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ABSTRACT. A survey of two approaches of stabilizing the hierarchical hasis (HB) multilevel
preconditioners, both additive and multiplicative, is presented. The first approach is based
on the algebraic extension of the two—level methods, based on inner, between the discretiza-
tion levels, polynomially based iterations, giving rise to hybrid type multilevel cycle. This is
the so—called (hybrid) AMLI (algebraic multi-level iteration) method. The second approach
is based on a different direct multilevel splitting of the finite element discretization space.
This gives rise to the so—called wavelet mullilevel decomposition based on L?—projections,
which in practice have to be approximated. Both approaches, the AMLI one and the ap-
proach based on approximate wavelet decompositions lead to optimal relative condition
numbers of the multilevel precanditioners.

1. INTRODUCTION

This paper presents a comprehensive survey of the multilevel methods, ie., meth-
ods that exploit direct decompositions (that is, consisting of non overlapping coordinate
spaces) of the given finite element discretization space. To be specific, we consider a
finite element space V = V; obtained by successive steps of uniform refinement of an
initial coarse triangulation 7y. We denote by 73 the kth level triangulation and by Vi the
corresponding kth level discretization space, £ = 0,1,...,.J. We consider here standard
conforming piecewise polynomial finite element spaces. This in particular implies that
Vi—1 C Vi, i.e., that we have nested sequence of discretization spaces. Finally, we are
interested in the following model second order elliptic bilinear form,

(1) A(u, ) = _/QAVU . Vip,  where u,vp € Hj(§2)

Here ) is a plane polygon or a 3 d (three dimensional) polytope, H(€2) is the standard
Sobolev space of L%({}) functions vanishing on the boundary of 2 and that have all
first derivatives also in L?({2). The given coefficient matrix A = (a,;(z)), z € Q, is
symmetric with measurable and bounded entries in €1, and it is also assumed that A is
positive definite uniformly in 2.
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For the finite element spaces we also assume that Vi, admit Lagrangian (nodal) basis
{¢£k)} where any index ¢ corresponds to a node x; which runs over all the degrees of

g .
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Ti.. We denote by kg, the kth discretization level meshsize, We assume that by, = 27 %hg.
We are interested in the following variationally posed boundary value problem:

Problem of main interest. Given f € L?({2), find u € H}(£2) such that,
(2) A{u, ) = (f,) forallpeV.

Here and in what follows by (.,.) we denote the standard L? inner product.

The remainder of the present paper deals with the following topics:

o Classical two level HB methods; the strengthened Cauchy inequality.

¢ The HB multilevel methods; additive and multiplicative preconditioning schemes.

s Stabilizing the HB method, I: the. AMLI (Algebraic Multi Level Iteration} method.

¢ Stabilizing the HB method, II: approximate wavelets.

The main goal of this survey is to present in a compact form how far one could go
in developing efficient multilevel preconditioning techniques for solving problem (2) ex-
ploiting direct (or equivalently, hierarchical) decompositions of the obtained by successive
steps of refinement finite element discretization spaces. It is demonstrated in the present
paper that by using the two approaches described in a number of papers this can lead to
optimal or practically optimal order methods for both two and three dimensional problem
domains.

The other possible alternative is to consider decompositions of the fine discretization
space V consisting of overlapping components. The latter can lead, for example, to the
classical multigrid (MG) methods or to the overlapping Schwarz methods. For these
methods we refer to the survey papers of Xu [34], Yserentant [36], the book of Bramble
I11] or earlier, Hackbusch [16], and also to the surveys of Chan and Mathew [12] and
Dryja, Smith and Widlund [13].

The presentation in the present paper is based on the papers of Bank and Dupont [8],
Axelsson and Gustafsson [1], Yserentant [35], Bank, Dupont and Yserentant [9], Xu [34],
Vassilevski [30], Axelsson and Vassilevski [4], [5], [7], Vassilevski [31] and Vassilevski and
Wang [33].

2. CLASSICAL TWO LEVEL HB METHODS; STRENGTHENED CAUCHY INEQUALITY

Here we survey the classical two level method as proposed by Bank and Dupont [§]
and studied further by Axelsson and Gustafsson [1}. It is a basic step of introducing the
multilevel preconditioners.

Consider our bilinear form

ou v
A(U,’U) ELZa%J(m)E}Zé}—J— )

u,v €V C Hy ()

Given a direct decomposition of the space V,

V=V1-I-Vy
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with coordinate subspaces Vi, V3. We call this decomposition stable if there exists a
constant y € [0,1) such that

(3) Alv, 1) < v[A(v1,01)]? [A(vg,m)]E for all v; € VA, vy € Vy-

~ Note that if v = 0 the above decomposition is A orthogonal. In practice we are interested
in a constant -y € [0,1) that is independent of the degrees of freedom of V; and V; (or of
their respective mesh parameters hy; and hy).

Given also computational bases of {qﬁgl)} of V7 and {0552)} of V3. Then the problem of
our main interest, for any given right hand side function f € L%2(£) to find u € V such
that

Alu,¢) = (f,¢) forall p€V,

takes the following block matrix form,

]l e =l

Here we seek the solution decomposed as u = uq +uy, u3 € V5 and uy € V5. The respective
coefficient vectors of u; and us with respect to the given computational bases {qb,f;l)} and

{d)gz)} are above denoted by w; and ug, respectively. The blocks of the stiffness matrix
read then as follows:

A, 4,

13

2) (1
A = {AWP, M),
A = {A(¢§2),¢§2})}'
The classical two level preconditioning schemes read as follows:
Given two preconditioners (approximations)

My to Ay

and
Moy to Asgg (OI‘ to S = Agg — A21A1_11A12),

one then defines:

Definition 1. (Multiplicative or block Gauss Seidel Preconditioning Scheme.)

Vo My; 0 I M An].

It is clear that to implement one inverse action of M one needs two inverse actions of
M7, and one inverse action of My, in addition to matrix vector products with the (sparse
in nracticel matrix blocks 4. and A44..
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Definition 2. (Additive or block Jacobi Preconditioning Scheme)

M___E'MH o1
P10 M|

To implement one action of M ! one needs the inverse actions of My; and Mys.
There is one more way to define a two level multiplicative {or product) preconditioning
scheme, cf., Bank and Dupont [8].

Definition 3. (Block Gauss Seidel type Preconditioning Scheme.)
Consider the following splitting

An =Dy +Lin+ L‘:lFl

with L1y a strictly lower triangular part of A;; and Dy an easy to factor or to solve
gystems with part of A1, e.g., Dq; the diagonal of A;;1. Let also By be a preconditioner
for As;. Then the two level block Gauss Seidel type preconditioner B is defined as

follows: )
p=nt+Dn 011Dy 0 Ly + Din An ]
Az I ] Bys 0 I

Note that in the case LIy = 0, i.e., Dy; = Ay, B is a special case of the preconditioner
defined in Definition 1. It is clear that to implement one inverse action of B one has to
solve two systems with Dq; and one system of equations with By in addition to some
eliminations with the (sparse in practice) blocks Agq, Aja, Ly; and L.

We first formulate the following classical result concerning the two level precondition-
ers from Definitions 1 2.

Theorem 1. (Axelsson and Gustafsson [1]) Assume that

V'{Auvl < V?MnV} < (1 + 51)V¥1A11V1 for all vy,
VEAngz < V%Mgng <1+ (().z)vgﬂAgsz for all v,

for some nonnegative constants &, and é6,. Then the following spectral equivalence rela-
tions hold:

1
1 — 42

vIiAv < vTMv <

{1 + %‘ [(‘)1 + 62 + \/((‘)1 - (5.2)2 + 4616272} } VTAV for all v
Similarly, for the block diagonal (Jacobi) preconditioner we have,
(1-AvIMpv < vTAv < (14 WIMpv  for all v-

Here,

. 1—%—(‘)1
I

2(1 -1

Ao = 20+ {1+A+\/(A—1)2+4A72} . A
1+ 4,

Proof. The proof relies on the strengthened Cauchy inequality (3) and the spectral equiv-

alence relations between Ay, and M;;, and between Aje and My, and on the elementary
ineanalitv 20h < £-142 + £b2 for annronriate choice of £ > 0.
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For the multiplicative preconditioner M one has:

w Ll ( AL Aler
\.tl’.l IIIV

<

This implies the desired left hand side spectral bound since all terms are non negative,

by assumption. For the upper bound one gets,

vI(M - A)v < vT(My — A )vi +v3 (Mo = Agg)vy +v] As1 A Arave
< GvTAnvy + 8v] Aggve + v2vE Agave .
= 1—_—21_1—7(1 - le’){)V?AuVl + ﬁzc—;;(l — C’Y)V%iAgng -+ -{-:_r—;y—gVTAV
: 8y 82 ¥ T .
< |ein e {185} + ] vrav

Here we have used the inequality (a corollary to the strengthened Cauchy inequality (3)),

(4) vl Av > (1- WC)vg‘Agzvz +(1- 'y(:_l)v{Auvl,

valid for any ¢ € [y,77!]. We also used the same inequality for { = .
Choosing now { such that
& b
T=¢=1y 1=y

82 =814/ (82 —81)2+461 6572

ie, (= 575, , one gets
g1 b1+ 8y 4 /(8 — 61)? + 4618277 < &1 + &y
Ty 20— 7) ST

which implies the desired estimate.
The additive preconditioner Mp is analyzed in a similar way. We have,
vT Av V‘{Au Vi + V%Agsz + QV%"AH Vo
(14 7) [v{ A11v1 + V] Agavs)
(14 7) [v] M11v1 + Vi Maavs]
(1+y)vTMpv:

IAIA

For the estimate from below, one has:

viav > (1 —_1C’Y)V"1PA11V1 + (1 = ¢ y)vT Agave
> 1—1_+52 vI Maygva + ____,_Qxll;& vi Myyvy
=

: 1=y 1=gy | T ]
max mm{ Tt v il A Mpv

CElvy~1]

The parameter € [y, !] is chosen such that,

1-¢ly _1-Cy

11 £ T 10 &

]
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or letting A = H’%;, we have the quadratic equation y¢? — (1 — A)¢ — Ay = 0 for {. This

gives

1T A /(A_‘i\‘;lzi,.‘
1 A FAY LS 3 |

- V
(= o

Thus the desired left hand side estimate becomes vT Av > Ay(1 — y)vT Mpv with

{l

’ -1
1-—- _2A((1+ . :
T = STl {1 +A+ /(A1) + 4A73}
245 {11 +A+|A —1]}?

1+ma.x% 61,82 F ’

Ap

LAY

W

For the two level preconditioner B from Definition 3 the following well known result
holds, cf., e.g., Bank and Dupont [8], see also Bank, Dupont and Yserentant [9].

Theorem 2. Assume that
Vg‘A:ng < vngg vy <(1+ bg)V;AggVZ for all vy
for some constant by > 0. Then the following spectral equivalence relations hold:
vIiAv < vIBv < kppvl Av  for all v,

where the constant spy depends only on by, on the condition number of DI'I]“AH, on

the (standard spectral) norm of DI_I% LnDl_l% (the same as of DE%LEDS% ) which is

defined for any matrix G by ||G||* = sup ﬂi:f‘m-q-@gﬂ Let A [D{i' A1) € [o7", 03] and
—1 -1 v

denote £ = [|D 1> LT, D ||

Proof. The left hand side of the desired inequality is seen from the identity,

(5)

B_A = (L + Du)lD]_ll(L;"; + Du)— A (Lus + Dn) D A - Axg
Ayp DTNIT 4 D) — A By2 — Az + AnDyy Any
— -0 ¢ ] + -LllD;ll 0- -Dll Alg} ] {DﬁlLfl 0]
'0 ng - Agg ] | 0 I_ | A21 AQIDH Alg 0 I
_ [0 0] N LDt 0] [Dn 0] [DRIEL, DitAs
|0 Bn—An| ' |AnDg I[[ 0 O 0 I -‘

noting that both last terms are positive semi definite.
The right hand side inequality is seen again from the last identity (5), the following
corollaries from the strengthened Cauchy inequality (letting ¢ = y~! and { = vy in (4)}):

: v
viApv; £ — viAv forall v = [Vi] .



HBE MULTILEVEL PRECONDITIONING 7

and

V3 Agavy < viAv forall v= [ i}

1—72
The spectral equivalence relations between By and Ag2 and Ajp; and Dj;, and the norm

—~1 -1
estimate of D% L11D;* are also used.

Following the classical result for the convergence factor of the symmetric block Gauss
Seidel preconditioner By = (D11 + Lu)Dl‘ll(Du + LT) one has

VfAnVl S Van\ﬁ S (1 + b1)Vg1A11V1, for all Vi,

where by < £20;.

Using then identity (5) for any v = [Zl } and wy = D7 LT vy, one gets
2

VT(B - A)V = VE{'(Bgz — Azz)?’z -+ wauv\q + QWTAl'ng + VgAngﬁ1A12V2
< byvi Apvy + 7EvT Aggvy + wi Diywy + y{wi Ay wy
‘i"YC—lngzzvz |
(6) < (b4 y¢TM)vE A + (02’)( + Dby vT A1 vy + 72vE Az ve
< i"-l"-'-? Cen(10m }max {ba + ¢, (o2vC + )b} vT Av
+ [1_7 } vl Av.

Choose now ¢ > 0 such that ba{ + v = bi{o27¢ + 1)(, i.e.,

by — by + /(b1 — by)? + doyy?hy
2byoy7y

Cz

Substituting then this value of ¢ in (6), the following upper bound for k7, is obtained:

5 < 1 1
TL =
1-— ’)/ 2(1 m'y)

(52 + by 4/ (by — bg)?2 + 40‘2’)/2331) '

O

One typical classical example of the two level preconditioning scheme is based on the
two level hierarchical basis. Consider a finite element space V = V), that corresponds
to a quasiuniform triangulation 7" = 7, obtained by a fixed number of successive steps
of uniform refinement of an initial (coarse) quasiuniform triangulation 7 = Tz and let
V = Vi (= V2) be the corresponding coarse finite element space. Note that vV cV.
Then by introducing the nodal interpolation operator, II = Iy defined for continuous
functions v as follows (ITv)(z) = v(z) for all nodal degrees of freedom z from the coarse
triangulation 7 = T (= 7T3). Then the following stable and direct decomposition of V
is of interest:

V=V4+(I-TV.

Welet Vi = (I — )V and V3 = V. Tt is well known that the following strengthened
Cauchy inequality holds {cf., e.g., Bank and Dupont [8], Maitre and Musy [19] or Axelsson
and Gustafsson [1]):

Afne Y < ~vTA ﬂjf fA(ﬂ_?”J“% C forallm eVi = (T —TNV. and all 5 ¢ V.
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The constant 7 = maxyp, where yp = sup Ar(vs.va) and Ap(.,.) is
TeT w1 €Vy, vaEVy \/AT(1’1=1’1)\/AT(1’2.-1’2)

the restriction of A to the elements T' € Ty. This means that v € [0,1) can be estimated
locally. Explicit expressions and/or numerical estimates of yr are derived in Maitre
and Musy [19], Axelsson and Gustafsson [1], Vassilevski and Etova [32], Margenov [20],
Eijkhout and Vassilevski [14] and others for various finite element spaces and bilinear
forms A.

There is an equivalent form of the strengthened Cauchy inequality; namely, consider
the norm estimate of the local projection operator II,

A(IIv, ITv) < nA(v,v), forallveV.
Then vy = ,/1 — % This is seen from the following inequality

AT, IIv) < nA(ve, ve),

where vy = IIv + (I — I)w for any real number ¢ and arbitrary v and w, since Ifvg =
T2y + tII{I — M)w = Tv. The latter is true since IT# = II. This implies the positive
sentidefiniteness of the quadratic form t* A((T — M)w, (I -~ Mw) + 2t A(Tv, (I —IT)w) + (1 -
n~1)A(Ilv, ITv) which implies that its discriminant is non negative and this is precisely
the strengthened Cauchy inequality

(A(vy,v2))* < (1 - %)A(Ul‘UI)A(Ug,Uz) forvy = (I —Mw € V; and vy =1IIv € Vs-

The above equivalence has been established in Vassilevski [31]. It is well known that for
the nodal interpolation operator II the above norm bound 7 depends on % iLe,n=m1 (%)
(see (10) below). Hence if £ < C the constant y will remain bounded away from unity
uniformly with respect to h — 0.

There is another important feature of the two level block form of the resulting stiffness
matrix A computed from the two level HB of V; namely, using the nodal basis of the
coarse space V= Vi and the nodal basis of Vi (the hierarchical complement of Vin V),
the first block Aj; of the stiffness block matrix is well conditioned (note that we have
assumed that —%I— < ). Hence Aj; allows for good approximations. A computational
feasible approximation is a properly scaled (also done element by element with respect to
the elements of 7y ) diagonal part of Aj;. This in particular shows that Dy (the scalar
diagonal part of Ajq) is spectrally equivalent to Aj; and the corresponding spectral
equivalence constants can be estimated lorally Similarly, the required in Theorem 2

spectral norm of DE%LHDE% (and of D11 L D11 ) (for Ly; see Definition 3) can also
be estimated locally. In some cases, e.g., when bisection refinement is used (cf., Mitchell
[23] and also Maubach [21] including 3 d elements), Ay itself is diagonal and hence no
further approximation of Aj; is needed.,

For the case of rough coefficients (discontinuous or in the presence of anisotropy) one
has to take special care of how to approximate Aj;. Some possibilities are found in
Margenov and Vassilevski [22]. We next note that the second block Ajg is the stiffness
matrix A = Ap computed from the coarse space V. It can be approximated by any
available preconditioner for the coarse grid problem. One possibility is also to successively
nest the same two level procedure and thus to end up with a multilevel HB precondition-
ing scheme. Another possibility is to just use some more classical (block) ILU method
(if the coarse mesh is not too fine).
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3. THE HB MULTILEVEL METHOD; ADDITIVE AND
MULTIPLICATIVE PRECONDITIONING SCHEMES

The straightforward extension of the two level HB method by successively nesting
the two level scheme does not lead to optimal order methods. For two dimensional
problems, as proposed in Yserentant [35] and Bank, Dupont and Yserentant [9], this gives
satisfactory nearly optimal preconditioning methods. For three dimensional problems
this is not as attractive, see e.g., Ong [25].

To define the multilevel HB preconditioning methods one first defines the nodal inter-
polation operators II; defined for any continuous function v as follows (1Tpv)(z) = v{z)
where z runs over all nodal degrees of freedom in the kth level triangulation 7, = 7,
hi = %hg-1, and hy = H is the mesh size of the initial (coarse) triangulation. The
elements of 7% are obtained by uniform refining each element of 7;_; into four congruent
ones (in two dimensions).

To analyze the multilevel methods under interest it is more convenient to use the
HB (hierarchical basis) of V which is defined by induction as follows. Assume that the
HB of Vj,_; has been defined. Then the HB of V} is defined on the basis of the direct
decomposition of Vi, = Vi + (I — Ig—1)V), by keeping the HB of Vj_, and adding fo it
the nodal basis functions of V; that correspond to the two level hierarchical complement
v = (I - 0jy)Vi of Viey in Vi

At discretization level k the HB stiffness matrix A%*) computed from A(.,.) and the
HB of V;, admits the following two level block form

k k
40— [Agl) Aﬁz’ } } V(l).
AR 4G} Vi

Assume now that we have some given symmetric and positive definite approximations
(k) to the first blocks A( ) on the diagonal of A®) | Let the following spectral equivalence
relatlone hold:

VAR v <vTBRvi < (14 bpvTalvi for all vi, vy € V.

Here, by is a non negative constant. For any function g € V( ) by g1 we will denote its
nodal basis coeflicient vector. For any 9 € Vi_; by Vv we Wﬂi denote its (k — 1)th level
HB coefficient vector, i.e., using the HB of Vp_;.

We can now define the following two muitilevel HB preconditioning schemes.

Definition 4. (Multiplicative or block Gauss Seidel HB preconditioning scheme, Vas-
silevski [30])

Define M(® = A(®) For k > 1 assume that M ("’“1), the HB preconditioner for Ak=1)
has been defined. Then

k
A( ) pME=1 |0 I } Ve
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Definition 5. (Block diagonal or block Jacobi HB Preconditioner, Yserentant [35])

R 01) v
B~V b v
Mgc): ' :
B v
L0 AO 1Y W

Definition 6. (HBMG preconditioner of Bank, Dupont and Yserentant [9]; or a multi-
plicative or block Gauss Seidel type HB preconditioner)

Assume that Agl) is split as

k k k BT
AR = D+ 1 + 1,

where Lgl) is a strictly lower triangular part of Ag;) and D( *) is an easy to factor or to
solve systems with part of Agl) (e.g., the scalar diagonal part of A( )) 1t is also assumed

that Dgl) is symmetric an positive definite.
Define B® = A®, For k > 1 assume that B =1 the HBMG preconditioner for
A1) hag been defined. Then

mm:[ﬂ”+ﬂﬁ ﬂ{D@“ 0 ]Pﬁ’+ﬂm AB Y v
A;(;;) 7 0 Blk—1) 0 I |} Vi

The following results hold for two dimensional polygonal domains 2 (see Yserentant
[35] for the additive preconditioner, Definition 5 and Vassilevski [30] for the multiplicative
one from Definition 4).

Theorem 3.
vIARy < vTMBy < (1 + CEEWTAFY  for all v € Vi,
Similarly,
CivTA® Yy < vTMPy < (1 4+ B2)TAB Y for all v € Ve

The constants C,Cy and Cy are meshindependent (or level independent). Also, these
constants are independent of possible jumps in the coefficients of the bilinear form A(.,.)
if the possible large jumps only occur across the edges of the elements for the coarsest
triangulation Ty.

Proof. The proof of the spectral bounds for the multiplicative preconditioner M} is
based on the following identity. Given v = v(*) the HB coefficient vector of any given
function v € Vj, starting with s = k£ down to 1, one successively defines vga) the sth level
nodal coefficient vector of (II; — [Is—1)v € Vﬂm and v(¢=1) = vgs) the (s — 1)th level HB
coefficient vector of II,—j2. Then the main identity reads as:

n VI - AB)y = v (BE) _ AN BT (1) _ 4CE-1)yy(R)
(7) LT 409 (97 4R )
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This immediately implies the left hand side of the required spectral bound since all terms
T A
are non negative (for the term ng) (M1 — A(k‘l))vg]") this follows by induction

« Y Y

recalling that A" = AW/},
For the upper bound using the above identity (7) recursively one gets:

k k—1
)T 8 & a HT (s s —t (s s
MO~ A = 3 (B~ A + S A B g

s=1 =0

This identity implies the inequalities,

L T b— _
IO A < b T ADD 1 5 T AL A A 0
s=1 sz

(8)

k k=1
< b3 v AV £ T T Ay,
s=1 s=0
Here we have used that SG+1) = A() _ AG+D gle+1)77 4(a41) 50 positive definite as a
21 11 12
Schur complement of the symmetric positive definite matrix A(tY. To complete the
proof one then uses the estimates (see (4) with ¢ =y~ and A = AX)),

VT APV < v Ay

(9) = 1u_172 A(Tv, Tv)
¢ o (5) At

The function 7 represents the energy norm of the nodal interpolation operator II,, i.e.,
for any integers 0 < s < k < J there holds:

hs ,
A(lln, ) <9 (E—) A(v,v) for all v € V.
k

It is well known that 7 has the following behavior (cf., for example, Yserentant [35], Ong'
[25] and Vassilevski [31]) for some meshindependent constant C,

(10) (t) = {1+Clogt, Q a2 d polygon,

1+C(t—-1), © a3 dpolytope.

The constant C' can be estimated locally with respect to the elements from the initial
coarse triangulation 7y and hence is independent with respect to possible jumps of the
entries of coefficient matrix A as long as this may only occur across edges (faces) of the
elements of 7;. In the present case d = 2, hence 7}(%;) = C'(k — 3) + 1. Summing up the
last inequalities (9} leads to the required upper spectral bound. Namely, from (8) and
(9), and n(-,’ﬁt) = C{k — $) + 1, one gets:

viM®Bly < i levga)TAgi)vﬁs) + E_:{)V(S)TA(‘Q)V(&)
k
< (14+ChvTARy 4+ (1—2175 + 1) S [14Clk —s)]vT ARy
s=1
< f1+o+1+ 5 Bt C (14 phr ) 2L L VT A®y
< 11 LR VWoT Ak,
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-1
To prove the bounds in the estimates of the eigenvalues Mg“) Al®) one proceeds as
follows. Given v € Vi with a kth level HB coefficient vector v. Let vi = (II, — —1)v,

— P ‘ (=Y .. P ) " - fa} .- v [
vy = I[,v and denote v~ the coefficient vector of v} and by v'*/ the sth level HB
coefficient vector of v,. Then,

VTA(A’)V=A(‘U,'U)= 'UO-[—Z’U 'Ug-i-Z'U <2A 'U[)u'u{) +2 Z A 3’ 'r'

a,r=1

We now use the following strengthened Cauchy inequality (cf. Yserentant [35])
(11) A}, ) < CoIm=l(A(0],01)) % (A0}, 0])%,

which holds for a constant 6 € (0,1) (6 = \/- for uniform refinement with hy = h._1).
This immediately shows the estimate

k
146
1
ZA( <C—1—62A vl vl)
r.s=1 a=1
Therefore one obtains,
k
viA®y = A(w,v) <2018 ;A(U;,v;) + 2A(vp, vp)

. p

= 201 Y v APV 4 2v0 A0 O
8=1

< 2max {1,(7 %i_';.} VTMj(jk)V'

We also have

TMBy = 07 4040 4 Z’“:l VT B )
< (1+b) il NORNONONRVOLOMT
< Yy g V9T 4@ () 4 y(OT 40)y(®)
. %?12_ il [t +C(k — s)IVTABv + (1 + CE)vT AWy
< [1 + (5»;~« 1+ {228k + C 1 ﬂ_’;ﬂl] vT ARy
< (14 CE)A(v,v) = (14 Ck2)vT AG)y.

Note that the latter sum is estimated in the same way as in the case of the multiplicative
preconditioner M*), This completes the proof of the theorem. O

The hierarchical basis multigrid (HBMG) preconditioner from Definition 6 of Bank,
Dupont and Yserentant [9] can be analyzed similarly as in Theorem 3. It has the same
nearly optimal properties (for planar polygonal domains) as the other two preconditioners
from Definition 4 and Daefinition 5. More snecificallv we have:
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Theorem 4. Consider the HBMG preconditioner B®*) from Definition 6. Then the
following spectral equivalence relations hold:

vIABy < vTB®y < (14 CE2)WvTARy  for all v.

The constant C' > 0 is meshindependent as well as independent of possible jumps in the
coefficients of A as long as these may only occur across edges of elements from the initial
(coarse) triangulation 7.

Proof. Use the identity which is derived similarly as (5),
0 0 LPp®d™ o] 1p® g
BR) — Alk) = { jl N ad? 11
(k=1) _ 4(k=1) B) (k)"
0 B A ne D§1) lLo o

kYt (k)" E)7Y 4k
[P DA,
0

(12)

This first shows (by induction since B(Y) = A®) that B(*) — A% is positive semi definite
since all terms above are positive semi definite.

The upper bound of the spectrum of A® ™! B(k) i obtained based on the above identity
(12) used recursively (the notation is the same as in the proof of Theorem 3}, i.e., denoting

B(k) (L(k) U"))D(k) (D(k) + Lgi;)T) one gets:

B0 AO)y € (B0 — 4G 4T O 9
Loy L0 p0 409 09 4 BT 409 pB () ()
(k)T(B(k 1) _ A=1))y (k)_|_,yz (L)TA(k-—l)v(k)

Y A(f») CHPRONCE A(l)vl” Faeh (07 4(-1) (F)
(7 +9¢1) 3 v AV 4 (14 aayC)ty E v AV

=1
< Ckv T AR}y,

I

I}

We recall that 02 > Amax [D(k)_lAg;;}] and b = #2071, where 01 > Amax [Ag};) -1D§f)]

and £ > || Dy; (k)7 L(’") D(A) : i. These constants (g1, o2 and £) are meshindependent.

One can make some optlnnz&tion with respect to { € (0,00} but the result will still
be of the same order, namely O(k?). This bound is obtained based on the estimates (9)
and (10) with 'q(%:—) =Ck—-s+1. 0O

4. ALGEBRAIC STABILIZATION OF THE HB METHOD; THE
AMLI (ALGEBRAIC MULTI LEVEL ITERATION) METHOD

Here we present the algebraic approach proposed in Axelsson and Vassilevski [4], for
stabilizing the multilevel HB preconditioners essential for three dimensional problems
mainly. Similar approach (namely, using polynomial inner, between the discretization
levels, iterations) for certain finite difference problems has been proposed in Kuznetsov
[181.
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Here we need polynomials pg:)(t) of degree vy, at every discretization level k& that are
properly scaled such that in the interval (0, 1] take values in [0,1) and

Py =1

Some practical choices of p,(t) are specified later on (after Definition 9).

We call the AMLI procedure as explained further in this section, stabilization of the
HB method since all the HB multilevel methods from the previous section are alge-
braically modified by introducing polynomially based inner (between the discretization
levels} iterations in a optimal way. This does not change the nature of the HB methods;
namely that all constants involved in various spectral relations can be estimated locally
(with respect to the elements from the initial triangulation 7). Because of this, the
AMLI methods preserve this locality property of the HB methods and as a corollary, the
resulting constants in the spectral equivalence relations are independent of possible large
jumps in the coefficients of the bilinear form A(.,.) as long as these may only occur across
element boundaries of elements from 7.

Also, the name algebraic refers not necessarily to algebraic generation of the coarse
discretizations (and the respective coarse level matrices) but is due to the polynomials
involved in the definition of the multilevel iteration {or cycle) and in this respect the
AMLI methods are different from the algebraic multigrid methods as studied earlier in
[27] and others.

On the other hand, the AMLI methods have much in common with the classical
multigrid methods in the sense that AMLI are recursively defined from a coarser to
finer levels and involve recursive calls to coarser levels. They however allow to nest
the algorithm not necessarily at all discretization levels and still preserve the optimality
property of the AMLI methods. This also results to less expensive operation count per
preconditioning step.

This large section is structured as follows:

o AMLI methods that require certain parameters to estimate; namely, the minimum
eigenvalues of M (k)_lA(’“), at all discretization levels at which recursive calls to pre-
vious coarser levels exist. This eigenvalue estimation, as demonstrated in Vassilevski
[31], can be performed adaptively from coarser to finer levels based on the Lanczos
method. The AMLI methods here are natural extensions of the HB multilevel meth-
ods as studied in Section 3, for both types of multiplicative schemes, the HBMG
of Bank, Dupont and Yserentant [9] (see Definition 6) generalized in Definition 9
below, and the scheme of Vassilevski [30] (see Definition 4) which is generalized
in Definition 7 below, We also consider a special version of AMLI methods that
are based on {approximate) two level Schur complements which version has further
extensions to algebraically defined coarse level matrices (i.e., not generated by suc-
cessively refined meshes). This is the so called Version I AMLI preconditioners as
described in Definition 8. All these AMLI methods have (essentially one} additive
version and we only present a parameters to estimate free variant of additive AMLI
methods in Definition 10 below.

es Parameters to estimate free AMLI methods. The main idea here is to replace the
polynomials involved in the recursive definition of the AMLI preconditioners by
conjugate gradient type iterations. This however leads to nonlinear (and possibly
variahle sten. i.e.. chaneine from iteration to iteration) mannines and therefore
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one needs to analyze such variable step nonlinear preconditioned methods. This
(additive) AMLI method is introduced in Definition 10 below.

We first define the multiplicative or block Gauss Seidel AMLI preconditioner.

Definition 7. {The AMLI preconditioner, Axelsson and Vassilevski [4], [5], Vassilevski
[31].)
Set M = A For & > 1 one defines

AP ool lo g b Vi
Here
(13) M(k—l)—l —_ [I p,(}t 11) (M(’s’ 1)1 A(k 1))} A(k_l)wll

It is clear that if p &~ 0 over the spectrum of ME=1DT" g(k=1) then M- x Alk-1)
and hence M(®) becomes close to a two level preconditioner for A*) of the form defined
in Definition 1.

Note that the last expression (13) for M{*=17" does not contain any inverses of A%~

since pf- (0) = 1. That is, ¢(t) = %t—) (omitting the super and subscripts of p) is

also a polynomial. Hence

Vi1

M= 2 (=1 (Mw-n-l A(k~1)) Are=17

However M %=1 involves vy,—1 times the inverses of M (’““l)! the preconditioner defined
recursively on the previous discretization levels.
There is one more version of the AMLI method (see Axelsson and Vassilevski [4]).

Definition 8. (Version I AMLI preconditioners.)
-1
Let B{’f) = ﬂ") , for an explicitly given matrix D( )_ be the given approximation to
Ag’f) that satisty the spectra,l equivalence inequalities:

V-TA?{)V < v Bﬁ”)v; <(1+ bﬂv?A%f;)v} for all v

As before the constant by > 0 is assumed mesh (or level} independent.
One then defines the approximate Schur complements Sgc) whose actions on vectors

are inexpensively available:

S = 40 _ 409 pi® 408,

Then, letting B® = A® for k= 1,2,..., one proceeds as follows:

B — (Dﬂ“)_l 0 HI D(’")A(k)l.
A% gw | o I
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Here
C [I — Py (B(k—l)_igg“))] Sgc)"l_

The polynomial p, = pg: 1) is properly scaled such that p,(0) = 1 and p, takes values
in [0,1) for t € (0,1].

We first remark that g,.; = 2724 i5 also a polynomial (since p,(0) = 1) and hence

S _ g, (B ) B

This shows that to compute the inverse actions of S*) one needs to solve vi—; systems
with B®*~1) which is of a factored form (but involves possible recursive calls to previous
coarse levels).

It is clear that we may not have the coarse level matrices A(®) available at all. Then the
above Definition 8 is useful for algebraic generating the coarse level matrices by simply
letting A(F~1) = S(“ This is computationally feasible if D( ) i sparse {e.g., diagonal)

and if the blocks A( ) and A( ) have simple structure, such that the product A(I")DU")AU")
does not increase the fill in too much. Then what is left is to define {e.g., based on the
matrix graph) a two by two block structure of any successive coarse matrix A=D1 For
more detail we refer to Axelsson and Neytcheva [2].

For practical purposes at most of the levels one lets v, = 1, i.e., there is no recursion
involved at most of the levels. Also, as recently demonstrated by Axelsson and Neytcheva
[3] and Neytcheva [24], one should also choose the coarse discretization sufficiently fine
in order to be able to efficiently implement the method, including on some massively
parallel machines, such as CM 200, for example.

The method is of optimal order if proper relation holds between the polynomial degree
v and the number of consecutive levels kg at which we do not nest the algorithm (see
further relation (19)). This means that only at the levels with index & of multiplicity kg
(i.e., k = skp, 5 = 1,2,...) we use polynomials of degree ¥ > 1. Originally, the AMLI
method as proposed in Axelsson and Vassilevski [4] and [5], corresponded to the case
ko = 1 which imposed certain restriction on the constant <y in the strengthened Cauchy
inequality (or equivalently on the constant 77 ) in the sense that the method has an optimal

complexity in this case if \/m = / 1j72 < v < 2% (d = 2 for two dimensional domain {2

and d = 3 for 2 a 3 d polytope). This shows that the AMLI method (for ky = 1) will be
at least as expensive as a W cycle multigrid method; i.e., v, > v > 2. The general case
ko > 1 has been considered and analyzed in Vassilevski [31] where the optimality of the
method from Definition 7 has been proven for finite element second order elliptic bilinear
forms (1), in general, for ky sufficiently large and vep, = v, s = 1,2,..., [%] properly
chosen (such as in (19)). This choice ky > 1 relaxes the complexity of the corresponding
AMLI methods (since in this case we do not have to nest the method at all discretization

levels).
For the Version I AMLI preconditioner from Definition 8 a similar result holds.

Theorem 5. Let B(L) Dg;c) - (it is commonly assumed that D( ") is given explicitly)

he a svmmetric nogitive definite annroximation fo Ag.} that satisfies the nniform snectral
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equivalence estimates for a mesh (or level) independent constant b; > 0 :

vITAB v, <vTB®v, < (1 4+ 0 WwT AW vy for all vp-
Given an integer ky > 1 and let vy =1 for k—1 # (8—1)kp in the Definition 8. Choose
v > \/nmkﬂml—ﬂ_—},ﬂl where M,—1 =1 (Til:;;), 7(.) is defined in (10), and 7 =
The constant by > 0 takes part in the spectral equivalence relations between Ag’;) and

Bgf). We write shortly . = 7 (F&i—) (noting that the latter expression is independent of
3 >0). Let also a € (0,1} be sufficiently small such that the following inequality holds:

1 + blﬂl (1 -— 6:)”
v 2
1 -+ bl o [21(1 + ,\/&-)u—r(l _ \/S;)'r——l]

(14) <2 [-1-~(1+(1+b1n1)zuns)] (G=(1-7)a=—)

Mko—1 | & =1 ™
Such a suffic:ienﬂy small « exists since for o — 0 (after multiplying (14) by o) we have

nlij%;&;}g— < m-_-~ (which has already been assumed). Consider then the version I

AMLI preconditioner B*) from Definition 8 for polynomials
147, (4222

1+7, (12)
with g1 = vand k-1 = (s — 1)k, s = 1,2,..., [%] (the integer part of 7:“%) and

pff; f) 1 —t for all remaining k, i.e., vp—y = 1 for k — 1 # (s — 1)ky. Here T, is the
Chebyshev polynomial of the first kind of degree v.
Then the following spectral equivalence relations hold:

L]

() =

vT Alkly < v plkly < TA(’“)V for all v+

Note that if by = 0, i.e,, (’") = Ag';), which means that one uses the exact Schur
complements S} in Deﬁnitlon 8, the assumption on v and ky reads v > /T 7k,—1. In
the simplest case kg = 1 the latter relation reads v > = already shown in Axelsson

1—y
and Vassilevski [4]. For the general estimate, letting by — oc one gets the worst case
relation between v and ky: namely, v > 91/ Mr,—1-

Proof. Given m = (s — 1)ko, consider any k, m < k < min(skp, J). We have, noting that
SO =RU-Yform+1<i<k,

k T
y N { { { !
vIE® AWy = 3 W (B - AR
(15) Ly(m? (§<m+1) _ Sgnm) ()

k -
R
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The notation of the vectors v{) and v“) used in {15} is the same as in the proof of
1
Fheorem 3.

FYL ALV OWLw U

1KY irminlioe tha nacitive comi dofinitanecca af p(k} — AU“)
.luj EYEY S . *. VALY Y 3 a. MAEMSIRARAULAARNSLILF ASA A im

since all terms in (15) are positive semidefinite. For the term containing S0+ — ngm%l)

this follows from the definition of $§(™+1) and the choice of p,. The upper bound of the
spectrum of A(® ™ B() ig obtained by induction as follows. Assume (by induction) that

A [A((s"l)ko)'lB((s—l)’"‘o)] € [1,14 &,] where

1

1 & - .
(16) “= 17,

We next estimate the spectrum of Alske)™" B(sko)  Note first that A(™ — Sgnﬂ} =
Ag’l”"H)Dg"H)A%ﬂ“) which shows the inequality,

VTB(vn}V 2 VTA(m')V 2 VTSgnu*l)V‘

Therefore, A [B(’"')“ISJ(;”'H)] € (0,1]. Next, one has the inequalities:

v

T
vIAt™y < gyinf {‘? ] Abmt1) | W1
= mvT (A(m.) _ Agwin--}-l)Ag'gH-l)—lAggl+1)) v

The latter inequality, with 7, = i—%y—g implies,
—1
VTAg;n'i'l)Ag';"-'f'l} Agz—H)V < ’)’2VTA(m)V,
which in turn shows,

VT(A(-m.) _ Sg"-"f"l))v < VTAgT--l-i)Ag"ln'l-l)—lAg'z"-'f'l)v
< 'YZVTA(?"')V'
One then obtains,
VTSgﬂ--i'l}V > (1 N ’)’2)VTA(W')V'
This inequality and (16) imply the estimate,
1 — 2
1+46,

Amin [B(m)”lsf,;“*”] > Amin [B“"-)”A(m)} (1-7%) >

This shows that the spectrum of BC™ ™ S§™ is contained in [175,1].

Therefore we get the following estimate:

ooy
+

A [SUs=DEAD ™! S((a=1kot D] € [1,1 4 &y,
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where
b, < S“p{'f'-“;%",f"("%}" 1, te [1+6 1]}
e - h]

< Sllpimml,tE[a(l—‘T),l]}

= sup {%, te [&,1]}-
Here we have used the fact that ["1"13"3”? 1] C [@, 1] (see (16)). Since

14+a&—2t
sup |7, (—4-01 — )i =1,
te[a,1] 1-a
we obtain . )
sup{p.(t), t € [&, 1]} = T ()
— 2 _ 1-+a
= T ITaE
Hence,
N 9 -

(().9 S T,,(i—f%)—l (@ ~1)2

(17) — (=&) .
[é(l'{"\/—)”—l(l ‘/ﬂ)i 1:|

Using now (15), the definition of 5y = n(h—h::) (4) with ¢ = v, and the fact that n = 1_17 .

19

one gets,

k

VT(B(k) — A(k))v < E (l)TA(l) (1) 4+ (s, V('rn)TS('m'?'l) {(m)

I=m+1

k -1
- i 1 4 —
+z E.H VDT AR AR AR VD
=m ! ) . )
< b Y v(i)" Ay Y vi=1)7 AUl-1) 4 (i-1)

=m~+1 I=m+1

+8,vm T gty (m)

E k
< b S vOTADVO 4y 1T 4U-1)y0-1)
I=m+1 I=m+1
.g,.(‘; _i:.éxm vim+1D)T g(m+1) y(m+1)

< |a+om) lz: Toms + B, L nk_m_l] OWTCHE
< (1+b17h) 2’?1+("«“1_£“““15"11"7? ko — 1] TA(k)V
< (T +bim) ZO N g =1~ — (1=5)"
=1 1 a[E (1+-v’5)"“’(1m\/5)“1]2

x vI ARy

e L 1Y T alk),.
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The last inequality is obtained using (17) and (14). We also used the following inequality,
which is proved based on the spectral equivalence relation between A(m+1) and B (m“*'l),

the fact that S{™+1) ig a Schur complement of A(™+1 and the definition of 77 = 7 k—;;‘,—'t#) ,

VT gt ym) )T (40m) _ A(m+1>B<m+’)‘1A(m+ﬂ) (m)
V(-m)TA('m)V(m} V('m)T (173+1)A(7n+1)_ Ag;’l'{'l)v(m.)

AN

) 4y o + i (m)’-” Glm+1) g (m)

145 (m4+1)T 4(m-+1 m'%'l
< Ltbumy ()T 4 o (mi1),

Therefore we established that

146 <-1— or a < L
=g =140’

which confirms the induction assumption (16) for s:==s+1. O

The HBMG preconditioner from Definition 6 can be similarly stabilized. For the
case kg = 1 the above polynomial type stabilization of the HBMG method has been
exploited by Guo [17] (although in this case (kg = 1) the proot in [17] of the complexity
of the method was not actually as satisfactory). Here we consider the more general case
kg > 1 which is more practical since this choice does not require to nest the algorithm
at all discretization levels and still to be able to achieve both optimal relative condition
number and optimal complexity of the corresponding AMLI preconditioners.

Definition 9. (Multiplicative or block Gauss Seidel AMLI HBMG preconditioning
(k)

scheme.) Assume that All is Spht as
k i.. k)?

where Lg’;) is a strictly lower triangular part of Ag’;) and D(k) is an easy to factor or to
solve systems with part of Agl;) (e.g., the scalar diagonal part of A{ )) It is also assumed

that Dﬁ) is symmetric and p051t1ve definite.
Define B®) = A(® For k > 1 assume by induction that B(*~1) the AMLI HBMG
preconditioner for A%~ has been defined. Then,

& L p® g =1 )T 1
5 _ [L1 +LD 0 [Dgf{) 0 HL%} + D Agg)J} v
A Ijl o  BG&D 0 I ) Via
Here
BE-DT _ p—1) (Bu ~1)7 A(L—z))] AT
Uk 1

The polynomials p,(j:) are as in Definition 3, i.e., p,(,’,:) are properly scaled such that in

the interval (0, 1] take values in [0,1) and

2By = 1.
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For practical purposes v = 1 at most of the levels k. A simple choice is p, (¢} = {1 —1)",
and a more complicated one is

147, (Hes)
pr/(t) =
14T, (32)

where a € (0, 1] is such that & < Apin [B(k)_lA(k)] . Here T;, is the Chebyshev polynomial

of the first kind of degree v. The last choice of p, (f) requires estimates of the parameter
a = ¢y (i.e., of the minimum eigenvalue of B(k)—lA(k)). As has been demonstrated
in Vassilevski [31] this can be done adaptively. Alternatively, one could instead use
inner iterations by a CG (conjugate gradient) type iteration method with a variable
step preconditioner (i.e., a non linear preconditioner). In this way one ends up with a
variable step AMLI preconditioner which is a non linear mapping. This preconditioner
has been introduced and analyzed in Axelsson and Vassilevski [7] and is defined below
(see further Definition 10.)

To analyze the AML] HBMG method (using the same notation as introduced in the
proof of Theorem 5, i.e., letting m = (s — 1)kg and k: m < k < min(skp, J)) a starting
point is an identity similar to (12) and the inequalities which it implies. We have, for
any ¢ > 0,

(18)
vI(B®) — ARy < (k)T(B(k—l) A(k—l)) (k) | V(k)TL(k)D(k)“L(k)T (k)
+2vi (k)T Lg’;}D(R)_ A(k) (’v) 1w (1") A(’»)B(fh)_ A(k) (?v)
< gk) (B(L -1) _ glk— 1)) (k) + vgk) Alk— 1)vgk)
+b1vgk)TAg1)vg’°) + 0y ,ch(k)T (’»)vgk)
"Jf”’TC—]ng} Alk= 1)ng)

o peml) S T 4D
= (Y+9(h) X v AUy

I:m-}-l
+(1+037C)b1 Z v(l)T U)vg‘!) +V(111)T(B(171) __A('m.))v{m)_
=m-+1

We recall that o3 2 Amax [DY;")_IA?;')] and by = #2¢y, where 01 > Apax [Ag;)—ng)}

~3
and £ > ||D(k) d L(k) Dg’f) “|l. These constants (o7, g and £) are meshindependent.

The term
V(m)T (é(m) _ A(m})v(m)

is estimated similarly as in the proof of Theorem 5. One gets, assuming (16) (where &,
is such that A [A((Sml)kn)‘lB((s—l)kﬂ)] € [1,1 + 6,]), that

5 {A((s—l)ku)_l E({s—i)ku)] [ [1‘1 -+ gs]s

where

Dy
v
A

Sup{l_:mml’ t e [ﬁ!*g:_,l]}

< 311p{——f1§—(—)~—1, te [a,l}}
= sup{i(—,%, te Iaalﬂ'
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In the same way as in the proof of Theorem 5, one then proves (17). Then (18) together

with (17), the definition of 7 (introduced in the formulation of Theorem 5}, and inequality
(A\ l'lﬂﬂl’] "'ﬂ"‘ f' — "V AT 'FI n “'I‘I‘I‘T (Tﬂ+
s o

DL LU R ¥v U xaidiadurs ¥

V(B® - ARy < (o) S v A0

l=m+1
k -
+(] -} UE'YC)bI??I Z v(l)TA(l)VU) + é‘av(m.)TA(m.}V('m.)
l=mm+1
S Mk Qe v ARy

a[i§1(]+@“_l(1_@i_l}

ko
£ AT+ (4 0] (z ) ¥TAOY
=1
< (% — 1) vT ARy,

The last inequality holds for sufficiently small « € (0,1} if v > ,/fr,. Therefore we
proved:

Theorem 6. The AMLI HBMG method from Definition 9, gives spectrally equivalent
preconditioners to A®) provided p,, are chosen as properly scaled and shifted Chebyshev
polynomials with v > /N, and this is only at the levels with indices of multiplicity kq.
More precisely, let o € (0,1] be sufficiently small such that,

1 —a)
T ™ — g+ 1+ [+ (1 a2y Qb ] (Zm) <~
50 vy - vay-|
=1
Here ( is any fixed positive parameter and vy = /1 — -1% Then the following spectral

equivalence relations hold:

vI AWy < vI Bky < é-vTA(’“)v for all v-

To introduce the variable step AMLI method from Axelsson and Vassilevski [7] we
first define a variable step preconditioned CG method for solving the system

Ax =Db

Here A is a given symmetric positive definite matrix. Let B[] be a given non linear in
general mapping that satisfies the estimates:

s Coercivity estimate:
TBlv] > 6;vT A7 v

for some positive constant ;.
o Boundedness estimate:

(B[v])TAB[v] < 63vT A7 v,

for some nogitive constant, .
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Algorithm. (Variable step CG method).
(0) initiate

L

= x; — initial iterate;
=ryg = b-— Axy initial residual;
d=dy = B[rp] initial search direction;

L]

(i) For ¢ =0,1,...,v compute

| I T | I R
Mo

. Q Tae
% B &

([t
|
B
byt
jol

BuTmog met W D209
| i

- m

f H

= o

o,

(i) End. O

It is not as hard to show (see, e.g., Axelsson and Vassilevski [6]) the following steepest
descent rate of convergence:

”b - A.X,,“Aua S

Here x; is the ith iterate and we have assumed xg = 0.
We are now in a position to define the variable step AMLI preconditioner.

Definition 10. (Variable step AMLI preconditioner Axelsson and Vassilevski [7].)
Given an integer parameter kg > 1. Using the block partitioning as in Definition 5,
one defines:

- ko —1 -
B g 0
M(ko)= 1] ' .
1 -1
B 0
.0 0 AO7T ]

Form = (s— 1k +1,...,min(J, sky), £ = (s — 1)kp, and s = 2,3,... one further defines

[ p(m)™ 0 0 ]
o BT g
M) = : . .
o BEDT
0 0 M

where M,Ek) [b], for any given b, is defined by applying v steps of the algorithm Variable
step CG method for solving the system

Alkly — h.
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using M (*)[] (already defined at the previous coarse levels by recursion) as a variable step
preconditioner and xy = 0 as an initial iterate. Then M." [b] = x,,, the vth iterate.

The method has been analyzed in Axelsson and Vassilevski [7] and the following result
has been proven:

Theorem 7. Assuming that v, the number of inner variable step preconditioned CG
iterations, is sufficiently large such that for any given fixed € € (0,1),

1+e

2 2
log € = O(Hg,) (1——?) loge™?, kg — oo

V= log [1 - (%)2 (C‘Hkn)_z]

Here C is a constant coming from the strengthened Cauchy inequality (11) and Hp, =

kg

1 Y. M+ Nk,. The constants {n,} are introduced in Theorem 5. In other words, let v be
=1

sufficiently large such that (we assume here that 7;—’1:;- = 2; h, is the mesh size at the sth

discretization level),

S Cki,  for a 2 d domain {2,
C2%ke | for a 3 d domain £,

where C depends on € (which is fixed) and on other fixed parameters, but is independent
of kg. Then the following uniform estimates hold:

AR MEED V| yaray=1 < B2Vl gcesor2

for a constant §, < C7 (1 + €) where C is the constant from Theorem 3 (related to the
strengthened Cauchy inequality (11)). The latter represents the boundedness estimate,
Similarly,

VTM(“"“°)[V] > é'lvTA(“*k“)—iv,

where 61 = -}Eﬁf, which represents the uniform coercivity estimate.

To complete this large section, we need to investigate the complexity of all stabilized
HB multilevel preconditioners, i.e., the AMLI type preconditioners from Definitions 7
10. Assume that we are in the setting (and the notation) of Theorem 3. Let n; denote
the number of degrees of freedom at kth discretization level. We also assume uniform
refinement. Then one has,

Dhtl — 94 4 0(27)
N

This implies that
Npt+1 = 0 ((Qd)kﬂl) :

L _1 . .
Let the cost of evaluating the action of Bﬁ"} be of order O(ng — np—1) arithmetic
operations. Similarly, the actions of Ag’;) and Agg) require order O{ny —nj—1) operations
and one action of A®) has a cost of order O(ny) operations. Then, to implement one

action of B™ ™ (hased on a nolvnomial n..f1) of desree 1) one needs to solve 1 svstems
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with B(*) and has to perform v — 1 actions of A®). Denoting by W, the cost of solving
one system with B(*}o) one then has the recurrence:

Wepi £ vWs + C(ngeqiyhy — Noko) + (¥ — 1)Cnug,
< vW,+ Cngg,
§=1
<

C Zo VI Msmat ke T ¥ WWH

3—1 — 0—
C 3 e (28) 0TIt Lo,

o=0
_q8—1 o
= Com (@)TRTNE (3#) T v

gl

< N1k, |C Z:O (szio)a o ;;V"%i" ("z'rﬁg)a
o=

Then, if 57 < 1, one gets
W W
_TVsHl g C + .___1.
M(a+1) ko L
That is, the asymptotic work estimate shows that the AMLI preconditioners would be of
optimal order if v satisfies the inequalities

v > Cy/Mp, (from the spectral equivalence estimates, cf. Theorems 5, 6),
or for the variable step AMLI preconditioner (cf. Theorem 7)

Cki,» for a2 d domain (2,

2 _
v>CHy = { C2%0_ for a 3 d domain €2,

and for all AMLI preconditioners,

v
S5 <1 (from the complexity requirement)-
Based on the asymptotic behavior of 7, (see (10)), the restrictions on v read as follows
(except for the variable step preconditioner):

O(Vko), d=2, for {2 a plane polygon,
19 Qdko > > C. _— ‘ ! : oy
(19) V7 EV Tk { 0(2%), d=3, for 1a3 d polytope.

It is clear then that asymptotically, for kp sufficiently large, both inequalities for v can
be satisfied for both 2 d and 3 d problem domains.

For the variable step AMLI preconditioner the relation between v and ky reads as
follows:

(20) 99k 5 4 > { Cki, d=2, for { a plane polygon,

(2% =3, for Qa3 dpolytope.

It is then again clear that for kg sufficiently large there is a v such that the relation (20)
can be satisfied for both 2 d and 3 d problem domains.
Hence one mav snmmarize:
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Theorem 8. The AMLI stabilized HB multilevel preconditioners from Definitions 7
10, give optimal order methods; namely, the corresponding preconditioned CG methods

f‘mnnhla atfon F(—' maothnde in tha raca nf Deafinitinn 1(” have converoence rafte houndecd

UL ACVESIS ATV RS LXEUIANSVAS JA8 VAR Ledwiiis LA s LoFALRR UELAL AT LASAL U VAt Lrcaaataiiiig

mdependenﬂy of the meshsize (or number of discr etlzatmn levels) and one iteration step
costs a number of arithmetic operations of order of the number of unknowns, if in general,
ko is sufficiently large and v (the polynomial degree or the number of inner CG iterations)
is properly chosen with respect to ky; namely, to satisfy the relation (19) or (20).

Since the AMLI preconditioners are implicitly defined and they use recursive calls to
a number of coarse levels, their implementation is a bit more involved. Implementation
details are found in Vassilevski [31], Axelsson and Vassilevski [7], and in Axelsson and
Neytcheva [2], [3], and on massively parallel computers such as CM 200 in Neytcheva
[24].

5. STABILIZING THE HB METHOD, I1: APPROXIMATE WAVELETS

There is an alternative way to stabilize the HB multilevel preconditioners. We have
the option to change the nodal interpolation operator II;. A good choice turns out to be
the L? projection operators @ acting from L?(Q2) to V}, defined by

(Qrv,p) = (v,9p) for all o € Vi

Note that this involves solution of mass matrix problems which are well conditioned. In
what follows we will only need some good approximations to (J;, provided by few steps of
polynomial iteration method applied to the above system. For example, if v has a local
support, the approximation provided as just explained will also have a local support
(depending upon the number of iterations performed with the given polynomial iteration

method).
The results here are based on a joint report Vassilevski and Wang [33].
Introduce now the decomposition

Vi = — Qre1) Vi + Vir-
Note that this is a direct decomposition. Observe also that
Vi = (1 - Qe-1)Ve = (I — Q1 )i — Tt ) Vi,

since (I — Qp—1)IIp—1 = 0. That is,
Vhl = (I - Qk—l)vifl):

which can be viewed as a modification of the HB component V( ) = = (I — Hp—1)Va
of Vi, The modification comes from the term Qp_; Vk( ). Le., the difference with the

HB decomposition is that we project in L? sense the HB component Vk(l) onto the next
coarse space Vi_1. This provides us with a more stable decomposition of V. Namely, we
consider the decomposition

V=W+W+.. +Vj,

where .J > 1 i the finest discretization level.
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It is now more convenient to use operator function notation. To this end we define the

solution operators:
a AF) . V. LV he
e AP} 1 Vi =V by

(A(k)?/%ﬁ) = A(1,0) for all 4,8 € Vi
o A VI Vvy
(Agjlc)qzbla ') = A(pt, 1) for all ¢', 9" € V.

Similarly we define the operators:

¢ AW v o Viand AY L VI S Vil by

(Agg)”ef} $') = A(sh, ') for all P € Vj_1 and all ¢ € V},
(APG ) = A(@'.) for all ¢! € V! and all ¥ € Vi1

Then the solution operator A®) admits the two by two block form:

k k
A0 = A Agz) } Ve
b} Vit

A main role in the analysis plays the following well known stability estimate,
(21) A(Qry, Qpv) < nA(v,v) for any v € Vy C Hy(82):

The constant 7 is uniformly bounded with respect to (J — k) — oo,
Also the following basic norm equivalence estimate (Oswald [26], see also Bornemann

and Yserentant {10]),

k

(22) 322 (Qs — Quo1)$ll3 < Cllgfl3  for any ¢ € Vi,

s=1

is a main tool in the analysis of the method.

Definition 11. (Multiplicative or block Gauss Seidel wavelet modified HB multilevel

preconditioner.)
Let M(©® = A®. For k > 1,

w [P0 10T ARy W
AP pple-1) I } Vi

Here B( ) are given symmetric positive definite approximations to the solution operators
Agl) defined on the spaces VLI

Remark 1. The difficulty with the above preconditioner from Definition 11 is that there
is no computationally feasible basis of V! since the wavelet bases for finite element spaces

have non local support. Hence a natural step is to instead use approximate L? projection
anerators %, Then since (T — 0% M. =Tl Ybl. when #! rins over the nadal hasis of
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V(l) (I — Mp—1) V3, will form a basis of Vk with locally supported functions if (2§ _ 1951
has local support This will be the case if Qf_ 1<751 corresponds to a fixed number of
ratio

a
2h ookl iy PR | PR 5. AT M [ RN m o s fniar A
terat £ 1. 4 1a

i 10N3 of 1)U1y'uuuua.1 u.tua,biv'c IMEvHoa 107 nuxvlug the mass matrix rtlua.tu;u,

(Qr—10",6) = (¢',6) for all 6 € Viy-

Therefore we assume that there is an approximation (% of Q such that

{Qr ~ QE)UHLZ(Q) < T“kaufﬂ(ﬂ} for all v € Lz(ﬂ)'

The constant 7 is assumed sufficiently small, i.e.,
(23) r<CJh

Here .J is the number of discretization levels used.
We consider the spaces

Vi = (I = Qf1) (T — M) Vi
We have the two level decomposition
Vi = Vi + Vie—1-

We have v = (I — Q%_,) (I — Mp—1)v+ [Qg_l + (I - Qz_l)l'[k_l] v for any v € V3. On
the basis of the pair of spaces V! and Vi1 we define the preconditioner M(®) as defined
in Definition 11. To analyze the method we need some auxiliary estimates. Define

'U@ (I — Qee1)(@, — 1) and v+~ = v() [Q2_y + (I — Q¢_y )] ()
starting with v(¥) = v for any given v € V.
We have for any v € Vi,

(MB = a®yo,0) = (B = A", o) + (MED — AG=D)plk=D) (-1
B AR A D),

This identity at first implies by induction (since M(®) = A(®) that M) — A(®) i5 positive
semidefinite. Using it recursively, one arrives at the major inequality (cf., (8)):

(B — AFyo,v) < by (AP0, 017 4 (M) — 4G, 5D

k)T 4 (R), (K k) (k
+(1§1) A( ), ( ),Ah)'vé ))
3 3 & i s)71! 3 8 3 ]
< b N o) + L (AR AR, A

a=1

(24)

We next estimate the deviation e, = v(9) —{)sv. The following recursive relation holds:

€am1 = {Qs——l +Rs—1]€s +R3——1(Q3 _Qs—-l)'va where R3—1 = (Qs——l - Q§_1)(Hs-1 ""“Hs)'

It is not as hard to estimate the L? norm of e,. The L? norm is denoted in what follows
by ||.]lo- We have, for any ¢ € Vj,

TR, alla < CrlTT, =TI Ddlla < Crlldlla.
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Therefore
les—1llo < (1 + CT)llesllo + CTII(Qs — Qs—1)vll0;

and by recursion, using the fact that e = 0 (since v € V), one gets,

193

(25) leamillo < C7Co Z Qs — Qj—1)v

=3

where Cy < (14+C7)7 < €“™/ which is bounded if 7 < CJ ™1, i.e., for 7 sufficiently small,
which has already been assumed (see (23)).
Let A\p = O(hi?) = O(2%*) be an estimate of the maximum eigenvalue of the operator

A Using (25) one then gets the following estimate:

2
k &
Z_:l )‘a”ea—l“{z) < CTZC{% 21 As (E “( QJml)”“U)

k k
) < cfﬁc’gszzjl)\s( —s+1)§ll( - Q1)
b
< C(rJ)? 222“’”(@3 — Qu-1)v)l3
< )l
< CA(v,v)

Here we have first used the Cauchy Schwarz inequality, then estimate (23), i.e., that
7 = O(J™1), and finally, the norm equivalence estimate (22) has been used.

Consider now *ug") = o) (=) = (Q—Q—1)v+es—€5-1. Using (26) we immediately
get that the first sum in the last inequality of (24) can be estimated as follows:

k
S (ADWD Wy < E/\sllvl”llﬁ

< 3 E s (1(Qs = Qu1)vlIg + llealld + llea-13)
< (Hvll2 + A(v,v))
< CA(v,v)

Here we have again used the norm equivalence estimate C||4||3 > Z Aol (Qs — Qs1)|12
=

(i.e., estimate (22)). The final estimate that we need in (24) reads as follows:
k )7 (&) fa— 3) (g k 8} (3—
Toc (AR AR, A200D) < 0 B ARl

k
) ISR

<
I" o’
< CY M (A6 [+ [ADQ,1v]3)
s=1
k
< CrA Heq_iung B AG) Qo3

8=
< M Aln a)
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Here we have used the estimate (23), the wellconditionedness of the first blocks Ag‘?;
namely, that Amin [Ag;)] = O(h;?), (note that Amax [Ag‘;)] = O(h;?)), and the following

major estimate:

k

(27) SOATADQuo1vld < CAw,v)
=1
The wellconditionedness of Ag;) has been proven in Vassilevski and Wang [33]. The
estimate (27) has also been proven in [33] assuming additionally H? regularity of the
associated with A(.,.) homogeneous Dirichlet boundary value problem (2). It is straight-
forward however to prove a suboptimal estimate without any regularity assumption. One
has,

k k
SUATADQ vl <7 A(Qam1v, Qarv) < knA(v,v):

s=1 s=1

Here 1 stands for the uniform A(.,.) norm bound of any of the L? projection operators
Qs (see (21)). Therefore we can formulate the following main result:

Theorem 9. The approximate wavelet modified HB multiplicative preconditioner M)
as defined in Definition 11, gives spectrally equivalent preconditioner to A if the ap-
proximate L? projections are accurate enough (e.g., such that (23) holds). This holds
provided the associated with the bilinear form A(.,.) homogeneous Dirichlet problem
(2) is H? regular. If the H? regularity is not assumed, then M*) is proven to be only
nearly spectrally equivalent to A®*). The preconditioner can be implemented such that
one action of M™1 = M) requires O(nlog7=1) = O(nloglogn) arithmetic operations
(n = ny is the number of the total degrees of freedom).

Finally one can consider the additive version of the approximate wavelet modified HB
preconditioner defined as follows:

Definition 12. (Additive approximate wavelet modified HB preconditioner.) Set Mg))

= A® and for k = 1,2,...,J one defines

D g 0
o D¢ 9

e ad
)
ot

My’ = R :
o DM o [} W
L0 0 A®]} W

Here D?lc) is for example the diagonal part of Ag’f).

It has been shown in Vassilevski and Wang [33] that if the constant C in (23) is
sufficiently small, the additive version of the approximate wavelet modified HB multilevel

preconditioner M g") is spectrally equivalent to the corresponding solution operator AR,
Here no additional reonlaritv is needed. We conclnde with this last resnlt.
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Theorem 10. The additive version of the approximate wavelet modified HB multilevel
preconditioner Mg“) as defined in Definition 12 is spectrally equivalent to A% if (23)

Lonlde verldb o cecdllnlnsmtler amaall anssdbonmt 7 Mha vandbhad raon ha inandaniantad orah $haod
LECHUD  WILHL & SULNICIINEY DIl OISy L. LG AHCHL0U Gall U6 WG HICHVGU SULLD bIED Y

w1
one action of M5' = MI(JJ} requires O(nlog7™1) = O(nloglogn) arithmetic operations
(n = ny; is the number of the total degrees of freedom), i.e., the method is practically
optimal.

Implementation details together with some numerical results for both the multiplica-
tive and the additive approximate wavelet modified HB multilevel preconditioners are
found in Vassilevski and Wang [33].

We remark that related results for constructing multilevel methods based on direct
decompositions of finite element spaces are found in Stevenson [28], [29] and Griebel
and Oswald [15]. These methods deal with tensor product meshes and exploit one
dimensional wavelet space decompositions, and therefore cannot handle more general
triangulations.

Acknowledgment. Special thanks are due to Dr. Svetozar Margenov who critically
read a preliminary version of the paper.
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