UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Extensible PDE Solvers Package

Users Manual

Barry Smith

January 1995

CAM Report 95-4

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555

Extensible PDE Solvers Package
Users Manual

by

Barry Swmith
Mathemalics and Compuler Setence Division

September 1994

This work was supported in part by the Office of Scientific Comn-
puting, U.S. Department of Energy, and by ARO under subcon-
tract number ORA 4466.04 Amendment | from The University of
Tennessee, Knoxville, while the author was at the Department of
Mathematics, University of California at Los Angeles.

This paper alsoc appeared as: Argonne National
Laboratory Report # ANL-94/40.

Contents

Abstract
1 Introduction
L. Accessing the Guts L . . e
1.2 Why C7 e e
1.3 Further Information
1.4 Imstalling the Package o
1.5 Error Messages 0 e e e e e e e
2 Working with Grids
2,1 Tensor Product Grids o
2.2 Unstructured Grids o L
2.2.1 Grids Based on Triangleso oo
2.2.2 Grids Based on Quadrilaterals o L0 o
2.2.3 Grids Based on Tetrahedronso o0
2.2.4 Grids Based on Hexahedrons (Bricks)
2.2.6 Adding a Mapping L e
2,3 Operationson Grids e
2.3.1 Refining Grids
2.3.2 Grid Coarsening e
2.3.3 Saving and Loading Grids
234 Graphics . . oL e
2.3.,5 Partitioning Grids L s
2.4 Manipulating Points L
2.5 Manipulating Mathematical Functions Lo o000
2.6 Adding New Typesof Grids o o
3 Working with PDEs and Discretizations
3.1 Defining the PDEo 00
3.2 Defining Boundary Conditions o oo
3.3 Using a Discretization
3.4 Discretizing the Boundary oo oo o

4 Solving a PDE
4.1 Classical Solvers L e e e
4.2 Maultigrid Solvers oo e

14
1)

5 Organization
0.1 Examples
5.2 Directories L e e e e

6 Future Possibilities
7 Summary of Routines
Bibliography

Function Index

23
23
25
26
27
35

36

Extensible PDE Solvers Package
Users Manual

hy

Barry Smith

Abstract

This manual describes the design and use ol the Exiensible PDE Solvers package for Lie
solution of elliptic PDEs.

At this time, the package provides support for the solution of elliptic PDEs using either finile
elements or finite differences in two or three dimensions on either structured or unstructured
grids. The package is designed to be easily extended to new discretizations or classes of PDEs.
Several classical direct and iterative methods, as well as several multigrid variants, may be used
to solve the resulting linear systems.

The package is intended as a protolype, working implementation to demonstrate, and learn,
how such packages may be organized. Many tmportant features for particular problems are
facking; future versions of the package may add increased functionality, The seftware described
is purely experimental, its structure and organizasion may change significantly at any tinne.
There is no explicit support lor parallel computing tn the Extensible PDE Solvers package.

1

Chapter 1

Introduction

Wouldn't it be nice to be able to write a 25-line code that could efficiently set up and solve a class
of PDEs on an arbitrary geometry (see IMig. 1.1)7 The Extensible PDE Solvers package is a {irst
attempt at providing such a programming environment.

main(int Argc, char *#Args){
/* define the variables #/

DDGrid #grid;
DDPDEDiscretization *disc;
DDFunction *f, *g;
DDDFunction *u
DDPDE *pde;
DDBC *bc;
DDBCDiscretization #bcdisc;
DDOneGrid *onegrid;
DDDeomain *domain;

/* define the grid =/
grid = DDGridLoad(*‘structure.grid’’};
/* define the PDE %/
f = DDFunctionCreate(2,2,rhsl,rhs2,&ectx);
pde = DDPDECreatelsolinearElasticity2(f,1.,.3,0,0);
/* define the discretization */
disc = DDPDEDiscretizationCreate(DDPDEDISCFE2dLIN) ;
DDPDEDiscretizationSetUp{disc);
/* define the Dirichlet boundary conditions */
g = DDFunctionCreate(2,2,dir1,dir2,0);
bc = DDBCCreateDirichlet(g,0,0);
/* define the discretization of boundary conditions */
bedisc = DDBCDiscretizationCreateSimple();
/* setup and solve discrete system */
domain = DDDomainCreate(grid,disc,pde);
DDDomainAddBoundary(domain,bec,bcdisc);
onaegrid = DDOneGridCreateWithCommandLine (domain,&Arge,Args);
DDOneGridSetUpWithCommandLine (onegrid,&Arge,Args);
u = DDOneGridSolve(onegrid};

Figure 1.1: Example frem the extensible PDE solvers package

The Extensible PDE Solvers package provides a powerful, yet easy-to-use, interface to numerical
methods for elliptic PDEs. In addition, it is relatively easy to extend the set of methods.
The present features of the Extensible PDE Solvers package include

o a high-level, abstract interface to fundamental objects such as grids, discretizations, and
boundary conditions;

¢ identical support for structured, semistructured, and unstructured grids;
e code reuse between finite element and finite difference discretizations; and

o the ability to extend the code to new discretizations, PDEs, and linear system solvers without
modifying a single line of the Extensible PDE Solvers package.

PDE Solvers

Domain

Linear and Nonlinear

Solvers

[BC]| [PDEDis§ [BCDisc]

[Grd] [PDE]

[Poinis |
Vector i

[Map | Function

Figure 1.2: Outline of fundamental objects

The goals of the Extensible PDE Solvers package (and, more generally, for all of the Portable,
Extensible Toolkit for Scientific computlation {PETSc) (3], developed by Gropp, Mclnnes. and
Smith) are

¢ flexibility,

+ reusability,

e good efficiency for both model and “real-world” problems, and

¢ the ability to allow a programimer to set up and solve a problem quickly.

To achieve these goals, the Extensible PDE Solvers package was designed using the concept of
data encapsulation. Simply put, only routines that absolutely must know the data storage lormat
of an object are allowed to directly manipuiate Lhat data. All other routines can access the data
only by calling these special (data access) routines. Different software components communicale
with each other through a small, well-defined set of interfaces. (In our current implementation, this
concept is occasionally violated in the interest of getiing things done quickly.) See Figure 1.2 lor
an overview of some of the components i the Extensible PDE Solvers package.

1.1 Accessing the Guts

Despite the apparent power and fiexibility of the Extensible PDE Selvers package, this package
actually provides a simplified interface to the more flexible and powerful routines that are part of
the PETSc package.

The Extensible PDI Solvers package is designed to sil on top of these more powerful, but more
complicated, routines and make il easier for you Lo solve PDEs without having to spend a large
amount of time coding. You do not need to know about or understand the lower-level routines in
order to use the package efficiently. If you find that the Extensible PDE Solvers package does not
give you the functionality that you reed, you should then {and only then) investigate Lhese other
parts of PETSc.

1.2 Why C?

The Extensible PDE Solvers package (and most of PETSc) is coded in C. It is intended to be
usable from Fortran 77 and (in the future) C4++4, but C is used as the basic library language lor
the following reasons:

e maturity of language and compilers,

¢ ability to use data encapsulation techniques,

» portability across virtually all machines, and

o ability to be called easily from either Fortran 77 ar C4+4.

The Fortran 77 interface Lo the Extensible PDE Solvers package has not been extensively tested.
We do not recommend using Fortran 77 with the Extensible PDE Solvers package. The Fortran 77
interface for the rest of PETSc is, however, well tested and used by many people.

1.3 Further Information

This manual mentions some of the routines in the Extlensible PDE Solvers package: however. usage
instructions are provided only for the more common routines. More detatled information about the
routines mentioned in this manual may be found in Chapter 7 and the man pages using toolman.
one of the utilities provided by PITSc for accessing the detailed documentation on the routines.

This package is growing through the addition of new routines. Suggestions (and bug reports)
should be e-mailed to bsmith@mcs.anl.gov.

The Extensible PDE Solvers package includes some graphical aids for displaying, lor example.
the progress of the solution algorithr. [t is possible to install the Extensible PDE Solvers package
without the X-Windows graphics, but we do not recommend it.

1.4 Installing the Package

The Extensible PDE Sclvers Package is available, as part of PETSec, by anonymous fip from
info.mcs.anl.gov in the directory pub/pdetools. The readme file indicates which compressed tar
files you should obtain. Once the tar file has been extracted at your site. the readme file contlains
instructions on the compiling and instaliation of the software.

To make the examples for the Extensible PDE Solvers package, change to the direclory do-
main/tools, and type make BOPT=g ex1. This will make the first example. See Chapter 5. where
all of the examples are discussed.

1.5 Error Messages
The debugging version of the PETSc package will generate error tracebacks of the form

Line linenumber in filename: message
Line linenumber in filename: message

Line linenumber in filename: message

if an error is detected. The first line indicates the file where the error was detected; the subsequent
lines give a traceback of the routines that were calling the routine that detected the error. A
message may or may nol be present; if present, it gives more details about the cause of Lthe error.

The production libraries are often built withoui the ability to generate these tracebacks {or even
detect many errors). If your programs crash unexpectedly, try to compile the debugging version
and run that.

4

Chapter 2

Working with Grids

The Extensible PDE Solvers package has support for many types of grids. Implementations are
provided both for tensor preduct grids with ar optional mapping and for the usual unstructured

grids.

All of the grids are organized around a variable type called a DDGrid. These grids can be created.
used for various purposes, and then destroyed. For instance, the following example displays a grid
01l your monitor.

DbGrid *grid;

grid = DDGrid2dCreateUniform(nx,ny,0.0,1.0,0.0,1.0);
DDGridDraw{(window,0,grid,0);

DDGridDestroy(grid);

The basic, predefined grid operations arve as lollows:

2.1

The simplest grids are tensor product grids in (we or three dimensious.

refine the grid,

coarsen the grid,

draw the grid,

draw the boundary of the grid,

partition the grid,

copy the grid,

determine whether points are in the grid,

determine whether points are on the boundary of the grid,
save the grid to a file, and

read the grid from a file.

Tensor Product Grids

They wmay either be

uniformly spaced grids or have nonuniform spacing between grid points. To create a uniformly
spaced grid, use the command

DDGrid2dCreateUniform(nx,ny,xnin, xmax,ymin,ymax) ;

grid

or

13

grid DDGridBdCreateUniform(nx,ny,nz,xmin,xmax,ymin,ymax,zmin,zmax);
The arguments nx,ny,nz indicate the number of grids points, inciuding the endpoints, while
xmin,xmax, etc. indicate the extreme corners of the grid.

Figure 2.1: Tensor product grid
Nonuniformly spaced tensor product grids (see Figure 2.1) are created with either the command
grid = DDGrid2dCreateTensor (nx,ny,x,y);
or, in three dimensions,
grid = DDGrid3dCreateTensor(nx,ny,nz,x,y,z);

The arguments x,y, and z are double precision arrays containing the locations of the grid points
along the various axes.

Adding a Mapping

"""l'l""'lll'll"l"l'

[] [/]]
ANENNENRRRNNENRNRRNENRNN

Figure 2.2: Mapped tensor product grid

You may associate with a uniform or tensor product grid a mapping to define regions that are not
rectangular but merely logically rectangular (see Figure 2.2). This is done in Lwo steps: livst. deline
the mapping function, then, associale that mapping lunction witl the grid.

To define a mapping function, you must provide two (' routines that evaluate the mathernatical
function at a point and at a set of points (see below lor the definition of points). For instance,

void MapPointAffine2d(inpoint,cutpoint,p)
DDPoint *inpoint, #outpoint;
void *p;

{

outpoint->x = 3.0*inpoint->x + 2.0*xinpoint->y + 0.0;
outpoint->y = 2.0%inpoint->x + 1.0*xinpoint->y + 0.5;

3

is the code for a C function that evaluates the function

Towr y _ 3.0 2.0 Tin n 0.0
You | L 2.0 1.0 Yin 5
A corresponding C routine for a set of points is given by
void MapMeshAffine2d(mesh,points,p)

DDMesh *mesh;
DDPoints *points;

void *¥p;

{
int nx = mesh->nx, ny = mesh-»ny, i, j, ii;
double kxout = points->x, *yout = points->y;
double c, d, *x = mesh->x, *y = mesh->y;

for { i=0; i<ny; i++) {
c = 2.0%y[i]; & = y[i] + .5;
ii = i#nx;
for (j=0; j<nx; j++) {
xout[1i+j] = ¢; yout[ii+j] = d;
}
T
for { i=0; i<nx; i++) {
c = 3.0%x[1]; d = 2.0%x[i];
for (j=0; j<ny; j++) {
xout[i+j*nx] += c; yout[i+j*nx] += d;
}
}
}

Once the two C functions have been wreitten, a map is defined by

DDMap *map;
map = DDMap2dCreate(MapPointAffine2d,MapMeshAffine2d, (void *)0);

The final argument to DDMap2dCreate() is an optional function conltext, it contains a pointer to
any additional data needed by the C routines. This is always passed to the C routines through the
final void *p argument {this is unused in the above example.) We give an example of its use i
Section 2.5.

Now that a map has been created, it is added to a grid using the command

DDGridAddMap{grid.map);

2.2 Unstructured Grids

The Extensible PDE Solvers package also has support for the common unstructured grids.

2921 Grids Rased on Triangles

LR RN 2 AR 2l 822 2izcAls ote2

Perhaps the simplest unstructured grid in two dimensions is based on triangles. These may be
created in several ways. The easiest is by converting from a uniform, tensor product or mapped
grid (or quadrilateral grid that are introduced helow) using the command

DDGridToTriangles(grid);

The second way to generate unstructured grids based on triangles is from a list of nodes and
triangles, using the command

grid = DDGridCreateTriangles(nv,x,y,nt,nodes,nb,bnd);

The first argument, nv, is the total number of vertices. The number of triangles is given by nt,
The coordinates of the nodes are stored in the double precision arrays x and y. The integer array
nodes of dimension 3*nt contains the indices of the vertices of each triangle. The indices start al
0, not 1.

In addition, it is convenient to keep information about the boundary of the grid. This is done
by providing a list of line segments that define the boundary. The integer nb is two limes Lhe
number of line segmenis on the boundary, while the integer array bnd contains the vertices of the
nodes that define these line segments. For each line segment the interior of the domain must be 1o
the left of the line segment.

In a simple example consider the unil square divided hito two Leiangles. The inpot information
for DDGridCreateTriangles could be given by

nv = 4;

x[0] = 0.0; y[0] = 0.0; =x[1] = 1.0; y[1] = 0.0;
x[2] = 0.0; yl[2] = 1.0; x[3] = 1.0; y[3] = 1.0;
nt = 2;

nodes[0] = 0; nodes[1] = 1; nodes[2] = 2,
nodes[3] = 3; nodes[4] = 2; nodes[E] = 1;

bn = 4;

bnd[0] = 0; bnd[1] = 1; bnd[2] = 1; bad[3] = 3;
bnd[4] = 3; bnd[5] = 2, bnd[6] = 2; bnd[7] = O;

The third technique for creating triangular grids in the Extensible PDE Solvers package is by
providing boundary information (and optional interior vertex information) and having the software
automatically generate the triangulation. This triangulation is generated using software provided
by Timothy Baker of Princeton University (the code is in domain/grid/bapet.f}. To generate the
grid use the command

grid = DDTriangulateBaker(x,y,bnd,nb,ni,nbnd);

The integers nb and ni contain the number of vertices on the houndary and in the interior. The
double precision arrays x and y contain the locations of the vertices with those on the bowndary
listed first. The integer nbnd contains the number of line segments that define the boundary. while
bnd is an integer array containing the indices ol the end points of the Line segments. For each line
segment the interior of the domain must be to the left of Lhe line segment,

It is also possible to input the boundary information (and optional interior points} using X-
Windows graphics and the mouse. This is done with the commands

grid = DDGridInputTriangularGrid(win);

LR 3 .

The argumeni win is ihe name of an X-Window. These windows are lntroduced below.

2.2.2 Grids Based on Quadrilaterals

In addition to grids based on triangles, the other standard nnstructured grid in two dimensions
provided with the Extensible PDIE Solvers package is a collection of quadrilaterals. The easiesi
way to create such a grid is by converting [rom a uniform, tensor product or mapped grid using
the command

DDGridToQuadrilaterals{grid);

The second way to generate unsiructured grids based on guadrilaterals is {from a list of nodes
and quadrilaterals using the command

grid = DDGridCreateQuadrilaterals(nv,x,y,nq,nodes,nb,bnd);

The first argument, nv, is the total number of vertices. The number of elements is given by nq. The
coordinates of the nodes are stored in the double precision arrays x and y. The integer array nodes
of dimensior 4*nq contains the indices of the verlices ol each element. The boundary information
is passed in using the same format as thatl [or triangle-based grids.

2.2.3 @Grids Based on Tetrahedrons

One way to construct an unstructured mesh in three dimensions is using tetrahedrons. A letraliodral
grid can be generated in one of two ways: {rom a uniform. tensor product or mapped grid {(or fram
a hexahedral grid introduced below) or from a list of tetrahedrons. To generate a tetrahedral grid
from a uniform, tensor product or mapped grid {or grid of hexahedrons). use the conmmand.

DDGridTeTetrahedrals(grid);
To generate a tetrahedral grid [rom a list, use the command
grid = DDGridCreateTetrahedrals(nv,x,y,z,nt,vert,bn,bound);

The arguments nv and nt contain the number of grid vertices and tetrahedrons. respectively The
double precision arrays x,y, and z contain the locations of Lthe vertices, while vert is an integer
array of dimension 4#nt that contains the node numbers of the vertices of the tetrakedrous. The
nodes are ordered in the following way: first the {ront lower left, then the {ront lower right, then the
top node followed by the node in the back. The integer bn contains the number of triangles thal
define the boundary, and bound is an integer array of size 3*bn containing the indices of the vertices
of the boundary triangles. Using the right-hand rule, the normals to the boundary triangles point
out of the domain.

9

2.2.4 Grids Based on Hexahedrons (Bricks)

Another way to construct an unstructured mesh in three dimensions is by using hexahedrons. A
hexahedral grid can be generated in one of two ways: lrom a uniform. tensor producl or mapped
grid or from a list of hexahedrons. To generate a hexahedral grid from a uniform, teasor product
or mapped grid, use the command

DDGridToHexahedrals(grid);
To generate a hexahedral grid from a list, use the command,
grid = DDGridCreateHexahedrals{nv,x,y,z,nt,vers,bn,bound);

The arguments nv and nt contain the number of grid vertices and hexakedrons, respectively. The
double precision arrays x,y, and z contain the locations of the vertices, while vert is an integer
array of dimension 8#nt that contains the node numbers of the vertices of the hexahedrons. The
nodes are ordered in the following way: first the {ront lower left, then the front tower right, then
the top right, the top left, the hack lower feft. the back lower right, the back upper right. and the
back upper left. The integer bn contains the number of quadrilaterals thal define the boundary.
and bound is an integer array ol size 4+bn that contains the indices ol the vertices of the buwndary
guadrilaterals. Using the right-iiand rule. the sormals Lo these guadrilaterals point out o the
domain.

2.2.5 Adding a Mapping

Though conceptually it is possible Lo think of mapping an entire unstructured grid, we deem this
unnecessary, since unstructured grids by their nature can be constructed for complicated geometries,
However, it is desirable for unstructured grids Lo support curved boundaries. This capability is
obtained by providing an optional mapping function that is applied to only the houndary nodes
during grid refinement.

The following example defines a mapping thal creales a Pacman-lype domain:

#define SIGN(a) ({a) <0 7 -1.0 : 1.0)
veld MapPointCircle(inpoint,outpoint,circle)
DDPoint *inpoint, *outpoint;
CircleCtx *circle;
{
double x = inpoint->x - circle->x;
double y = inpoint->y - circle->y, theta;
if (x == 0.0) y = SIGN(y)#circle->r;
else {
theta = atan{{y/x)*SIGN(x)*SIGN(y)};
if (theta > circle->theta+.0000001 || x < 0.0) {
x = SIGN(x)*circle~>r*cos(theta);
¥y = SIGN(y)*circle->r+sin(theta);
b

}
outpoint->x = circle->x + x; outpeint->y = circle->y + y;

I

This mapping is then assigned to a grid, using the lollowing code:

0

map = DDMap2dCreate(MapPointCircle,(void *)0,%circle);
DDGridAddBoundaryMap(grid,map);

In the previous example the function maps only a single point. A similar C function could certainly
be written to map a set of points.

SOvATY

O,
>

NHAATNETS
KL

Figure 2.3: Pacman gnd lrom a mapping

Once the grid has been refived several tiines, we obtain the grid as depicted in Figure 2.3, Noie
that this grid is probably not a good grid for the given demain: it is intended just as an exanple
of how mapped grids may be created.

2.3 Operations on Grids

There are a variety of pre-defined operations you may apply Lo grids.

2.3.1 Refining Grids

All of the grids may be refined by using the command
DDGridRefine(grid);

Obviously, refinement means something shghtly different for each diffecent grid.

The uniform, tensor product and mapped grids are refined by inserting a new sel of mesh lines
halfway between each mesh line on the original grid. The triangular grids are refined by dividing
each element into four similar elements by bisecling the edge of each side. Quadrilateral grids are
refined by dividing into four elernents. Hexahedral elements are divided into eight elements by
inserting a new node at the center of cach hexahedron, the center of each face, and the cenler of
each edge. The tetrahedral cloments are refined by inserting a new node atl the center of each cdge.
For all the elements except the tetrahedron, the refinement ensures shape regular elements.

It is desirable to be able to perform partial refluement ol a grid. However the Extensibie P
Solvers package currently contains no code to do this, since it is somewhat tricky.

2.3.2 Grid Coarsening

It is sometimes useful to coarsen a grid automatically, for instance, if one wishes to apply multigrid
when only the finest grid is given. Grid coarsening may be done using the Extensible PDE Solvers
package by using the command

DDGridUnRefine(grid, &newgrid);

Since unrefining can be a complicated matter, it is possible to modify the way a grid is coarsened.
with the command

See the manual pages for the latest version of this command.

At the moment the only type ol unstructured grid that may be coarsened is a grid of triangies.
The package does this by first computing a maximal independent set of the houndary and interior
nodes of the grid and ther triangulating thesc using the code of T. Baker. The structured grids
are coarsened by removing every second grid line in all directions.

2.3.83 Saving and Loading Grids

It is possible to save any grid to a file {except the mappings) and read it back in at a later time.
Saving a grid is done with (he command

DDGridStore(grid,filename);
A grid may be read in from a file with the command

grid = DDGridLoad(filename);

2.3.4 Graphics

Before any graphic operations can be performed, at least vue graphics window must be opened. To
do so, use the commands

XBWindow win;
win = XBWinCreate();
XBQuickWindow(win,hostname,WindowTitle,x,y,nx,ny);

The arguments are win, ihe window Lo open; hestname, the name of the display Lo epen the
window on {usually “” to get the default monitor); WindowTitle, the title Lo appear at the 1op ol
the window; x,y the location of the upper left corner of the window in the display {(0,0) denotes
the upper left corner); and nx,ny the width and height of the window in pixels. For example,

win = XBWinCreate();

if (XBQuickWindow{win,"","Grid",0,0,600,600)) {
XBError(}; exit(l);

}

These routines are all part of the xtools component of PETSe.

It is useful to be able to define the size and location of the window in grid coordinates (the
same coordinates by which the grids are defined). This is done by using the XBInfo structure, lor
instance, to define a region that allows a window to view fromx = -1tox = landy = 0tloy =
1, use

¥BInfo region;

region.xmin = -1.0; region.xmax
region.ymin
region.hold

it
b e

0.0; region.ymax
L

The variable hold contains an integer indicating how long in seconds the image should be held
in the window before the program continues. hold = 0 indicates that it should hold for no time.
while hold = -1 indicates it should hold until the user inputs a keystroke or mouse click. For
two-dimensional im'ages you should hit the carriage return, whiie for three-dimensional images the
left mouse button allows you to rotate the image, and the center hutton indicates that the progran

should continue.
To display a grid’s boundary, use the command

DDGrid #grid;

XBWindow win;

¥BInfo region;

int color;
DDGridDrawBoundary(win,®ion,grid,color);

The arguments are the window in which to draw, the region that relates the grid coordinates tu
the window coordinates, the grid, and the color to draw the grid boundary. One may pass in O
instead of ®ion to use the default region.

Displaying the entire grid is done with the command

DDGridDraw(win,®ion,grid,color;;

The grid data structure also has its own (secret) copy of a region. It uses this by default if the
user does not pass in a region. To sel the hold lor & grid, use the conumand

DDGridSetHold(grid,holdvalue);

Here holdvalue indicales the Lime in seconds to hold the figure.
It is also possible for two-dimensional grids to allow the user to “zoom” in on a portion of the
grid. The command

int color;

XBWindow win;

DDGrid *grid;
DDGridZoom{win,0,grid,color,0);

displays the grid. The user may “zoom™ in hy pressing the left mouse button and “zoom™ oul by
pressing the center mouse button. 'The right mouse button returns {rom the l[unction.

2.3.5 Partitioning Grids

It is sometimes useful to partition a grid into several {possibly overlapping) subgrids, This partion
ing is, for example, useful for block iterative methods (such as overlapping Schwarz). Partitioning
is done with the command

DDGrid *grid;

int minsize,levels,overlap;

IndexArray *indices;

indices = DDGridPartition(grid,minsize,levels,overlap);

The argument minsize is the minimum number of nodes allowed in a subgrid, while overlap is
the number of levels of overlap between subgrids. The number of subgrids is given by 27overlap,
The structure IndexArray, which is a linked list of node numbers in each subgrid, is given by

13

struct _IndexArray {
int n, *ii;
struct _IndexArray #next;

};
typedef struct _Indexirray IndexArray;

The integer array ii contains the indices [or the subdomains, and n is the number of nodes in the
list.

Since there are many ways to partition a grid, the Extensible PDE Solvers package comes
with several defaults. The first is to use a crude recursive spectral bisection method to do the
partitioning. This is effective for small grids, but is very slow for grids with more than a few
hundred unknowns. You can also use the natural ordering of the nodes in the grid to do Ll
partitioning. This generally gives bad partitions but does have the advantage of being very fast to
calculate. A grid can be forced to use the naive partitioner with either the command

DDGridUseNaivePartitioner(grid);
or
DDGridUseNaivePartitionerWithCommandLine{(grid,argc,args);

If the string -naive is in the command line, then the naive partitioner is associated with ihe given
grid.

The Extensible PDE Solvers pakcage also has interlaces Lo several oller partitioning packages
These can be accessed with the commands

DDGridUsePamPartitionerWithCommandiine{(grid,argce,args);
DDGridUseBaSiPartiticnerWithCommandiine(grid,arge,args);
DDGridUseChacoPartitionerWithCommandLine{grid,argc,args);

The Pam partitioner was writlen by Francoise Lamounr and Patrick Ciarlet, the BaSi partitione
was written by Stephen Barnard and Horst Simon, and the Chaco partitioner was written by Bruce
Hendrickson and Robert Leland. Refer to the software to determine how these packages may be
obtained. The Pam partitioner is a fast, greedy partitioner, while the other two are slower methods
based on recursive spectral bisection.

2.4 Manipulating Points

It is sometimes useful Lo be able to manipulate points in space. The Extensible PDE Solvers
package has the concept of both a point, DDPoint and a set of points, DDPoints. A set of points is
created with the cornmands

DDPoints *pts;
pts = DDPointsZdCreate(n);
pts = DDPoints3dCreate(n);

where n is the number of points needed.
Various basic operations can be performed on points, for instance,

pts2 = DDPointsCopy(ptsl);
pts3 = DDPointsUnion(ptsl,pts2);
pts3 = DDPointsDifference(ptsl,pts2);

DPFunction *function;
pts2 = DDPointsWithNonZeroFunction(ptst, function);

The final routine DDPointsWithNonZeroFunction() returns all the points for which the given
DDFunction is nonzero. See helow lor the definition of DDFunction.
It is also possible to draw points in a window with the command

DDPointsDraw(win, ®ion, pts, coclor);
It is possible to determine which points lie in a grid with the command
pts2 = DDGridGetPointsin{grid,ptsi,on);

The integer flag on should be 1l points on the boundary of Lthe grid are Lo he included: olherwise
it should be 0. Points on the boundary of a domain can be found by using

pts2 = DDGridGetPeintsOnBoundary(grid,ptsiy;

2.5 Manipulating Mathematical Functions

In defining PDEs we must be able to represent mathematical functions in a convenient way. This
is done in the Extensible PDE Solvers package using a DDFunction. A DDFunction is simply a
realization of a mathematical function. A function is created with the command

DDFunction *function;

int in, out;

void (*£1) (), (*£2) () ,*context;

function = DDFunctionCreate(in,out,f1,f2,contexs);

The mathematical function has in nput variables and is (possibly) vector valued with out compo-
nents. The argument (¥£1) () is a user-provided C function that takes Lthree argunients: a DDPoint
%, a double #, and the pointer Lo a function conlext, context. The argument (*£2) () is a sinsilar
C function whose first argument is DDPoints *. The lunction context, context, is a way ol gelling
any needed information into the user's { function. For example, il the mathenatical function we
wish to implement has two parameters and is given by

Jlay wa) = any + Bag,
then the C functions could he writlon as [ollows,

typedef struct {double alpha, beta;} MyContext;
voild f1(pt,out,ctx);

double #out;

DDPoint *pt;

MyContext #ctx;

{

¥out = ctyx->alpha*pt->x + ctx->betaxpt->y;

void f2(pts,out,ctx);
double ®0UL;
DDPoints #pts;
MyCentext *ctx;
{
int i, n = pts->n;
for (i=0; i<n; i++) {
out[i] = ctx->alpha*pts->x[i] + ctx->beta*pts->y[i];
}
¥

A DDFunction may be evaluated at a set of points by using the command

DDDFuncticn #*u;
DDPocints *pts;
u = DDFunctionEvaluatePoints{ func, pts, 0);

This routine returns a discrete function containing the values of the function at the given points
A DDDFunction contains essentially an array of doubles with the values of the function and a copy
of the points at which it was cvaluated.

2.6 Adding New Types of Grids

1t is possible to add new types of grids to the package or to modify those already there. You must
provide functions that perform the grid operations. Begin by looking at the file domain/grid.h.
and then the simplest grid implementation thal is contained in domain/grid/mesh2d.c.

16

Chapter 3

Working with PDEs and

Discretizations

This chapter explains how you define the partial differential equation and the discretization to be
used to find approximate solutions,

3.1 Defining the PDE

The Extensible PDE Solvers package comes with two delanlt PDEs: the scalar conveetion-diffusion
equation {actually, in the present version, the convection is ignored), and the equations of isolropic
linear elasticity. Other simple, second order linear elliptic equations could be added. To solve other
problems, the biharmonic for example, would require some reorganization,

To define a convection-diflysion PDIE in two dimensions of the lorm

o [ar(ay) 0 S
V,(0 ayle.y)) Vu=J.

you must first define the functions ax (), ay{(). and £() and then create the PDE. You may be
do this by using the commands

DDFunction *f,%ax,*ay;

DDPBE *pde;

f = DDFunctionCreate(2,1,rhs1,rhs2,0);

ax = DDFunctionCreate(2,1,ax1,ax2,0);

ay = DDFunctionCreate(2,1,ayl,ay2,0);

pde = DDPDECreateConvectionDiffusion2(f,ax,ay,0,0,0};

The final three arguments (where zero is passed above} are for the convection terms and the
Helmholtz term. At the moment they ave ignared. il you would like to use delanlt values of =1 for
ax and ay, simply pass in 0 as the argument.

pde = DDPDECreateConvectionDiffusion2{#,0,0,0,0,0);
The convection-diffusion equation in three dimensions can he created with

pde = DDPDECreateConvectionDiffusion3(f,ax,ay,a=z,0,0,0,0);

17

Again, a zero can be passed in the locations of ax,ay, or az to represent the default function of -1.
You create a constant coeflicient PDE for the equations of isotropic linear elasticity in lwu
dimensions with the command

double E = 1.0, nu = .3;
pde = DDPDECreatelsolLinearElasticity2(f,E,nu,0,0,alpha);

For variable coefficients, use

DDFunction *E, #nu;
pde = DDPDECreatelsolinearElasticity2(f,0,0,E,nu,alpha);

In three dimensions the only difference is that the DDFunctions E and nu are functions of 3 variables
and the command is

pde = DDPDECreatelsolinearElasticity3(f,0,0,E,nu);

The model used in two dimensions is of plane strain when alpha=0 and plane stress when alpha=1.
Other PDEs may be defined by using the source code for one of those introduced above as a
template.

3.2 Defining Boundary Conditions

The Extensible PDE Solvers package currently provides support for general Dirichlet and horno-
geneous Neumann boundary conditions. You may apply a combination of different boundary con-
ditions on different parts of the boundary. To apply Dirichlet boundary conditions on the entire
boundary, use the command

DDBC *¥bc;
DDFunction *g;
be = DDBCCreateDirichlet{g,(void #)0,{void #)0);

On the piece of the boundary deflined by a characteristic furetion, charf, use

DDBC *be;
DDFunction #g, *charf;
bc = DDBCCreateDirichlet(g,charf,0);

On the piece of the boundary thatl tives in another grid, use

DDBC *bc;
DDFunction *g;
DDGrid *ancthergrid;

bc = DDBCCreateDirichlet(g,0,anothergrid);
For homogeneous Neumann boundary conditions, use
bc = DDBCCreateNeumann(0,0,0,0,charf,anothergrid);

The first four arguments are, at present, ignored. None, or only one. of the last two argnments
should be given.

18

3.3 Using a Discretization

Creating a discretization simply requires calling the routine

DDPDEDiscretization *disc;
disc = DDPDEDiscretizationCreate(type);
DDPDEDiscretizationSetUp(disc);

The type can be any of DDPDEDISCFD&pt, DDPDEDISCFD7pt, DDPDEDISCFE2dLIN, DDPDEDIS-
CFE3dTRILIN, DDPDEDISCFE2dBILIN, or DDPDEDISCFE3dLIN.

For some of the finite element discretizations, it is possible to set the particular numerical
integration scheme that is to be used. This is done with

DDPDEDiscretizationSetIntegrationScheme(disc,order,type);

The integer arguments order and type indicale the order of the numerical integration scheme you
would like used and the particular scheme of that order. Usually type is set to zero. This routine
should be called after DDPDEDiscretizationCreate and before DDPDEDiscretizationSetUp.

Implementing the Discretizations

This section may be skipped by the causal reader who is mainly interested in using the package
and less interested in its design,

The implementation for finite differences is straightforward, achieves little code reuse. and is
essentially not data structure neutral. The implementation was just enough to work for Lhe diffusion
term in the convection diffusion equation.

The implementation for finite elements is inore ambitious and tries to obtain code reuse between
different PDEs and different types ol elements. For instance, most of the element stiffness code
is shared by all the elements. It is also designed in a data-structure-neutral way Lo facilitate Lhe
addition of new elements or PDEs. The basic design is as follows:

o DDPDEDiscretetizationSetUp() determines the numerical integration points on the refer-
ence element and evaluates Lhe shape lunctions and their derivatives ai the nodes,

¢ DDDomainDiscretize loops over all the elemoents and calls

¢ DDiUniversalStiffnessElement on each clement, whiclh loops over the integration points
and calculates the derivalives of the shape lunction by using the Jacebian of the mapping.

o The contribution to the stiffness matrix [or a single integration point is calculated by calling
the bilinear forin defined for the particular type of PDE being solved.

3.4 Discretizing the Boundary

The Extensible PDE Solvers package is remarkably simple minded about discretizing the bonndary
conditions. At the momeni you should use the comrand

DDBCDiscretization *bcdisc;
bcdisc = DDBCDiscretizationCreateSimple();

19

Chapter 4

Solving a PDE

Solving a PDE requires the following steps:
o define the grid,
o define the PDE,

define the discretization of the PDI,

define the houndary condition(s}, and

o define the discretization of Lhe boundary conditions.

Once these tasks have been performed, all of the information is gathered together into a variable
of type DDDomain with the commands

domain = DDDomainCreate(grid,disc,pde);
DDDomainAddBoundary{bc,bcdisc);

You may call DDDomainAddBoundary several times with different boundary conditions for different
parts of the boundary.

Now we are ready to discretize and solve the PDE. The universal interface for this is the
DDDomainSolver. A complete lincar, second-order clliptic PDE solver maybe wriltten as

DDDomainScolver *ds;

ds = DDDomainSolverCreateWithCommandlLine(domain,arge,argv);
DDDomainSolverSetUpWithCommandLine(ds,arge,argy);
bPDDomainSeclverSolve(ds);

This one set of commands gives access Lo all of the linear system solvers, including several varianls
of multigrid. The possible command line arguments are listed in the next two sectious,

The solvers come with a set of interfaces that allow the approximate soiution and error to he
visualized during the solution process. This way be done in several ways. The simplest is to plot a
line graph of the norm of the residual and the error at each iteration of the iterative method. This
may be done with the commands

XBWindow win;
DDDomainSolver #*ds;

win = XBWinCreate();

XBQuickWindow(win,"","Residual® ,800,0,300,300);
DDDomainSolverAddLineGraph(ds,win);

20

If you wish io plot the actual solution or error, you may use the commands

XBWindow winl, win2;

DDDomainSeclverAddWindowl (ds,winl,0);
DDDomainSclverAddWindow2(ds,win2,0);

The (optional) third argument is a XBInfo region that would define which portion of the window is
to be used for displaying the solution (or error). In two dimensions the approximale solution and
error are displayed using a color contour plot. In three dimensions there is at present no code for
displaying the approximate solutions.

Of course, to visualize the error, the solver code must know the exact solution. You can tell the
DomainSelver the exact solution by defining a DDFunction [or that solution and then calling

DDFunction #*solution;
DDDomainSolver *xds;
DDDomainSclverAddSelution{(ds,solution);

The solvers may also symbolically display the sparse malrix representation of the discretized
operator. In addition, if a direct LU factorization is used. it may display the reordered malrix used
to decrease fill. Several of the examples demonstrate Lhis capability.

4.1 Classical Solvers

The command DDDomainSolverSolve has access Lo all of the lincar system selvers in Lthe Simpli-
fied Linear Equation Solvers (SLES) componeni of PETSc [1]. It also has access to all of the
Krylov space methods in KSP (Krylov Space Package) [2]. They may be accessed with command
line options.

The command line options for the classical solvers are

~itmethod ITMETHOD - Krylov space methed to use
~restart n - restart for GMRES
-gsvmethod SVMETHOD - type of preconditioner or direct metheod
-t0ol t - tolerance on decrease in residual
-its n - maximum number of iterations
-fill n - levels of fill tec use if ILU method is chosen
~hold n - time to display each window, -1 means wait for input
-subdomains m - number of subdomains for Schwarz methods
-overlap n - overlap to use for Schwarz methods
-~additive - use additive Schwarz method, else defaults to multiplicative
-showgrid - draws grid on contour plots
-surface - draws surface plot rather than contour plots
-levels r - number of levels to refine grid
Subdomain options (if -svmethod osm used)
-subsvmethod -subitmethod -subrestart -subtol -subits -subfill
Command Line Arguments for ITMETHOD
richardson chebychev cg gmres tcqmr becgs cgs tfgqmr lsqr preonly cr
Command Line Arguments for SVMETHOD
Iu jacobl ssor ilu icc iccjp bdd osm nopre

21

It is also possible to write code thal allows access only to the classical iterative methods and

not the multigrid solvers; this may be done with the commands

DDCneGrid *ds;

ds = DDOneGridCreateWithCommandLine{deomain,argc,argv);
DDOneGridSetUpWithCommandLine{ds,argc,argv);
DDOneGridSolve(ds);

4,2 Multigrid Solvers

In addition to the classical linear equation solvers, a variety of multigrid solvers may be used. Tu
access the multigrid solvers, use the command line option -multigrid. The command line options

for

the multigrid solvers are

-itmethod method - Krylov space method to use
-restart n - restart for GMRES
~levels n - number of levels
-jacobi - use Jacobi smoothing
-gs - use Gauss-Seidel smoothing rather than default symetric GS
-cyclea n - 1 for V cycle 2 for W cycle
-presmooths n - number of pre smoothing steps
-postsmooths n - number of post smoothing steps
~additive - use additive multigrid rather than traditicnal
~full - use full multigrid, not just cycles
-tol t - tolerance on decrease in residual
-its n - maximum number of iterations
-hold n - time to display each window, -1 means wait for input
-surface - draws surface plot rather than contour plots
-showgrid - draws grid in contour plots
Command Line Arguments for ITMETHOD
richardson chebychev cg gmres tcqmr bcgs cgs tfqmr lsqr preonly cr

It is also possible to compile code that has access to only the multigrid solvers and not the

classical iterative methods. This may be done with the commands

DDMultiGrid *ds;

ds = DDMultiGridCreateWithCommandLine(domain,argc,argv);
DDMultiGridSetUpWithCommandline(ds,argc,argv);
DDMultiGridSclve(ds):

In fact, the DDDomainSolver routines are simply wrappers that call either the DDOneGrid routines
or the DDMultiGrid routines, based on command line arguments.

22

Chapter 5

Organization

5.1 Examples

The directory domain/examples ceniains over 50 complete examples that demonstrate different
aspects of the Extensible PDIZ Solvers package. In addition, the examples directory contains a
variety of two dimensional unstructured grids. Since the examples are undergoing constant revisiou.
they may be slightly different from those indicaled in Lhis section.

o ox1 - Indicates how different types of grids may bhe defined and drawn.

o ox2 - Displays some simple grids in two dimensions.

e ox3 - Gives contour plots of discrete Tunctions in two dimensions.

e ex4 - Saves a grid Lo a file.

* ox5 - Loads grids from file and displays.

o ax6 - Pinds unions ol sets of points and plots.

e ex7 - Finds points in a domain.

¢ ox8 - Displays uniform grid in three dimensions,

¢ ox9 - Finds points in a three-dimensional domain and its boundary.

e ex10 - Finds points in a three-dimensional mapped grid.

s oxi1 - Solves a Poisson
e ex12 - Solves a Poisson
e ex13 - Solves a Poisson
e ox14 - Solves a Poisson
¢ ex1b - Solves a Poisson
¢ ex16 - Solves a Poisson

¢ ex17 - Solves a Poisson

problem
problem
prohlem
probiem
problem
problem

problem

on

o0

on

Ol

on

Gn

on

a uniferm grid in two dimensions,

a uniform grid in two dimensions using multigrid.
a trianguiar grid,

a Lriangular grid using multigrid.

a mapped grid using multigrid.

a Paciman shaped domain using multigrid.

a annulus using a quadrilateral grid and multigrid.

23

ex18 - Solves a Polisson problem on a uniform grid in three dimensions with the onegrid salver.
ex19 - Solves a Poisson problem on a uniferm grid in three dimensions with multigrid.

ex20 - Solves a Poisson problem on a mapped grid in three dimensions with the onegrid
solver,

ex21 - Solves a Poisson problem on a4 mapped grid in three dimensions with multigrid.
ex22 - Solves a Poisson problem on a sphere with the anegrid solver using a hexahedral grid.
ex23 - Solves a Poisson problem on a sphere with multigrid using a hexahedral grid.

ex24 - Solves a Poisson problem on a sphere with the onegrid solver using a tetrahedral grid.
ex25 - Solves a Poisson problem on a sphere with multigrid using a tetrahedral grid.

ex26 - Solves a variable Poisson problem on a uniform grid with onegrid solver.

ex27 - Solves a variable Poisson problem on a mapped grid with onegrid solver,

ex28 - Solves a variable Poisson problem on a uniform grid with onegrid solver in three
dimensions,

ex29 - Solves a variable Poissou problem on a mapped grid with onegrid solver i three
dimensions.

8x30 - Uses alternating Schwarz in two dimensions with a Poisson problem.
ex31 - Uses alternating Schwarz in two dimensions with a Poisson problemn.

ex32 - Uses alternating Schwarz in two dinicusions with a Poisson problem.

ex33 - Uses alternating Schwarz in two dimensions with a Poisson problem.
ex34 - Uses alternaling Schwarz in three dimcusions with a Poisson problem.
ex35 - Solves a linear elasticity problem on a uniform grid in two dimensions.

ex36 - Solves a linear elasticity problem on a aniform grid in two dimensions soived with
multigrid.

ex37 - Solves a lincar elasticity prablem on a uniform grid in three dimensious.

ex38 - Solves a linear efaslicity problem on a enilorm grid in three dimensions with multigrid.
ex39 - Uses alternating Schwarz in two dimensions with linear elasticity.

ex40 - Uses alternating Schwarz in three dimensions with linear elasticity.

ex41 - Solves a Poisson problem in two dimensions on a grid read lrom a file.

ex42 - Solves a linear elasticity problem in two dimensions on a grid read [rom a file.

ex43 - Solves a Poisson problem in twa dimensions on a grid read from a fle. using nultigrid.

ex44 - Solves a lincar clasticity problem in two dimensions on a grid read Trom a file.

24

e ex45 - Reads a grid in from a fle and displays it, allowing the user to zoom in parts of the
grid.

¢ ox46 - Partitions grids from files,

e ex47 - Unrefines a grid read in from a file.

¢ ex48 - Triangulates a simple region drawn with the mouse.

¢ ex49 - Solves three dimensional Poisson problern on a grid read in from a file.

s x50 - Solves three dimensional linear elasticity problem on a grid vead in from a file.

s ex51 - Displays a three dimensional grid read in from a file.

5.2 Directories

The directories are organized in & logical fashion watehing the abstract design,

be.h bcdisc.h comtype dfunc.h points.h
disc/ domain,c domain.h dop.h axamples/
file/ func/ func.h graphics/ graphics.h
grid.h makefile map/ map.h op/

part/ pde/ pde.h pdedisc.h points/
readme schwarz/ solvers/ sparse/ xtools/

fdomain.h grid/

Each of the major abstract components grids, pdes, discretizations, boundary conditions.
and boundary condition discretizations has its own include files. The include file domain.h
is the master include file thal should be included in all codes that use the Extensible PDE Solvers
package. In addition, is a subdirectory for cach component contains the source code (or thal com-
ponent. The manual pages for each routine indicate the file and directory that contain the source
for that routine.

Chapter 6

Future Possibilities

I may write a new version of the Extensible PDE Solvers package in the future, using and extending
the techniques that we have developed over the past few years in writing PETSc. The new version
would be developed using more of the ideas of ComponentWare, Each component (for instance
grids} would be mare independent, and the interfaces would be made cleaner. so that other objects
cannot access the grid data strectures at all. One ol the drawhacks of the code as it is written is thal
certain objects have lo check the type of other Lypes of objecls. For instance, the discretization
code has hardwired checks on certain types of PDIs and grids. In ideal ComponentWare (his
type of coding would be ununccessary and, in lact, nol even permitted. Whether i s possibie 1o
determine the most suitable abstractions to do this “correctly” is not completely clear 1o me.
Other features that it would be nice to add are

e support for staggered grids/mixed methods,

e support across parallel platforms,

¢ a TCL/TK interface, and

o other discretizations such as spectral, collocation, and Sinc methods,

If you find Lhis package uselful or interesting and have any ideas on how i mmay he bhetter
organized or presented, please seud any cemments Lo bsmith@mes . anl.gov,

20

Chapter 7

Summary of Routines

This chapter contains a briel summary of the routines in the Extensible PDE Solvers package. An

easier way o access the dala is through (he man pages using toolman.
Most of these routines require the include files

#include "tools.h"
#include “domain/domain.h"

#include "domain/soivers/solver.h"

#include "xtools/basexii.h"

Fortran 77 programs should include domain/fdomain . h and also the file domain/solvers/fselver.h
A special note for Fortran programmers: all of the datatypes {such as DDGrid) must be declaied

as integers in the Fortran code.

void DDGridDestroy(grid)
DD Grid *grid;

Destroys a gnd created with DDGrd™Create™f)

void DDGridRefine(grid)
DDGrid *grid;

Kefines a grid created with DDGrid*Create®(}.

void DD GridUnRefine(grid,newgrid)
DDGrid *grid ,**newgrid;

taRelines o god created with
BLGnd*Create™) Actually works only los
tiangular grids

DDGrid *DDGridCopy{grid}
DDGrid *grid;

Copes grid

DDPoints *DDGridGetPointsln(grid,pointz bound)
DDGrid ®grid;

DDPoints *points;

int bound;

Retuins the nodes on a grid

DDPoints *DDGridGetPointsOnBoundary{grid, points)
DDGrid *grid;
DDPointa *points;

Returna Lhe nodes on the hounday of a grid.

IndexArray *DDGridPartition(grid,size,leveiz,overiap)
DDGrid *grid;
int stze, everlap, levels,

Partitions a grid inte 4 bunch ol smaller grids.

RDGrid *DPGHdSubGrid{gnd,index)
DDGrid *grid;
InderArray ®index;

Given a grid and a index artay, teturns the
snbgird

yrnax)
int nx,ny;
double xmin,xmax,ymin,ymax,

DDGrid *DDGrid2dCreateUnilorm{nx,ny,smin. xmax, ymnin,

Creates a 2d umilorm mesh The mesh is
fogically rectangular; an eptional mapping
function may be added 1o map 1o the tine
coordinates using DEGridAddMap().

DDGrid *DDGrid2dCreateTensor{nx,ny.s.v}
inl nx,ny;
double *x,™y;

Creates a 2d tensor producl mnesh. T'he mesh 2
logically reclangular, ar eptronal mapping
funcuion tray be added to mrap lo the tige
coordinates using DDGridAddMap{).

void DDGridAddMap{grid,map)
DDGrid *grid;
DDMap *map;

Adds a map te an already created grid DDGrid
must be of type UNIFORM o TENSOR

™~
-~}

DDGrid *DDRGrid3dCreateUnilorm{ny,ny, nz, xmin, xmax,
YN, Y maK, 2imsin,gnax)

int nx,ny,nz;

double xmin,xmax,ymin,ymax,zmin,zmax;

Creates a 3¢ uniform mesh The reeah ia
logically 1ectangulal; su optional mapping
function mmay be added 1o map o Lthe tiue
coordinates vaing DDGdAddMapi }.

DIGrid *DDGrid3dCreateTensor(nx,ny,na,x,y,2)
int nax,ny,nz;
double *x,*y,%*z;

Creates a 3d tensor product raesh. The mesh is
logically rectangular; an optional mapping
function may be added Lo raap to the true
coordinates using DRGridAddMap(}

DDGrid *DDGridCreateTriangles{ numverl,x, y, nuintri,vert,
bn,bound)

int numvert, numtri, *vert, br, *bound;

dauble *x, *y;

Creatvs a 2d unstivctured grid usiog trianguiar
eternents.

void DDGridAddBoundaryMap{grid,map)
DDGrid *grid;
DDMap *map;

Allows a funclion lo be given thal defines Lhe
boundary al a grid. {{ the grid is refined, new
boundary poiitz are shilted so that they lie en
the true Boundary. Works only fo1l unsiructuied
grids.

DDGrid *DDGridCreateQuadrilaterata{numvert,x.y,
numquad,vert,bn ound}

int numvert, rumguad, “vert, bn, Tbound;

double *x, *y;

Creales a 2d unstruciured god using
quadrilateral elements.

void DDGridTeQuadrilaterals(grid)
DDGrid *grid;

Takes a gried and converts to unstruclured, using
quadrifalerals.

void DDGridTeTriangles{grid}
DDGrid *grid;

Takes a grid and coaverts Lo unstructured, using
triangles in two dimensions.

DDGrid *DDGridCreateHexahedrals{nzmvert.x,y .z,
numbrick,vert,bn.bound)

int numvert, numbrick, ®verl, bu, *hound,

double *x, *y, *z;

Creates a dd uastruciuied grid using hexahediad
{bricks are o sapecial case with paraliel sidesy
elements.

void DDGridToHexahed rats(gri<l)
DDGrid *grid;

Takes a grid and couvertz 1o anstrociured, nsing
hexahedial eleinents.

DDGrid *DDGridCreateTelrahedrals{numvert,s,p.2,
numtet,veri,bn bound)

ini numvert, numlet, *verl, bn, *bound;

double *x, *y, *z;

Creates a 3d unstruciuied grid using teitrahedral
elements.

void DDGridToTetrahedrats{gnd)
DDGrid *grid;

Takes a gned and converts 1o unstructured, using
wweniahedions.

DDDFunciion *DDCFunctionCreate! n,diisin,dirnout)
int n,dimin,dimout;

Builds a DRI Function structure.

DHDFanciion *DD D FunciionCopy{diunc)
DDDFunctian *dfunc;

Copies a DD Function aituciuie.

void DDDFusctionDestroy(f}
DDDFunction *f;

Frees space crealed by DDDFunctionlreate)

void DDDFuncilonAddPoints(f,p}
DDDFunction *[;
DDPoints *p;

Adds Lhe points associaled with a discrete
function.

void DDDFurctionAddDemain({,g)
DDDFuanctior *{;
DDDomain *g;

Adds a grid assocated witl a discrete funchien

void DDDFunrctiondcatterlnto{dl.seg,n, v, 1]
DDDFunction *di;

int seg,n,*l;

deuble *v;

Acatters valoes Do v inte a particuias segracol
of a discrete Tunciion

DDDFunctior DD FanctionDisjointUnion{ }],{2)
DDDFunction *M1, *rz2;

Takes two DDDFunctions and forms Lheir union
assuming Vhat they have ne cornmon elements.

DDDFunction *DDFunciienEvaluatePoints{ {, p, b))
DDFuactien *M;

DDPuoints *p;

DDDFunclion *b;

Evaiuales a lunction atl a sel of poinls. Use
DD FunctionEvaluateFoeint(} for a single point

DDDFunction *DDFunctionBvaluateDomaind I, d, b))
DDFunctlion *f;

D Domain *d;

DDDFunctlion *b;

Evaluates a Tunction at all pointz on domain Use
DB FunctienlivaluatePainl{} lor a single point

DDFunctior *DDFenctionCreate(in,oul,/1,[2,cantext)
veid (*13)().(*12)();

int in,out;

void ®contexl;

Buids a DDIManction structure, hom two C
funelions

void DDD¥FencltionUpDateXBlinfo{dlinle,Nag}
DDDFunclion *dr;

XBlnfo ¥inle;

int flag;

Given a discrete funciion and an XBinfo,
updates the XBInlo ac thal the discrete lunction
will 1 completely in the plotiing frame

void DDDFunctionAbseluleValue(d)
DDDFunction *df;

Given a discrete funciion, replaces each
cormpunent with 11s absoiute value.

void DD DFunctionPrint{file,df)
DDDFunction *df;
FILE *gie;

Prints the values in a discrete [haclion

DDPeints *DDPoints2dCreate{n)
int n;

Creates a DDPeints dara struciure.

DDPoints *DDPeints3dCreate{n}
int n;

Creates a DDPeints data structure.

void DDPointsDestroy{points)

Destroys a DDPoinls structure created wilth

DDPoints *points; DDPeints2dCreate(} or DDPoints3dCreate().
DDPoints *DDPointsCopy(peints) Copies a DDPoints sbivcture created with
DDPoints ®points; DD Peims2dChreate(y o1 DRPoints3dCreatel)
DDPoints *DDPointsUnion{pl,p2) Given Lwe sels of points, returns their union.
DDPoirts *pl, *52;

DDPoints *DDPointsDifference({ p2,p1) Given lwo sels of points, returns all points in Ll
DDPoints *pl, *p2; first set that arve not in the second.

DDPoints *DDPointsWithNonZeroPunction(alipoints,furction) | Returns the points for which the function was
DDPeints *allpoints; nonLero.

DDFunction *function;

DDMap *DDMap2dCreate{point, mesh,ctx)
void (*poirt)(),(*mesh)(), *cix;

Buiids a mapping structure.

DDMap *DDMapddCreate{ poini,mesh,cix)
void (*point)(),(*mesh){), Tcix;

Builds a mapping struciure

void DDMapMesh{meslh, points)
DDMesh "mesh;
DDPFoinis *points;

Maps a resh of poinls. Use DDMapPoints{) 1o
map a set of points. UYse DDMapPoint() te map
a single poins.

vaid DD GridToPS{grid filename)
DDGrid *grid;
char *filename;

Prints twe dimensional grid 1o a Postscript{'TM)
fije.

void DDPointsDraw({window,region,points,color)
DDPeints ®points;

XBWindew window;

X Blnlo "region;

int color;

Draws a set ol poinis.

void DDGridDraw(windew,region,grid,color)
DDGrid *grid;

XBWindow window,

XBlafo *region;

int coler;

Draws a grid.

void DDGridDrawZoem{window,inregion,grid,color,outregion}
DDGrid *grid;

XBWindow window;

X Blafo *inregion,*eutregion;

int color;

Draws a grid: allows the user with a mouse io
zeom in and out of the grid

void DDGridDrawBoundary{window,region,grid,cotor)
DDGrid *grid;

AXBWindow window;

XBInfo *region;

int color;

Draws boundary of a grid.

void DDDrawDFunction(window,region, uintype wininlo}
XBWindow window,wininfo;

DDDFunction ®uing

int type;

X Bliafo *region;

Draws a discrele function Works only in 1wo

dinensions.

void DDDrawDFuncticnZeom{ window,inregion, win, lype.
wininlo)

XBWindow window,wininfo;

DDDFunction *uin;

int iype;

XBlafo *inregion;

Draws a discrete lunciion Works only in two

ditnersiens.

void DDGridAddTriangleUnRefineContext{grid,iype, win,
region,lrace)

DDGrid *grid;

int type,trace;

XBWindow win;

XBInfo *region;

Allows ene 1o change the iype of vnrefinement
algerithm te be used o dispiay the unrefinement
interactively.

DDGrid *DDGrdlaputTrangularGrid(win)
XBWindow win;

Aflows one to use the mouse 1o mpul a grid

DDPDEDiscretization *DDPDEDiscrelizationCreate{type)
DDFDEDISCTYPE type;

Builds a discretizatlion structure,

vaid DDPDEDiscretizationRegisler(name, sname, creale}
inl name;

char *sname;

DDPDEDiscretizalion ®{™create){);

Given a discretizalion name (DDDISCTYPEY
and a function pointer, adds Lhe discretization 1o
the mesh package.

void DDPDEDscretizationRegisterDestroy()

Frees the 1ist ol discretizalions thal have heen
registered by DRPDEDscrelizationRegistert)

void DDPDEDiscretizationGetMethod{ Arge, argy. remove,
sname, method }

int *Arge,remeoeve;

char *argv, *sname;

DDPDEDISCTYPE *method;

Given the argument list, retures Lhe selected
discretizalion nethod.

int DDPDEDiscretizationielp{argc,argv)
int ®arge;
char **argv;

Given Lhe argument list, prinls a help message il
-help is one of the arguments.

void DDPDREDIscretizationRegister All{)

Registers all the discretizations in the mesh
package. To prevent all the methods frem being
registered and thus save memory, copy Lhis
roitine and regisier only those meiheds you
desire.

DDBCDiscretizalion *DDBCDisc|'e-tizationCl'eaLeSilﬁplc()

Creales 2 BCiscretlization structure lor Raile
elements or finite diflerences.

void DNDPDEDiscrelizationSetlnvegra-
tionScheme(disc,order,scheme)

DDPDEDiscretization *disc;

int ordey, scheme;

Sets the numerical integration scheme to be used
with a particular Fnite element discretization. 1l
the discyetivation is not finite elernents, Lins call
is ignored.

DDFDE *DDPDECrealelsolinearBiasticity2{{,E,nu,e,n,aipha)
double B, ru;

T:DFunction *f,™e,*n;

int alpha;

Creates 2 POE structure for Lhe lsolropic

equalions of elasticity.

DDPDE *DDPDECrealeisoLinearBlasticity3({,E,nu,e,n)
double E,nu;
DDFunction *{,*e,®n;

Creales a2 FDE siruciure
elasticity.

for the equations ol

DDPDE *DDPDECreateConvectionDiffusion2{f,ax,ay,bx,by,c)
DDFunction *{,*ax,*ay,*bx, by, *c;

Creales a PDE struclure for the conveciion

diffusion equation.

DDPDE *DDPDECreateConveclion Difflusion3{{,ax,ay az,
bx,by,bz,c)
DDFunction ®{,®ax,"ay,™az,"bx,"by. bz, c;

Creales a PDE structure for the convection

diffusion equation

DDBC *DDBCCreateDirichtet{g,charl,grid)
DDFunction *g,*charf;
DDGrid *grid;

Cheales a BC stiucture for Dirichlel boundary
conditiens. For the enlire bawndary, pass in @ for
the charf and 0 for the gnd. For a piece ol the
boundary delined by ancther gnd, pass in that
grid {this 13 uvseful for domp alternaling
Sclowasz).

DDDOperater *"DDDOperalorCreate{m.n,nc.dim)
int m,n,nc,dim;

Creates a holder for a disciete operaler. A
discrele operator is simply a (sparse} matrix plus
information on the discrete function that it
eperales on.

void DDDOperateorDestroy{cp)
DDDCperator *op;

Peastroys the holder [or o discreie operatoi, al:o
destioys the malfix i,

void DDDOperaterAppiy(op,fin,lout)
BDDGperatar *op;
DDDFunction *fin,*lout;

Applies o discrete operator 1o & discrete [uneiion

void DDDOperatorApplyTrans(op.fin,foul)
CDDGCperator "op;
DBDDFunclion *fin,*fout;

Appiies Lthe transpose ol a discrete operatol 1o a
discrete lunchion

void BDDOperatorApplyAdd{op,fin,fout)
DDDCperator *op;
DDDFunction *fin,"*lout;

Applies a disciete operator so a discrete function))
and adds it 1o another discreie lunclion

void DDDOperaterGaussSeidelfop,m fin.lout)
DDDCperator *op;

DD DPunclion *An,*foul;

int m;

Applies a sweep of Gauss Seidel with a discreie
lincar operatar

void DDDOperatorSymretricGaussSeidelop,ru.fin.fout)
DDDCGperator *ap;

DDDFunction ™fn,*fout;

int m;

Applies a sweep of symmelric Gauis-Seidel with
a <hacrete linvar operator

void DDDOperatordacobi{ep,m fin,floul}
DDDCperator *op;
DDDFunclion *fin, *lout;

Applies a Jacobi iteration with a discrele linear
operator.

int m;

DDDamainSolver Creates DD DomainSoelver context [0l use in
*DDDomainSotverCreate WithConninand Line{ solving o PDE en a astngle domain. Uses sithes
domain,argc,args) BIMuliGrid or DDCneCrid solver depending

DDDomain *domain;
int *arge;
char **args;

on command line option -multigrid or -onegiid

void DD BomainSolveriselnitialGuessids)
DDDomainSelver *ds;

Fotces the DD Domainiolver Lo nse whatlever s
in the approximate solution as an inital guess il
an ileralive solver i3 used.

DDOneGrid *DD0OneGridCreateWithCemmandlined
doimnain,asge,args)

D DDomain *domain,

int *arge;

char **args;

Creates DDOneGrid context for use in solving a
I'I3YE on o ~anpgle domam

DDOneGrid *DD0OneGridCreate{domaia,vinethod)
SVMETHCD svinethed;
DDDomain *doemain;

Creates DDOnreGrid context for use in <olvipg a
POE on a single dernain.

void DDQOneGridSeiUp(og)
DDGOneGrid ®og;

Called alter call 4o DOOpeGridCreate() but
befere call to DD CaelGridSolvel)

DDDFunction *DDOneGridSolve{og)
DDOneGrid *op;

Solves PI2E on domain.

void DD OneGridDestroy{og)
DDOReGrid "og;

Frees space used by the onegrid selver.

void DDOneGrid AddLineGraph{og,win)
XBWindow win;
DDOneGrid *op;

Adds window o ptot line graph of residual and
possible error.

void DDOneGrid AddSoelution(d,s}
DDOneGrid *d;
DDFunction *s;

if one has a function for the PRE solution this
ruay be added 1o the DBOneGad structuvie i
order to calculale enrors, cte, Use
DDOneGridAdd DSotutian{) for discrele
selutions.

veid DDOneGridSaveProblem{og,name)
char *name;
DROreGrid og;

Saves Lo a file the matrix, the RHS and Lhe
solution., This prebiem rmay be read in on a
paraltel machine. Call before or alter a call le
DD OneGridSolve().

DDMultiGrid *DDMultiGridCreateWithCommandline(
demain,domains,arge,args)

DDDomain *domain,**domains;

int *arge;

char **args;

Creales DDMultiGrid contest for nse in solving
a PDE en a single domain.

veid DDMultiGridSetUpWithComrmandLline{clx,arge,args}
int *arge;

char **args;

DDMultiGrid *cix;

Called after a call to
DOMulliGridCreate WithCormmandiinel).
Allocales memoty log inuitigrid solves

DDMultiGrd *DDMuliGridCreate{dormain,ndeamams,})
DEDomain *domain,* indomains;
int §;

Creates DDMuinGrd context Tor wse e solving
a FDE on a smgle doman

void DDMulliGridSelUp(ctx,itmethod}
DRMultiGad *esx;
ITMETROD itmethod;

Called alter call o DEMualtiGridCreate() but
befere call 1o DDMuitiGridIloivel)

DEDFunciion *DDMuliiGridSolve{cix)
DDMultiGrid *cix;

Solves PDE en dornain.

void DDMuliGridDesiroy{cix}
DDMultiGrid ™cix;

Frees space waed by MuluGnid,

void DDMultiGridAddLineGraph{cix,win)
XBWindow win;
DDMultiGrid *cix;

Adds window to plot line graph of residual and
pozzible ciror.

void DDMulliGridAddSelution(d,s}
DDMultiGrid *d;
DD Function *3;

Il one has a lunchion fog the PDE solutioa, 1his
inay be added to Lthe DDMulliGrid structure in
order to calculate errors, ele. Use
DDMuluiGridAddDSclution(} for discretle
solilions

void DDMulliGridUsedacobi(eix,daap)
DDMultiGrid *cix;
double damp;

Forces the maltugind solver jo use Jacobe
stoothing ratdier than Gavas-Sedel FTlos s
intended mainly for camparison, there is usually
ne good reason lo ust Jacobi on a sequenlial
machine,

void DDMultiGridUseGS(ctix)
DDMulliGrid *clx;

Forces Lhe mpulligiid conlext Lo use Gau
simcothing rather than symmetric Gauss

void DDDomainSelverAddWindewl{ cix, window, winio)
DDDemainSciver *clx;

XBWindow window;

XBinfco *winfo;

Adds window 1o DDDormainSelver structure lot
plotting grid, solution, elc.

vaid DD DomainSelverUseSurfacePlol cuix)
DDDomainSelver *cix;

Draws selubians, errors, elc. using a surface plot
tather than the default coniour plon

void DDDomainSciverAddWindow?2{ cix, window, winfo)
DDDomainSelver *cux;

XBWindow window;

XBinfe *winfo;

Adds window 1o DDDomain3olver shiuciure Jor
plotting grid, solution, etc

void DDDomainSeiverAddDSolution ¢ix, solutlion
DB DoernainSalver ®clx;
DDDFunciior *aolution;

{{ one has a discrete function for the PR
solution, this mmay he added to the

DD Bemainsotvel structute 1n order e calculate
errors, etc. Use DB Doemain3Solver Add3elution {orl
conlinuous soluliens.

void DDDomainSelverSetHold{ ctx, hoid)
DD DomainSclver *cix;
int hald;

Determines how tong graphics calls by
DD omaindolver soutines wiil hold

void DDXDomainSolverAddSolution{ ctx, 5}
DDDemainSolver ®clx;
DDFunclion *s;

Adds exact selution Lo dorain selvet context

void DDMultiGridAddWindow }{ domain, windew, wiale
DOMuitiGrid *domaing

XBWindow window;

XBlInfe *winfo;

Adds window Lo multigrid strecinre for plotting
grid, solution, #ic.

veid DDMulliGridAddWindow?2{ domain, window, winlo
DDMultiGrid *domain;

XBWindow window;

XBInfe *winfo;

Adds window Lo muitigrid structure for plowung
anid, sehition, ¢ic

void DDMulliGrid AddDSolution{ multigrid, selution }
DDMultiGrid *multigrid;
DODFunction *solutian;

Il one has a discrete funclion lor the PDE
solution, this rnay be added to the DDMuitiGrid
siructure in arder to calculale errors, eic.

void DDMuitiGridSetNumberSracothUp{ multigrid.n }
DDMultiGrid *multigrid;
ins n;

Sels the number of postammooething steps Lo use

Sels the nuinber of presmoothing steps Lo use.

void DDMuitiGridSetCycles{ mulligrid,n)
DDMultiGrid *multigrid;
int n;

i for V cycle, 2 for W cycle

double DDMultiGridUseAdditive(multigrid }
DDMultiGrid *multigrid;

Uses additive form of mulligrid rather than
classical V or W cycie.

double DDMultiGridUseFull(multigrid)
DDMultiGrid *multigrid;

Uszes fell multigrid as precondilioner.

void DDMuliiGridSetHold(<ix, hold
DDMultiGrid *eix;
int haold;

Determines how long graphics calls by muliignd
routines will hotd

void DDMuitiGridUseSurfacePlot{ ctx)
DDMultiGrid *cix;

Draws sclutions, errors using a surface plot
rather than the delauis contour plot.

void DDOneGrid AddWindow i{ cix, window, winfo }
DDOneGrid *clx;

XBWindow window;

XBlInfo *winfo;

Adds window to DDOnreGrid structure for
plotling grid and approximate solution.

void DDOneGridUseSurfacePlolf cix)
DDGreGrid *clx;

Draws sehilions, errors, elc. using a surface plot
rather than the delauli contom plol

void DDOneGrid AddWindow2{ ¢ix, window, winfo)
DDCneGrid *clx;

XBWindoew window;

XBInfo *winfo;

Adds windoew o DI OseGrid styucture for
plotting error of apprexitnate solution, elc.

void DDOneGridAddDSolution{ clx. selution }
DD CReGrid *ely;
DDDFunction *solution;

Iioane has a discrete Tunction for the PRE
solution, this iray he added to the DUelnd
straclure in ordet to cakoubate orrors. Hae
DO OneGridAddlalntien fer centinnens

solulicis

void DDOneGridSetteld{ cix, ekl }
DDOneGrid *clx;
int hold;

Petesmimes how long graplies calls by
DDOnelrid routines wili hold.

void DDOneGridAddCoarseOnreGrid(ctx,
DDOneGrid *eux;
DDOneGrid ®onegrid;

enegrid)

Woane 15 using the overlapping Schwarz methed,
use Lhis routine to sel the coarse damain solvel
Lo wae.

void DDCneGridSetNumberSubdomains{ cix, n)
DDOneGrid ®ectx;
int n;

Jels the nunber of subdormains to use lor
avetlapping Schwarz.

void DDCneGridSetOverlap{ clx, n)
DDOneGrid *cix;
ing nj

Sets the overtap Lo use for overlapping Schwarz

void DDGnreGridSetUseAdditive ctx)
DDOneGrid *cix;

e addilive Schwarz of the averlapping Schwaiz
methoed iz used

void DDOneGridSetSubdomaiaMerhed(ctx. inethod)
DDGOneGrid *cix;
SYMETHOD method;

Sets the method to wse on cach subdomain +f the
oveitapping Schware melhod s wsed

DDSchwarz *DDSchwarzCrealeWithCommandLine{demaint,
doraain?, arge. argv)

int *arge;

DD Domain *domainl, *dernain;

char ™ argy;

Creates DDSchwarz conlext for use in solving a
PRIE on Ltwo domains

void DDSchwaraSelUpWithCormmandLine{schwarz,arge,args)
DDSchwarz *schwarz;

int arge;

char **args;

Allocates space, et¢. lo1 an afternating Schwarz
solver.

void DDSchwaraSalve(schwarz)
DDSchwary *schwary;

Solves Lthe two domain problein using aiteinaling
Schwarz method.

void DDSchwarsAddWindewi(s,w)
DDSchwarz *s;
XBWindow w;

Adds window lor displaying solulion.

void DDSchwarzAddWindow2(s,w)
DDGSchwarz *s;
KBWindow w;

A windaw Loy desphivang vrrne

DDDemainSelver *DRSchwarzletDomaindolver 15}
DDSchwarz *s;

Returns the domam solver for the first
subdomain.

DDDomainSclver *DDSchwarzGelDomainSolver2(s)
DD Schwarz *s;

Resurns the domain solver for the second
subdoinain

yoid DDGridUseChacoPartitiopes(grid)
DD Grid *grid;

Sews the grid Lo use the Chaco package lor grnid
parlitioning. Works only ler the unstructured
grids

int DDGridChacoHelp(argr,args)
int *arge;
char **args,

Prints help message for Chaco package Lo stderr

void DDGridUseChacoPartitionerWithCommand-

Linefmrid, arme arms)
s{gric,arge,args)}
DDGrid *gr
int *arge;
char **args;

Parses commimand line Lo set various argumenls

v, By default this

for Charo pa 3a

HET ¥

multifevei speciral partitioner.

void DDGridUsePamPartitioner(grid)
DDGrid *grid;

Sets the grid to use the Pam package for grid
partitioning. Works only lor the unsiruciured
grida.

int DDGridPamHelp(arge,args)
int *argce;
char **args;

Prints help message (er Pam package to siderr.

void DDGridUsePamPartitionerWithCommandLine{grid,
AFEC,Args}

DDGrid *grid;

int *argc;

char **args;

Parses carnmand line Lo set various arguments
for Pam Partittoner By default this uses a
multifevel zpectral patitione:r

void DD GridUseNaivePartitioner{grid)
DDGrid *grid;

Force grid Lo be partitioned using simple naive
scheme.

void DDGridUseNaivePartitionerWithiCoamrmandline{
grid,arge,args)

DDGrid *grid;

int ™argc;

char **args;

FForce grel Lo be partitioned using simple naive
scheme.

void DDGridUseBaSiParlitioner{grid)
DBDGrid *grid;

Sets the grid 1o use the Badi package (or grul
partitioning Woarks anly for the unstructured
grids

int DDGridBaSiHelp{arge,args)
int *argc;
char **args;

Prints help message for BaSi package to stders

void DDGridUseBaSiPartitionerWithCominand Line(grid,
arge,args)

DDGrid *grid;

int *argc;

char **args;

Parses cammand line Lo 2o vanous arguments
lor BaBi partilioner. By default this wses a
multifevel speciral patitioner.

veid DDGridStore(grid,name}
DDGrid *grid;
char *name;

Aleres a grid Lo file

DDGrid *DDGridlead{name)
char *name;

Loads a grid lvom file

void MGMCycle(mglevels)
MG **mglevels;

Given an MG structure created with
MGCreale(], runs one multiplicalive cycle down
thraugh Lhe levels and back up

MG **MGCreate(levels)
int levels;

Creates a MG structure for use with the
mulligrid code.

veid MGDesiroy(mg)

Frees space wsed by arn MG struciure created

MG **mg; with MG CGreatel).

int MGCheck{mg) Checks that all componems of MG structure
MG **mg; have been set Use hefore MUCycle(}

void MGSetNumberSmoothDowit{g,n) Sets the nunber of presmoocthing steps 1o ua¢ on
int n; all levela. Use MGSetSrmoetherDown() to sal 1l
MG *¥*mg; differeatly on diflerent levels.

void MGSetNumberSmoothUp(mg,n) Sets the number of post smocthing steps {o nae
int n; on all levels tlze MGSetSmootheilpl) o se1 0t
MG **mg; difierently on diflerent evels

void MGSelCycles{mg,n)

Aels the sumber of cycies 10 use. 1 is V ocycle; 2

int n; is W cycie. Use MGSelCyclesOnLevel{} Tor more
MG **mg; complicated cycling.

void MGACycle{mg) Given an MG structure crealed with MGCreatef |
MG **mg; runs one cycle down through Lhe levels and back

up. Applies the smoothers in an additive
manner.

void MGFMG{mg)

Ciiven an MG structure created with

MG **mg; MGCreatef), runs full multigrid.

void MGCycle(mg,am) Runs eithier an addisive o3 mulliphcative cyole of
MG "*mg; ienlugrd.

int am;

void MGSetCoarseSolve{ mg,l.c)
MG **mg;

void (*1});

void *e:

Jers the aolver function (o be used on the
coarsedl jevel

G
oo

void MG3etResidual{mg,i,f,c})
MG **mg;

veid {(*1)();

void *c;

int I

Sels the lunciion te be used Lo calcujate the
residual ou the {th levet

void MGSetInterpotaie{mg.i,l.c}
MG **mg;

void (*1)(};

veid "c;

int I

Sets the function 1o be used Lo calculate the
interpoiation on Lhe ith level.

void MGSelZeroVector{mg,l,[,c)
MG **mg;

veid (*1)();

veid *c;

int I;

Sets the funciion te be used Lo zero a vector on
the 1th fevel

void MGSelRestriction{mg,l,T,c)
MG *myg;

veid (*1)(};

void *¢;

int 1;

Sets the funciion te be used Lo restrict veclor
frorn th level to Lhe -1 Qevel

veid MGSetSmootherUp{mg,},l,c,d)
MG **mg;

void (*£)();

void *¢;

int 1,d;

Seis the funciion to be used as smooiher after
coarse grid correction {postsmeotiher).

void MGSetSmootherDown{img,l.l.c,d)
MG **mg;

void (*£)();

void *c;

int 1,d;

Sebs the function 1o be uzed as simeother belore
coarse grid correction {presmoother}

void MGSetCyclesOnLevel{mg,l.n)}
MG **mg;

Sets the nmpher ol ¢ycles 1o run on this level

int Lu;

void MGSetRhs{mg,l.c) Sets the vector space to be used to store

MG *mg; right-hand side on a particuiar level, User should
void *c; ltee thns space al conciusion of mullignd vae

int Iy

void MGSelX{mg,tc} Sels the veclor space 1o be used to store solulion
MG **mg; en a parbcular level User should free this spave
vaid *c; al conclusion of muitignd use.

int 1;

void MGSetR(mg,l,c} Seis the vector space to be used to slere residual
MG **mg; o a pariicular level. The user should [ree Lhis
void *c; space at conclasion of nulligndd use

int I;

44

Bibliography

[1] William D. Gropp and Barry F. Smith. Simplified Linear Equation Solvers users manual.
Technical Report ANL-93/8, Argonne National Laboratory, March 1993.

[2] William D. Gropp and Barry I, Smith. Users manual for KSP: Data-structure-neutral codes
implementing Krylov space methods. Technical Report ANL-93/30, Argonne National Labora-
tory, August 1993,

{3] William D. Gropp and Barry F. Smith. Scalable, extensibie, and portable numerical libraries.
In Proceedings of Scaloble Parallel Librories Conference, pages 87 930 1EEE, 1991,

Function Index

D

DDBCCreateDirichlet . . .
DDBCCreateNeumann . .
DDBCDESQGUZ&UOHCIedLeSmlplL .
DDDomainAddBoundary
PBDDomainCreale . .
DDDomamSolvelAcchQUiuLlon
DDDomainSolverAddWindow!
DDDomainSolverAddWindow?

DDDomainSolverCreateWith Cmnn;cmdLme .
DDDomainSeolverSetUp WithCommandLine . .

DDDomainSolverSelve .
DDDomamSovlelAd{]Lit]eCldph
DDFunctionCreate Co
DDFunctionEvaluatePoints |
DDGrid2dCreateTensor
DDGrid2dCreatelUniform
DDGrid3dCreateTensor
DDGrid3dCreateUniform
DDGridAddBoundaryMap .
DDGridAddMap .
DDGudCleateHexahed]dls .)
DDGridCreateQuadrilaterals . . .
DDGridCreateTetrahedrals .
DDGridCreateTriangles
DDGridDestroy . . .
DDGridDraw
DDGndDrawBoundaly
DDGridGetPointsin .
DDGudGetPomL&OnBourzda,[y
DDGrndInputTriangularGrid
DDGridLoad
DDGridPartiticn

DDGridRefine

DDGridSetHold

DDGridStore . .
DDGndToHexa,hechals C
DDGridToQuadrilaterals
DDGridToTetrahedrals
DDGridTo'Triangles . .
DDGridUaRefine
DDGlldUSENle(‘PcLI[lliOil(.l

P

i3
]
ty
20

14

DDGridZoom

DDMap2dCreate
DDMuIthndCreateV\fnI1L0mmdtzdan
DDMultiGridSet UpWithCormmandLine
DDMultiGridSolve .
Ul_)()ne(_mdueate\ﬁ%lzbonnn&nciLmo .
DDOneGridSetUpWithCommandLine .
DPDOneGridSolve }
DDPDECIeateConvechonDlmlseonQ .
DD PDECreateConvectjonDiffusiond .
DDPDECreatelsoLinearElasticily?2
DDPDECreatelsoLinearEiasticityd
DDPDEDiscretizationCreate

DDPDEDiscretizationSetIntegr atlonSc‘hemc

DDPDEDiscretizationSetUp
DDPoints2dCreate
DDPoints3dCreate .
DDPeintsCopy '
DDPointsDifference
DDPointsDraw .
BDPointstnion .
DDPomLsWILhNunéelo[“unctlou
DDTriangulateBaker

X

XBQuickWindow
XBWinCreate

37

bt |

22
22
22
¥4
22
2%
17
1Y
(]
I8
19
19
9

