the correction term Cjj for the given stencil.

The analysis is similar to the two dimensional case as presented in [3] and [4] but
more complicated in three dimensions. We take a point {(x*,y*,z*) on the interface
surface near (2,14, 2r) and use local coordinates (£,7,¢) at (z,y",z*). Tor the
elliptic equation the coefficients 7,, should be of order O(1/h?). So if we expand
Uiti, i4im. btk 10 the difference scheme about the origin of the local coordinates from
each side of the surface 5, we need to match up to second derivatives to guarantee
that the local truncation error is O(h). Using the ten interface relations (15) and (19)
to eliminate quantities at the (4) side of the interface, the Taylor expansion of (20}
will then contain u™, Ug Uy, Ug Ugg, Uy Ugey Ug gy U and u,.. To match them we
need altogether ten grid points to get ten equations for the v,,s. Thus we need to find
three additional points besides the standard seven-point stencil. The three additional
grid points can be taken from any of the twenty grid points {({ £ 1,5 4 1,k £ 1},
(Fl,j1,0), (i1, 5,bL]), (4,71, k1)

Once we have determined the stencil we need to find the coefficients of the differ-
ence scheme. The local truncation error of the difference scheme is

(21) Tiik = D Y Yitimibimb bk + Kijk ik = fijk = Cije.

m

We will force i to be O(h) by choosing the coefficients yps. To get the equations
for those coeflicients we use Taylor expansion of (20) about (z*,y*, z*), the origin of
the local coordinates. If the grid point (z;, y;, z;) is on the (—) side, we will get

Tijr = aiu” +ayut +agu; +aguf +asuy +oguf +aru; +aguf
99 + g uge + a0 ufy + an ugy ez, + a1s g

@) +asuf, + arsuy, +arcul, +arru +asuf

+argu, +agoul, + k7 uT — f7 = Cijp + O(h).

The coefficients a; depend only on the position of the stencil relative to the interface.

They are independent of the functions u,x and f. If we define the index sets K+
and K~ by

K* = {k: (&, (k) is on the + side of S},
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then the a; are given by

ay = Y\ Tk

e
kek-

a3 = Z 37
keK~

as = Z T Te
reK-

ar= Y Gm
kekK-

1 2
=3 > En
FEK -

1 2
t11 = 5 Z Tk Tk
keK -

1 2
a1 = 5 Y. Gn
T
as= ) Gmv
keK-
7= Y, &leme
keK -

19 = Z N6k
T

m= ), m
keK+
a= Y &
kEK+
a6 = Y MW
kEK+
g = Z CrYx
kEKT
1
40 =5 Z i
ke K+
1
d12 = 5 Z TeTk
EEKt
1
f114z“2* Z Cf‘rk
keKt
as= Y. v
ker+
as= Y, GQem
keK+
a0 = Y MGk
keK+

Using the interface relations {15) and {19), and rearranging {22) we have

K B
Tk = (al_am%>u_+a2“++{aa—am(er-l-X( —Ef;‘)

5+

ﬁ+

Ji} B, -
+@12 Xnp + 214 X¢¢ + Q16 -4 U-IS_ + a2 Xn¢ o g

+ {ﬂ4+ aig (X:m + X¢e — £

ﬁ'i'

—d12 Xnn — 14 X¢¢ — Q16 ﬁ_ﬁf

ﬁ —
+ (0-5 + @10 5 5+ Q16 gt Xnng ™
ﬁ+
-4 (as 10 oo gt + 216 Xy + 918 Xn¢
-
(23) + (07 + a0 ﬂ—i — a1

ﬂTXnC -

+
—alsﬂi—azo)cC uf
At n 3

)

g
ﬂ—+XCC) u



(24)
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g+
-\ 7 g\
+ (ag-&am ,8+) uge + Kan + a1z +am(ﬁ—+ - l)) u
+ ((113 + a1s + d1g (§—+ - 1)) e, + (ﬂls + a1 g‘;) Uy
+ (017 + ais g+) + (a1e + azo) vy, + G12 wyy + 214w

. ([f] K+[]“qu*wgc)+&1sﬁ+

ﬁi-
+ (ae a1p < + a16 Xne + 18 XCC)

g+ Bt
+a1sb—+~+azuwng +r7uw — 7 — Gy,
Now it is clear that to make Tj;, to be O(h) we should set
a1 ~alou+a2 = 0,
fins

(25)

(26)

(27)
(28)
(29)
(30)
(31)
(32)

(33)

6 5
ag —ato b Xon + X¢¢ — 6‘1 + @12 Xy + 214 X¢¢ T C1s “ﬁtg

e +
gt + @20 Xn¢ + §+ {34 + a0 (er + Xce — g%w)

+ +
ﬂrj ¢ . —_
“112va—“14Xc<—ﬂls"b“;“—als§:—azaxqc = [,
wren B
ﬁ+ 14 )8+ nn }ﬁ.’w ¢
ﬁ‘l’
+as — QIOE:’{_‘+916X1711'§"‘118X:7C = By,
3 i 8-
ﬂ7+&10"é":|_"—{116'ﬁ-;)(q( a1g ar Xce¢
ﬁ+
+as — aloﬁ + a6 X 18X = B,
‘19+a10"é:_' = p7,

a11+012+010(§_—1) = p7,

a13 + @14 + @19 (g—;—l) = p7,

ais + 216 = G = 0,
f117+f118ﬂ—+ = 0,
ajg+age = 0.
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This is a system of ten equaticns with ten variables. We can solve this system to
get the coeflicients %, of the difference scheme at this particular irregular grid point.
Once we know the 7,,;, we know the a; as well, so we can calculate the correction term
from the foilowing:

k¥ {u
Cijp = awo (éf—j - ﬁi l_ Wiy — wcc) + 12 Wny + G194 W
+ais ;—i + a1s ;—i + g0 Wy¢ + a2 [u]

1 g
—i-a: g4 +di1p Xm;+x(;c“'é: ™ @12 Xnn

+ +
(34) — ®14 X (¢ — Q16 E’%; - GISE%_" — @20 xnc} q
: gt
+ (36 — @10 ﬁ_‘fi‘+ + 816 Xpn + 818 Xn() Wy

ﬁ+
+ (Gs - a19 ﬁ—i_* + @16 Xy¢ + Q18 X¢( | We-

If the grid point is on (+) side, there are two ways to deal with it. The first one
is to modify the correction term Cyjp and the linear system (24)-{33) slightly. Use
the following relation

ktut = ks u +xTut—k u”
(35) = g7 u” &t U]+ [klu,

and let the difference scheme at this irregular (2;,y;, 2;) be:

(36) E‘?m Widin j+im kthm + Kijk Yijk = fije + Cij-

m

Then 4, still satisfy equations (25)-(33). Now the first equation becomes

[]
(37) a] — ayg E—'? + ag — —[Kl],
and the correction term é;jk is
(38) Cijr = Cijie + & [u] - [f].
The other way is simply to reverse the roles of the two sides (+) and (—} in the
discussion above.

The immersed interface method discussed above has several nice properties. It
appears to be second order accurate and can capture the sharpness if the solution
is non-smooth or discontinuous. It can handle very general problems without much
difficulty as we can see from an example below. Furthermore, if no interface is present
then we will revert to the classical central difference scheme.

We have tested several examples, Although we can not take very fine grids to
test the second order convergence due to the size limitation in three-dimensions, we
do observe good numerical results. Below we give one test example.
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Example 1. We consider a problem in {hree dimensions with discontinuous
coefficienis as well as the singular sources. The equation is defined on the cube:

~1<2,y,2,<1 and has the form

(Buz)e + (Buy)y + (Bus)s + £u=f,

where

Blz,y,z) =

3= b [

1+$2+y2+z2 if$2+y2+zzs
1 ife? +y? +22 >,

6+ 11 (22 + y* + 2%)

flz,y,2) = 1 ! —log (zm) ,

2T y? + 22 Ve 4yt + 22

ifze?+y? +27 <
fal+y? +2% >

w(z,y,z) = { l_l

Tt T fht

Dirichlet boundary condilions are determined from ihe exacl solution

z? +y* + 22 fa?+y’ +2° <
i

——-—-———-—+log(2 x2+y2+22) fa?t+y? +22>

Vet +y? 4 z?

Table 1 lists the local truncation and global errors defined as

[ P

u(z,y,2) =

| B lfoe = max | w(zi, v, 26) — wijr |, | Tn lloo = max | T |,
‘?J?k 1,J,k

where n is the mesh size, u(®;, y;, z:) is the exact solution and u;;, is the computed
solution. The results show that our numerical method is about second order accurate
as we refine the mesh. The ratio in column 3 approaches 4 meaning that |} I, || is
O(h?). And the ratio in column b approaches 2 meaning that || Ty, {| is O(k) as we
have predicted.

TABLE 1
Numertcal vesulls for three dimensionel Exemple 1,

n {| En |l ratio || || T ||, | ratio
20 || 9.2824 x 1073 1.1675
40 || 2.8176 x 1077 | 3.2945 || 0.6587 | 1.7524
80 || 7.1043 x 10-% | 3.9656 || 0.3757 | 1.7728

4. Acknowledgments, The author is indebted to Professor R. J. LeVeque for
his continuous support and helpful discussions during the course of this work.
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