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Abstract

In this paper we present an efficient Schwarz type iterative method for
computing the steady linearized 3-D free surface potential flow around a
submerged body, moving in a liquid of finite constant depth at constant
speed and distance below the surface.

The 3-D problem is too large to be solved using a direct method. Tt
is also indefinite, which makes the convergence of most iterative methods
unstable, We therefore construct an iterative method by decomposing the
original problem into two simpler subproblems. We then form a Schwarz
type iteration between the subproblems. At convergence the solution to
the original problem is given by the sum of the solutions to the subprob-
lems. )

The subproblems can be chosen so that they are mathematieally simple
and fast to solve. The convergence of this iterative method is fast. It is
proven that the iterative method converges for sufficiently small Froude
numbers.

We present a careful validation of this method. The implementation
of the iterative method, described in this paper, is numerically shown
to be second order accurate. The number of operations necessary for
solving this problem is proportional to the work needed to solve a definite
elliptic problem. If we use a Biconjugate gradient method the number of
operations is proportional to n*/? and if we use a Multigrid method the
number of operations is proportional to nlog{n), where n is the number
of unknowns in the discretized problem. The coefficient of drag computed
with this method agrees well with that obtained by existing methods.

*Partially supported by ONR grant N-00014-90-1-1382, NSF grant DMS 90-61311 and by
the U.S. Department of Energy through Los Alamos National Laboratory.
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Figure 1: A submerged body travelling at comstant speed and direction. The coordinate

systern is fixed with respect to the body.

1 Introduction

The subject of this paper is an efficient, Schwartz—type, iterative method for
computing the steady linearized 3-D potential flow around a submerged body
moving in a liquid of finite constant depth, Let the depth of the liquid be d, the
speed of the body be U and the acceleration of gravity be g. After scaling the
physical quantities by the length d and the velocity vgd, we get the problem
depicted in figure 1.

The total velocity potential is split into the sum of a free stream potential
and a perturbation potential; ®(=z, v, z) = pe + ¢(z,y, z), where p = U/+\/gd is
the Froude number and the z-axis lies in the direction of the farfield flow. The
perturbation potential is governed by, cf. [11],

Ap=10, —o <z <oo, —0<y<oo, —1<z<0, {1
together with the boundary conditions

#2¢mw+¢z:0; —00 < < 00, —OO<:U<OO,Z'"——““O,
¢, =0, —c0 <z <00, —co <Y< 00, z=—1, (2)
O¢/On + pcosé = 0, on the body.

Here, 8/8n denotes the outward normal derivative and § is the angle between
the normal and the z-axis. We are looking for a solution where the perturbation
potential tends to a constant value at large distances in front of the body. This
condition is called the upstream condition,

when @ — —oo then ¢ = € +€72%, —00 < y < 00, —1 <z <0, (3)

where (' is a positive constant and C] is an arbitrary constant. For simplicity,
we choose to set Cf = 0.



For the two-dimensional counterpart to the present problem, the most ef-
ficient solution approach is probably a direct method, cf. [10]. However, duc
to memory and work requirements, it is not possible to use a direct method to
solve the three dimensional problem. The problem (1-3) is indefinite, which
makes the convergence of most iterative methods unstable. To circumvent this
difficulty, we decompose the problem into two more easily solvable subprob-
lems and form a Schwarz-type iteration between these subproblems to solve
the original problem.

The first subproblem, which will be refered to as the definite subproblem,

is defined by

AQSI:O,—oo<m<oo,—oo<y<oo,—1<z<0, (4)

together with the boundary conditions

Pl =0, —0c0 <z <00, —00 <Y< o0, z=0, (5)
$l =10, —0 <z <00, ~0 <Y< 0, 2= —1, (6)
8¢’ /On = h, on the body. ™

To fix the undetermined constant in this Neumann problem we enforce

when - —oo then ¢' = 1 +€72%, —co <y < o0, -1 <2< 0, (8)

where C and C, are constants analogous to those in (3)
The second subproblem, which will be called the indefinite subproblem, does
not have a submerged body in the interior of the domain. It is governed by,

AT =0, —00 <z < 00, ~00 <y < 00, ~1 < 2<0, (@)

subject to the boundary conditions

WPIL 4 ¢l =1, —co <w <00, —o0 <y <00, 2=0, (10}
¢l =0, —00 <z <00, —00 <y <00, #= -1, (11}

In order to make the solution unique, we enforce the upstream condition,

when  — —oo then qBHxCl-}"eCw, —co <y<oo, ~1<z<0, - (12)

The first subproblem is definite and can therefore be solved by standard
iterative methods, for details see §5.1. The second subproblem is indefinite
but has no body. It is therefore easily and efficiently solvable by separation of
variables. This solution method is described in detail in §2 and §5.2.

The solutions of the subproblems are well defined once the forcing functions
b and t are determined. It is clear that ¢! + ¢ will solve (1-3) if we can
find functions ¢ and h that simultancously satisfy #(z,y) = —p2¢l.(z,y,0) and
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h(Zpy Yp, 2) = —pCO H(w;,,ﬂ,,zb) - cﬁ»II/é‘n(xb,yb,zb), where the boundary of
P T T T ---_L d b P <
vite oy Is (H::bl,l ped _y .bb — bb\o, u,), .'}'b — yb\o w}, x/D — .ob\o, w) LS S

L0< <1,
We compute h and ¢ by iteration. The initial guess is taken to be i (U)(m, Y, %)=
0, then we iterate according to

1. Set A (zy, yp, 25} = —pcos 9(%, s, 2) — STV [ @2y, yp, 2) and solve
the definite subproblem for ¢1(i},

2. Set (2, y) = —uquigf)(m,y,O), and solve the indefinite subproblem for
¢H(‘i).

The main result of this paper, which is proven in §3, is that the itera-
tion converges for sufficiently small Froude numbers. In §4 to demonstrate the
convergence numerically, we truncate the infinite domain in the 2- and the y-
direction and introduce farfield boundary conditions to carry out the practical
computation. Finally in §5 we present numerical results for a second order
accurate discretization of (1-3). We show that the iterative method converges
rapidly, and that the convergence rate improves when the Froude number de-
creases. We also verify numerically that the convergence rate is essentially
independent of the grid size.

2 The Indefinite Subproblem

To get a discrete Fourier spectrum we introduce side walls at y = ke where
the width ¢ is a bounded constant. Here we impose the boundary condition
qbf = 0. This corresponds to studying flow in a canal. We Fourier expand the
indefinite subproblem (9-12) in the y-direction:

QbH(:an: Z) = Z é,II(m,wggk),z) ' COS(WgSk)y)a (13)
k=0 .

where w( ) = = kr/2a, k = 0,1,2,.... The expansion of the forcing ¢ at the
surface is:

tz,y) = io: f(w,wék)) . cos(w?(;k)y) (14)

k=0

By projection of the Fourier modes we have:

. 1 oS o]
t(m,wggk)) = 57}-["00 t(m,y)-cos(wé’“)y)dy/ [woo cos2(w§k)y)dy. (15)

We thus have the following equation system for ¢/ in Fourier space, skipping
the hats.

gbiirc — wg‘)zqﬁn -i—qﬂ*;;r =0, —oo <z <oe, -1 <2z<0, (16)

and boundary conditions



“2¢££ ¢H:1j —o0 < 2 < oo, 2=0, (17)

=0, ~c0 <z <00, z=-1. (18)
Henceforth, we assume that (16) is satisfied on the boundary 2z = 0 and enter the
substitution = w?gk}zcﬁﬂ Ilin (17). We then split the solution according

to: ¢l = ¢* + qbs The idea is to use $* to move the inhomogenity from the
surface boundary condition to an inhomogenity for the Laplace’s equation and
then solve the resulting problem for ¢* by separation of variables. The aunxiliary
function ¢* must satisfy

Ju'z(wl(tk}gqba_ iz)"}'qbz*ta “00<$<0093:0: (19)
2 =0, ~00 < <00, z=—1

In the interior, ¢° is only required to be smooth. We will use the followmg
simple solution:

(k))

(@, wy
2+ w2} - 2))
In order to make ¢* + ¢* satisly (16-18), ¢° has to fulfill

¢ (2,0, 2) = (1+2)". (20)

50— wiF2ge 4 g5 = flz,wl),2), —0 <z <00, -1 <2<0,,  (21)
together with the boundary conditions

Ry — ¢3,) + 45 =0, —00 <z < 00, 2 =0, (22)
¢% =0, —00 <z <00, z=-—1

where the forcing f is defined by

I =~ + w67 - g1, (23)
To separate the z- and z-variables, we make the ansatz
(=, w(k) ,#) = R(z, w(k)) S(w(k) z) (24)
Upon inserting this ansatz into (21), we have
(Row — 0F2R) - S+ R+ 50 = 0, (25)
Sz _ Ry — w'.g'k)ZR _ (k.42
F R A (26)

The equation system for S(z) is

80 — w{FI2g = 0. (27)
and the boundary conditions, obtained by inserting (24) into (22), are:



Mz(wgcﬁs - Szz) +5,=0,2=0, : (28)
Sz:O, z:wl. (29)

The z-eigenfunctions are given by:

) (0)(wék)az) =1,if w?gk) = (), otherwise §©) =0,
S(l)(wg{,k), z) = cosh(wgk’l}(l + z)), (30)
SO (wP, 2) = cos(cF (1 + 2)), 7= 2,3,4,....

Expressions for the eigenvalues wiFd ) are obtained by entering (24) and the
corresponding eigenfunctions from (30) into the surface boundary condition
(29):

wék 2

Slﬂh(w‘gk’-f)) = HZ(L\):EkJ) e wgk,J)

)cosh(wgk’j)), §=1,2,3..., (31)

note that this equation simplify when wék) = 0.

If we assume that 0 < p < 1 this equation has only one positive, real root
wik’l) and an infinite number of imaginary roots wgk” Yo iogk’“" ), i=2,3,4,...

When g — 0 we have:
wlbt) - Lo,

T T\ g T

The equation for the imaginary eigenvalues, crik’j Y is:

ROE _
7 j))cos(agk-ﬂ)), j=2,3,4..., (32)
oz’

sin(o®) = p2(of9) +

studying (32) gives the following bounds for o ), for wj(;k) =0

: 1
j'ﬂ'<|o’£k:.?)|<(j+§)'ﬂ',j:2,3,4,..., (33)
and for wgsk) # 0

(j—l)-fr<!agk,j)|<(j—§)-7r,j:2,3,4,.... (34)

The functions cosh z and cos 7 are symmetric in z; we will therefore only consider
positive wzk’l) and ogk’J ),
We expand ¢° in the eigenfunctions § (j)(wj(,k),z):

¢ (z,wl® 2) = 3 ROz, wP) . 59, 2). (35)

i=0
We also expand the the right hand side:




f(a:,w};,k),z) = Zf(j)(m,w?gk}) . S(j\’(wl(f"“),z), (36)
J=0

This is generally not a self adjoint problem. The eigenfunctions S (g )(wg(,k), z)
are not orthogonal in z. Therefore it is hard to compute 149 and RU) from this
form of the equations. However it is shown in [9] that we can transform this
problem to self adjoint form , by applying the following transformation to P°,
where we use & = 1+ # to clarify the notation. The self adjoint {transformed)
problem has eigenfunctions that are orthogonal in z. Therefore we can use
projection to calculate the coefficients: f(j) and R,

- gril ey d ¢%(a, (k)
P, = S L EE, (37)

- B cosh(a{®9) £) d ¢s($’w(k)’£)
¢ (mywé,k)7£) = (ki) d_g cosh(a(?};'j} g))

(38)
where the ol®9) and F7)’s are given by the relations:

. 52
tanh alkd) = p2(almd) — 3(%,7), (39)
) N ¢
tan BU0) = p2(ph4) + 255

To get a nonsingulat transformation we must have %) < ¢ /2, for k > 0 this
is only satisfied for § = 1. For k = 0 there are two eigenvalues that we could use
for a transformation: (@9 > 0 and g% = 0. This yields a(00) = g%0) — g,
which gives cos(0 £), cosh(al®® £) = 1. The simpler transformation d/dz
is utilized in this case. If we enter (35,36) into (21) we arrive at the following
system of ordinary differential equations in :

42 R0

12 f(o)(:t:,wé,k)), (40}
2 (1)
dd—’; T (w02 — WO RO = fO (a0, (41)
2 p{7} . , .
dd}; (@ 4 WPHRD = () (e,w®), §=2,3,4,.... (42)

From (12,30) it is clear that R®) =0 for wg(,k) # 0.
We define the inner product and norm in the z-direction,

(0,0 = [ abdz, alf = (@,0)-. (43)

We denote the transformed eigenfunctions ¢ F



~ Cos(ﬁ(k’l) &) d S(i)(w(k),f)

Cfi)(w:f(!k)’ z) = ﬂ(k.l) —C—Z—E Cos(ﬁ(,gll) 5) )’ (44)
cosh{at®® &) d S U)(wérk):f)
alk0)  dE " cosh{al®0) £)

C(j)(wg“),f) = 1,7 =2,3,4,.... (45)

For simplicity, the transformed eigenfunctions are normalized:

Ew®, e = 0 o1, (46)
Y ||C(”H

It is shown in [9] that (U}, ¢ M), = 0if j # 1. We now develop the expres-
‘sions (44,45) further by inserting (30)

wﬁ’“’” sinh(w;(,k‘l)é') cos(AF1) ) 4 Bk cosh(wgk’l)f) sin(fF1)€)

A =
‘ A1) cos(BR) £)|1¢]], | (47)
E(j) _ ogk’j) sin(aik’j)ﬁj eosh(a(kio) £) + (B0 cos(agk’j)g) sinh(a(k’o) £) (a8
- alk:0) cosh(alk0) £){[C]], , (48)
for 7 =2,3,4,..

We denote the transformed forcing u(:z:,wg(,k),g):

cos(ﬁ(k’l} £} d f(ﬁ?,wfgk):g)

v(ﬂ%wg‘)aﬁ) = FU1) EE( cos(ﬁ(k'l) f)), (49)
_ cosh(al0 &) d  f(a,uw5,€)
'U(w:wg“)v ‘f) = o(k:0) EE COS_‘{I(O:’(yk'O) 5)) (50)

The transformed forcing v(z, w .f ) can now be written in terms of f(z, w(k), £)

and ff(mawgk)a £)-

fe(a, 0, ) cos(85V €) + B3N f(z, i, &) sin(BED €)

v(w,wg(jk)’g) = BT cos( 50D £) , (51)
o0l 6) = 2 ) cosh(@®0) €) - ok [z}, € sinh(alt?) £).

a(59) cosh(a(k0) £)

Fach mode f00)(z, wl(, }) can be computed by transforming (36) as indicated

in (44) and entering (49,50), We then project F(a, wl(, )) by using the orthog-
onality of the transformed eigenfunctions wrt. the z-inner product.

(0, ¢,
IICU)II2

Yor the case when w( ) = = 0, the expressions for f(?) i =10,1,2,... simplify
considerably and it is possible to evaluate them analytically. We have:

fU) = z = (0,00, §=1,2,3,. (53)

9



_4#'(5”,%(;0)) sinh w0 — % cosh wlo)

(1) _ . _

(=) 1 p2 @03 _ O o 61)

_ 2" cosh wl®) ‘
T O 2 cosh? 0Dy’ (54)
ws (1 — p?cosh®wz )
f(j)(m) - _475”(37»"-’50)) _sin J;D’J) - G'SZ‘)"?)COS JLG,J? ~
1 - lu'2 20&0"?)3 —_ G-ioh:')z Siﬂ_ 20£0,J}
9 {(0,1)

cOs O3 ,1=2,3,4,...- (55)

B crie’j )2(1 — p? cos® oﬁ,”“"' ))

We cannot use the same technigque to evaluate F® because dS©®/dz = 0.
Instead we use (36) and compute £(© once the other coefficients are known, i.e.

1O@) = J(aw,2) = 3 D 2,0, 2)

i=1
This equation is valid for all values of z, but the choice z = —1 makes the

oceuring expressions particularly simple. By inserting Egs. (54) and (55) we
get

©) ta,wf”) (©)
where '
(0,1) oo (0,5)
cosh w; COS 05
Q - wga,l)z(l _ ,Ulz COSh2 wgo,l)) + J:Z2 O‘go’j)z(l _ ug cos? J;O’j)) . (57)

3 Analysis of the Iteration

In this section we prove convergence of the iteration for sufficiently small Froude
numbers. The proof consists of estimates of the solutions to the two subprob-
lems. In §3.1, we estimate the z— and y—derivatives of the solution to the definite
problem at the surface in terms of the forcing h on the body. Thereafter, in §3.2,
we derive estimates for the z—, y— and z-derivatives of the solution to the in-
definite problem in terms of the forcing ¢ along the surface. These estimates
will be used to bound the normal derivative of the solution to the indefinite
problem along the fictitious boundary of the body. In §3.3 we will combine the
estimates for the definite and the indefinite subproblems to prove convergence
of the iteration. '

To begin with, we define some norms that we are going to use in the follow-
ing:

10



faz = So J2 [0 ] fdndydz,
oz = 1 Soy [2, T fdydz|con e

]flgoﬁ - |f£)1 f_'fdzloo,inm (58)
Iflg,body = jgbody f ' ff'z’S?

|F3as =[S0 f2, Fl2,9,0)- fo,y,0)dady,

|Fl22s = | [20 fl2,9,0)- f(2,9,0)d¥]coina-

Henceforth, C will denote a generic constant which is independent of p.

3.1 Estimate for the Definite Subproblem

It is well known, cf. [3], that z- and y-derivatives of $T along the surface can be
estimated in terms of the forcing k. We make this statement more precise in

Lemma 1

grragl

W < Cp,q 'Lzlh‘oo,body: p= 172’31“'5 q = OalaZ:--w

2,2,

where Oy, are bounded constants and L is a typical lengthscale of the body.

In the domains ahead of and behind the body, the solution of the definite
subproblem can be found by separation of variables. Let the body be contained
in —4 < z < f. Fourier expanding the solution in the y- and the z—direction
yields,

'z, y,2) = Z Zp(k,j) exp(—y BNz} - cos(wgk,i)(l + 2)) - cos(wjgk)y), (59)

k=0 3=0
where {52 = WlE? 4 wgk)z. The eigenvalues are given by wg(,k) = kr/2a, k=

0,1,2,..., wiFd) = jm, 7 =0,1,2,... This equation is only valid for |2| > 8.
Hence, the forcing function t(z) satisfies

t(z) = 7023 S pggy exp(—7Ffe]) - cos(wFBH (1 + 2) - cos(wPy),

k=0 j=0

cexp(iglw, (60)

IA

when |z| > .

3.2 Estimates for the Indefinite Subproblem

The purpose of this section is to derive bounds for the maximum norm of
the z, vy and z-derivatives of ¢! in terms of the forcing ¢. To achieve these
bounds we bound each Fourier mode separately and use Parseval’s theorem.
The continuous equation for each mode is given by (16-18). For each mode

11




respectively, this equation is splitted into one auxiliary (19) and one separable
probiem {21-22). To bound ¢'" = ¢* + ¢* we bound ¢* and ¢° separately and
add the bounds. In the case when w},’“) = (), the problem simplifies to the 2D
problem. In this paper we only bound the k& > 0 modes and refer to the bounds

in [7] for the mode k = 0.

Bounding the Fourier coefficients of ¢*: By inspection of (20) we have
the following bounds for the solution to the auxiliary problem:

Lemma 2

itioo 2
(?SC!. co, ﬁ 1 .
Pl = 53 w2 (W - 2)

Bounding the separable problem: The separable problem is defined by (21-
22). We estimate ¢° in five steps. First we bound the sum of the Fourier mode

forcings t(m,w?sk)) in terms of #(z,y) in Ly norm. Then we bound the trans-

{

formed forcing v(w,wyk)) in terms of the forcing t(m,wyk)) in maximum norm.
We use Parseval’s theorem to bound ). Third we estimate the solution of
the transformed ODE’s (40-42) in terms of the right hand sides 9 in max-
imum norm. We can now again use Parseval’s theorem to bound ¢° in ferms
of t(w,wggk)) in maximum norm. Finally, we use Sobolev inequalities, Parseval’s
theorem and Lemma (2) to bound the solution to the indefinite subproblem
¢ = ¢ + ¢° in terms of ,chqbim(w,y,(]) and its z,y— derivatives in the L,
norm.

Bounding the sum of Fourier coefficient Forcings: Parsevals theorem
and (14) gives:

Z |t($?w'gg'k))|go = |t(£E, ')|go,2,sm’fﬂ (61)
k=0

Using the following Sobolev inequality, |f|2, < elf=()IZ + C/e|f(-)I3, we can
easily bound the forcing to the separable problem, given by (19):

Tl (L2 P (L2 2,

w22, =
kz:% Y : (2 + p2(wiP? — 2)y2

< C- (ItI%,Z,s + Itw‘%ﬂ,s + |tfﬂ$|%,2,3 + lta’—'wa'»"%,?,s + |ty‘y|%,2,s + lty'y$|%,2,s)
- (1—p?)?

. (62)

Bounding f); First we bound 'U(a:,w?gk), #) by inspection of (51,52)

[9lo,2 < C - {floog2: (63)

Since the z—eigenfunctions, (W), § =1,2,3,... of the transformed separable
problem (37, 38) are orthogonal with respect to each other we can use Parsevals
theorem to bound the sum of the transformed right hand sides, f @) .

12




SO = lolde =123 (64)
2

Bounding the solution to the transformed ODE’s RG) : We begin by
writing down the analytical solutions of the transformed correspondences to {40-
42).

. x [
O = ¢y + Cyz + f j FOagdc. (65)

The upstream condition (3) implies that €3 = Cy = 0. Since FO = 0 for
wg(fk) # 0, we then have R®) = 0. The general solution of the transformation
of (41) is calculated by integration twice.

RO = ¢y cos(n(l)m) +Cy cos(ﬁ(i)w)
1 T -
4oy [ eos(kO(¢ =)0

ey [ e e, )

here k(D2 = iR 12 _ wg(,k)z. Again (3) yields C3 = Cy = 0. For the transforma-
tion of (42) the general solution can be expressed according to:

R = Céj) exp()\(j}:v)+0éj) exp(—/\(j}w)
1 @ . ey
- o | (- ) fldg

~ 5507 ) exe(=A0(¢ e fac, (67

here AU)2 = Jgk’j)2+w§k)2 and £ =1,2,3,..., 7=2,3,4,.... By assuming the
solution to be bounded at infinity we get Céj ) = CéJ ) =o. o
The decay of t(z), given by (60) implies that the forcing functions F) will
satisfy:
—~f ﬂ' .
()] < Cexp(—mi\mD, i=0,1,2,..., (68)

for |¢| > #. We bound the solutions to the transformed ODE’s, (RW), by
ingpection of (65-67), respectively:

|j;3(0)100
11}(1}|m

11“3(3')‘00

CL|f,
C L Mo, (69)

CL, «; :
Tl oos 1 =2,3,4,.

INIA

IA
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Bounding ¢°(z, w z) by t: We can now use Parsevals theorem again and
bound ¢* as the sum of RO,

19° 12,2 Z |RO, (70)
To obtain a bound for ¢°, we only need to bound the inverse transform (37,38),
given by:
¢* = o9 cosh(a* £) j 6 -—“gs———czc (71)
o cosh(atk0) ()7
3 P _
s — k1) (k1) f _
¢° = g cos(BVY £) b cos(BE () ¢, (72)
by inspection of (71,72) we immediately get the bound:

[6°lo0,2 < C «[6°|ooy2- (73)
Using (63,64,69,70) and (73) gives:
tas - (L4 2)% = {2 (14 2 + 2)oo2
2+ p2(wi? - 2)

ooz < C - L2 floo < C - I . (14)

Bounding ¢! = ¢® + ¢° , by using Lemma (2), gives:

16 ooz < C - EA([t2 5 + [te - (14 2) = w1 (14 2" + 2|0p).  (75)

We use Parsevals theorem to bound ¢'!(z,y, 2):

o0
671220 < D 10150 2 (76)
k=0

Now, (62) gives:

Lemma 3
|¢H\OO,2,2 <C- L2(1t|2,2,s + |tz!2,2,s + |twm12,2,s + |tmm|2,2,s + |tyy|2,2.s + ﬁyywl?,?,S)'

We use a Sobolev inequality to bound the maximum norm of HID: in terms of
the corresponding -2 norm.

167 |00 < CU16  |co,2 + |5 |0,2,2)- (77)

To bound ¢Lf we use the relation f, =n-Vf:

162712, < ¢ oo + 163 |0 + 167 |co- (78)

14



To bound ¢/, we need corresponding bounds to Lemma (3) for q.’>$, quy, Dy Pyy»
cpz,qbzy The 2-derivatives are bounded by {8), which gives |$1llee < ¢l +
| wloo We can therefore bound the aforementioned derivatives by using bounds
for z- and y-derivatives of ¢!/, We construct these bounds by differentiating
the separable problem with respect to @, y etc., and use the same bounding
techmique as for ¢* above.

Using these bounds together with (77,78) and #(x,y) = —u?¢l (z,y,0) we

have:
Lemma 4

artagl

15z
|¢n | Jbody --Ju’ ZZ' mpathswrf

p=2q=0

3.3 Proof of Convergence of the Iterative Cycle.

We denote the solution to subproblem 1, 2 resp. at iterate % ¢f, ¢ and
introduce:

11b _¢z+1 1,7 z ¢’ 451{1 (79)

The problems for #! and !/ are easily obtained by subtracting two successive
subproblems for ¢! ¢!, resp. Lemma (1) and (4) gives the following bounds for
P and ol

) 3p+q¢,1
|¢tn10050d’y ﬁ C JU‘ L ZZ'B pa ql?.Zsu'rfa (80)
p=2g=0 Y
artayl
|8mpa¢q|22$u1‘f < Cpq LZ |¢I ,nioobody: pw{) 1 2 o 4= 0,1,2,..(81)

If we combine these bounds, we get,

Theorem 1
l’l)b'i. n]OO body < GH2L4|¢ -1 n!oo body (82)

Tf we choose p be suffictently small, we have: Cpu®L* < 1. This proves conver-
gence for the iteration.

4 Farfield Boundary Conditions

To carry out the practical calculation it is necessary to bound the computational
domain and introduce artificial boundary conditions at the farfield boundaries.
Here, we truncate the computational domain for the definite problem to —b <
x < b, —a <y < a, where a,b are positive, see figure 2. ‘

In this section, we present the inflow, outflow and the side wall boundary
conditions. The effect of the in and outflow boundary conditions on the solution
will be analysed for the definite subproblem in §4.1. In §6 we present numerical
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Figure 2: The computational domain is chosen to be a box surrounding the submerged body.

experiments to verify the analysis and that the influence of the approximate
boundary conditions is small if the computational domain is made sufficiently
large.

In order to solve the indefinite subproblem numerically, we must replace
#{z) by a smooth function (z) =: P(z)t(z) which has compact support in the
computational domain. In addition, P(z) must have two continuous derivatives,
so that i is well defined. A cut-off function furnished with these properties is
yielded by

0, ~00 <2 < —b,
pi((—b+e—z)/e), —b<z<—b+te,

Plz)=4¢ 1, —bt+e<z<b—rg, (83)
m((=b+e+a)fe),. b—e<a<h,
0, b<z< oo,

where € > 0 and p1(€) = 1 — 10£% + 15£* — 6£°, this cutoff function is used
for —a < y < a. We will denote the solution of (40-42) corresponding to the
modified forcing by R*). In the domains where f = 0, we can solve (40-42)
analytically. These analytical solutions are used to form relations between the
solution and its normal derivative which must be satisfied by any solution that
is bounded at infinity and fulfills the radiation condition {12). These relations
are used as farfield boundary conditions. They are given by

) 7(0)
20—, d?gg =0, 2 = —b, fw, =0, (84)
-, R(1)
o, di 0.2 b, (85)

() -y o
% - U§3)2 mng(f) = 0, T = “““b; J = 2:37"'5 (86)
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20 . »
AR o 4 2R =0, 2 =b, j=2,3,.... (87)

ax ¥

The boundary conditions (84-87) are exact. The difference between RY) and
R4 therefore only depends on the difference between t(z) and f(z). A study of
the behaviour of the solution ahead of and behind the body is given by N. A. Pe-
tersson, see [9].

We also have to introduce side-wall boundary conditions for the indefinite
subproblem:

gbf(:ﬂ,a,z): 0, —o0 < 2 < 00, —1SZSO; (88)
qbil(m,—a,z) =0, —co<ae <o, -1<2<0. (89)

For the definite subproblem, we enforce side-wall boundary conditions

$i(z,0,2) = 0, —00 <& <00, -1 <220, (90)
qﬁ;(m,—a,z) =0, —o<r<oo, -1 <2<0. (91)

The boundary conditions (88-91) model the flow in a canal that is 2a wide.
In §5, we study the effect of these be’s numerically by comparing computations
made in canals of different widths.

Finally, we apply the following artificial inflow and outflow boundary con-
ditions for the definite subproblem: '

¢'(~b,9,2) =0, —a<y<a, ~1<2<0, (92)
qbi(b,y,z) =0, ~a<y<a —-1<2<0. (93)

These conditions are local, which makes an iterative solver easy to apply. In
order to motivate that the effect of these artificial boundary conditions on the
solution to the definite subproblem is small we study the behaviour of the
solution ahead of and after the submerged body in §4.1. We there find that
the solution of the definite subproblem is decaying exponentially ahead and
outside the submerged body and that the first z- derivative of the solution is
decaying exponentially after the body. Knowing this and using a simple scaling
argument, cf. [8] one can easily show that the error in ¢ due to the inflow
and outflow boundary conditions decays exponentially fast as a function of the
minimum distance between the body and the in/outflow boundary. Analogously
one shows that the error in ¢! due to the sidewise boundary conditions decreases
exponentially fast as a function of the minimum distance between the body and
the side boundary.

4.1 Behaviour of the Solution to the Definite Problem ahead
of and after the Submerged Body.

We show that the solution to the definite subproblem decays exponentially
ahead of and that the x-derivatives decays exponentially after the submerged
body. We therefore consider the following halfspace problems, ahead we have:
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APl =0, ~0 <w < —b, —a<y<a -1 <<, (94)
together with the boundary conditions
qbg*—*(}, —o << —b —a<y<a, z=-10, (95)
M=fil,z=-b —a<y<a —-1<z<0,
and after:
APl =0, b<z<oo, —a<y<a, -1<2<0, (96}
having the boundary conditions
Pl =0,b<e <o, —a<y<a, z=-10, (97)

<15I fo,z=0, —a<y<a, -1<z<0,

we agssume that f; and f; are bounded by the constant Cy, the side-wall be’s are
given by (90,91). We also require the solution to be bounded when & — Foo.
To solve this problem we separate variables using the ansatz: H(z,y,2) =
®(z,2) Y (y), this gives the following equation for ¥ (y):

Y +w? Y =0, —a<y<a, (98)
the solution to this equation is given by:

Y (y) = cos({(y + a)), (99)
the BC’s (95,97) gives that wé,k) = kn/2a, k = 0,1,2,.... The equation for &!
is: :

ol — w2l + @1 =0,z < b, &>b, ~1 <2 <0 (100)

We separate variables again by entering the ansatz: ®l(x,2) = X(z)-Z(z), this
gives:

Zy + w27 =0, -1 < 2 <0, (101)
the solution to this equation is given by:
Z(2) = cos(wF (1 + 2)), (102)
where w‘,(zk’j) =gr/1,7=0,1,2,.... We can now express ! as:

(I)I(x,wgsk),wgksi)) = ZX(k'j)(a:) -cos(wF(1 4+ 2)). (103)

§=0

The equation for X (z) is:

Xpg —a®B2X =0, 2 < =b, > b, (104)

where a®1?2 = w?gk)z + w,g“’j 2 is positive and real. The eigenfunctions. in the
z-direction are;
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Figure 3: The overlapping domains covering a sphere in a box. Domain II and III cover
roughly half of the sphere each. Domain [ is covering the outer parts of the box,

X (z) = Ag + Boz,

XW(2) = Ay exp(cat®iz) + By exp(—altdz). (105)

To make ® bounded when |z| — co we must have that:

Ap = 0, is set to fix the solution,
A = 0, after the body, £ =1,2,3,..., (106)
Bj, = 0, ahead of the body, £=10,1,2,....

The solution to the definite subproblem is therefore decaying exponentially
before the submerged body and the first z-derivative of the solution is decaying
exponentially after the submerged body.

5 Numerical Method

In this section we describe the numerical method developed in this paper. We
elaborate on how we solve the definite subproblem in §5.1 and in §5.2 we com-
ment on the numerical method for the indefinite subproblem.

5.1 Solving the Definite Subproblem

We discretize the definite subproblem by second order accurate finite differences
using a composite overlapping grid. To apply this technique, we divide the
domain into simple overlapping subdomains and cover each subdomain with a
component grid, see figure 3.

The subdomains attaching to the body are covered with bodyfitted curvilin-
ear grids and the surrounding sea is covered with one or several Cartesian grids.
The main advantage with this method compared to discretizing the whole do-
main with one single grid is that each component grid can be made logically
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rectangular and without singularities. The component grids can be constructed

[ DRI UGS (ORI S s R AP (e e o wanteinrtinna - ;
almost ifiaepenaentiy oi €acn Ghner. The restrictions are that the component

grids need to overlap each other sufficiently where they meet and the union of
the component grids have to cover the whole computational domain. The grid-
functions on the component grids are coupled by continuity requirements, which
are enforced by applying sufficiently accurate, in this case tri-quadratic, inter-
polation relations between the gridfunctions at the interiour boundaries where
the component grids overlap. A comprehensive description of this approach for
a related problem is given in {10].

We use the fortran software package CMPGRD to construct the composite
grids. Many aspects of composite grids and how to use this package are de-
scribed in [1], [6] and [2]. An example of a composite overlapping grid used to
discretize the domain around a sphere is found in figures 5-fig:sph2

The resulting linear system of equations is solved with the BCG method,
using the CGES solver, see [5]. This method requires of the order O(n#/?)
operations where n equals the number of used gridpoints in the composite grid.

5.2 Solving the Indefinite Subproblem

Instead of continuous Fourier transform in the y-coordinate (13), we use a
discrete FFT, from the Slatec package. The expansion in the z-coordinate is
calculated exactly as described in §2. The product of the number of terms in the
series expansions of #'1 in y and z (35), which equals the number of ordinary
differential equations (40-42) that must be solved, has to be limited to improve
the efficiency of the numerical calculation. We found by numerical experiments
that it was sufficient to retain the ten first terms in the z-eigenfunction expan-
sion. This is related to the fact that the solution is smooth. The remaining
terms were found to have neglible effect on the solution.

We approximate the ordinary differential equations {40-42) by second order
accurate central differences, The character of the solution to the definite prob-
lem is smooth and local, whereas the solution to the indefinite problem contains
downstream waves with a relatively small wavelength. Therefore, we utilize a
Cartesian grid with finer gridstep that covers a larger 2-interval to compute
the solution of the indefinite subproblem. The resulting tridiagonal systems of
equations are solved by the subroutine DNBSL in the SLATEC package. The
work needed to obtain a solution to the indefinite subproblem is of the order
O{ny), where ny is the product of the number of gridpoints in the discretization
of one ordinary differential equation and the number of terms we retain in the
series expansion. With ten terms in the 2 - eigenfunction expansion, this ny is
of the same order as the number of unknowns in the definite subproblem.

6 Numerical Results

In this section we present numerical results for a second order accurate dis-
cretization of (1-3). We study a number of test cases in §6.1. First we present
an accuracy test which verifies that our implementation of the iterative method
described in this paper is second order accurate. We verify numerically that
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Figurve 4: The test geometry, a sphere with radius 1/6. The center of the sphere is submerged
1/2.

the iterative method converges rapidly, and that the convergence rate improves
when the Froude number decreases. We show that the convergence rate is essen-
tially independent of the grid size. It is demonstrated that the iterative method
is efficient from a computational point of view. In addition, we show that the
error committed by truncating the domain and introducing farfield boundary
conditions decays exponentially with the size of the computational domain.

6.1 Numerical Testing and Validation

To validate the iterative method we have studied a number of test cases. As
a test body, we used a sphere with radius 1/6. The center of the sphere was
submerged 0.5 below the free surface and located at (z,y,2) = (0,0,-0.5),
see figure 4. The Froude number for these computations is: p = 0.4 unless
otherwise specified. A composite grid that discretizes the submerged sphere and
the surrounding liquid is displayed in figures 5-6. The composite grid consists
of three component grids. two curvilinear grids that resolve the geomelry of
the sphere and one Cartesian grid that covers the outer flow domain.

To check the implementation of the iterative method and see that the dis-
cretization error is second order accurate, we compare the computed discrete
solution for three different gridsteps 3h,2h and h in table 1, the values are
normalized by |@4]oo, |¢n|RArs. We clearly see that the solution is second order
accurate. (RMS here denotes the usual root-mean-square norm ie. the discrete
Iy norm)

We show the convergence of the iterative method for Froude numbers 0.15-
0.7 in table 2, where we plot the number of iterations needed to decrease the
relative increment in each iteration to 1.E —05. In the right column, we plot the
number of iterations needed for convergence, when restarting from a solution
for the next lower Froude number. From these results it is observed that the
convergence of the iterative method is fast and that the number of iterations
decreases when u — 0, the latter result is clearly motivated by Theorem 1.
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Figure 5: A composite overlapping grid discretizing a sphere in a box. The figure shows one

of the curvilinear body attached component grids and the Cartestan box grid, also see the

following figure.
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Table 1: Accuracy test, we cumpare the solutions from grids with gridsteps, #,25, 3h. The

differences are normalized by |#n]eo. The convergence rate p, is defined by AP.

22



MR
LS AN
ATANTAY

ML
FERE

IEENI

LALT T

Figure 6: A composite overlapping grid discretizing a sphere in a box. The figure shows the

other curvilinear body attached component grid, see the previous figure.

23




Froude number (1) | nr. of iterafions | restart

0.15 4

0.20 5 3
0.25 6 4
0.30 6 4
0.35 7 4
0.40 8 4
(.45 9 5
0.50 11 6
0.55 14 7
0.60 23 10
0.65 34 20
0.7 div div

Table 2: Nr. of iterations needed for convergence for Froude numbers, (), 0.15~0.70. In the
right colttmun, we plot the number of iterations needed for convergence, when restarting from

a solution for the next lower Froude number.

gridstep | nr. of iterations

1/2h 7
2h

7
\2h 8
R 9

TFable 3: Number of iterations for convergence using different gridsteps. The convergence

rate is weakly dependent of the gridstepsize.

In table 3 we show the number of iterations needed to decrease the relative
increment in each step of the iteration to 1.E — 05 for the gridsteps h — 2v/2h.
We see that the convergence rate is only weakly dependent of the gridsize.
Furthermore, in figure 7 we show the max-norm of the relative increment at
each iteration. We clearly see, which Theorem 1 suggests, that the convergence
is exponential and fast.
We present the computed free surface above the submerged sphere in figure 8

where p = 0.4
To ensure that the iterative method gives the same solution as other meth-

ods, we compare the coefficient of drag (C'p) with computations made by Have-
lock [4], 1931, in table 4 where he computes the flow around a submerged sphere.

The coefficient of drag is defined by:
Cp = f (26 + ¢ + ¢} + ¢3) dS.
body

We have computed this integral by simply summing the contribution from
every used gridpoint at the surface of the body multiplied with the surface
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Figure 7: Increment of the solution at each iteration (# = 0.4). The increment is scaled with

the previous solution.

0.1~
O"\I it

-0.1~

Figure 8: The surface above a sphere with 7 = 0.1 centered at (0.,0.,—0.5)
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Figure 7: Increment of the solution ai each iteration (j = 0.4}, The increment is scaled with

the previous solution.

Figure 8: The surface above a sphere with r = 0.1 centered at (0.,0,, ~0.5)
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Figure 9: The body-surface facet, used for the integration of the coefficient of drag, C'p.

Froude Number (¢) | Cp Havelock | C'p present
0.40 3.5E-02 3.2E-02
0.45 4.8E-02 4.5E-02
0.50 5.8E-02 5.7E-02

Table 4: Comparison of coefficient of drag (Cp). In the left column we present Havelock’s
results and in the right column we display results from the present method. We find that

there is good agreement between the resulés obtained by the two methods.

defined by figure 9. We see that there is good agreement with the previously
computed Cp’s.

To study the effect of the approximate inflow and outflow boundary condi-
tions for the definite subproblem we compare the solutions for computational
domains of different length in table 5. This indicates that the effect of the
inflow and outflow boundary conditions decay exponentially with the minimum
distance between the in- or outflow boundary and the submerged body.

To study the effect of the side-wise boundary conditions for the subproblems
we compare the solutions for computational domains of different width in ta-
ble 6. This result indicates that the effect of the side-wise boundary conditions

Absclute Norm | RMS Norm
$a1 — b 8.9E-04 1.4E-04
Py — Pal 7.6E-05 1.2E-05
b1 2.7E-03 4.2E-04

Table 5: Comparison between solutions obtained by using grids of the different length’s,
1,21, 31, The solutions are compared on the shortest domain, We observe that the difference

decays exponentially with the length. This is confirmed by the theoretical predictions.
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Absolute Norm § RMS Norm
Psw — b 4.5E-03 8.1E-04
P5w — P3w 3.7E-04 6.71-05
&5 3.5E-03 6.4E-04

Table 6: Comparison between solutions obtained by using grids of the different width’s,
w, 3w, 5w. We observe that the difference decays exponentially with the width.

decay exponentially with the minimum distance between the boundary and the
submerged body

7 Conclusions

In this paper we have developed and implemented an efficient Schwarz type
iterative method for computing the steady linearized 3-D free surface potential
flow around a submerged body. We construct the iterative method by decom-
posing the original problem into two simpler subproblems. The solution to the
original problem is then calculated by an iteration between the subproblems.

The subproblems are chosen so that they are mathematically simple and
computationally fast to solve. We prove that the iteration converges for suf-
ficiently small Froude numbers. By numerical experiments, we have verified
that the iterative method converges for realistic Fronde numbers. The imple-
mentation of the present method is carefully validated - the numerical solution
is found to be second order accurate. The work needed to solve a problem is
found to be proportional to n/® | where n is the number of unknowns in the
discretized problem. We have also compared the coefficient of drag with results
obtained by existing methods and found good agreement.

The method can be extended to solve the corresponding potential problem
with a nonlinear free surface boundary condition. It is furthermore straightfor-
ward to incorporate rotational and viscous effects in the method. This method
could also be used to solve the potential flow in one subdomain, it could then
be coupled to a method that computes the solution of a viscous rotational flow
in another subdomain.
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