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Abstract

A fourth order accurate method to compute the three dimensional flow
around a ship hull is presented. The time dependent flow around a ship is very
complex, especially around and after the stern. This flow is modeled by the
incompressible Navier—Stokes’ equations. We simplify the problem.by neglect-
ing free surface effects and replacing the surface by a lid where a symmetry
condition is imposed.

We discretize the geometry by using a composite overlapping grid. The
building blocks of the composite grid are a number of simple component grids,
that can be constructed using various grid generators. Each component grid
covers a simple part of the geometry. The union of the component grids cover
the whole computational domain and they overlap where they meet. We base
the component grids on a description of the hull consisting of a number of over-
lapping surface patches. These patches are constructed to be smooth even for
complicated geometries by a projection method. By the use of a set of smooth
surface patches we easily generate a set of smooth body covering component
grids that efficiently and accurately discretize the vicinity of the ship hull. To
represent the outer parts of the flow, we use Cartesian or simple cylindrical
grids. We use the software CMPGRD to generate 2 composite overlapping
grid around the ship. This enables efficient resolution of both the boundary
layer and various flow phenomena around the ship hull, such as trailing vortices
astern of the ship. .

We use the incompressible Navier-Stokes’ solver CGINS to compute a nu-
merical solution to the problem. For high Reynolds number flow, we use a
Baldwin Lomax or a k—¢ turbulence method. The equations are discretized
using second or fourth order accurate finite differences. We use explicit, time
accurate timestepping by utilizing a second order accurate predictor corrector
method. The computational method described in this paper is carefully tested
and validated on two and three dimensional examples.

*Partially supported by ONR. grant N-00014-90-J-1382, NSF grant DMS 90-61311 and by
the U.S. Department of Energy through Los Alamos National Laboratory. .
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ANCHOR STERM

Figure 1: A cargo ship in motion.

1 Introduction

The subject of this paper is a fourth order accurate method to compute the
flow around a large ship for example a tanker.

There has been a great effort spent during the last century on devising
analytical and computational methods for ship flow. The obvious reason is
to use mathematical and numerical methods as a complement to experimental
measurements in the design process of a ship. It is extremely expensive 1o
conduct experiments at full scale and even model scale experiments are quite
costly. Furthermore, the two similarity parameters, the Reynolds number, Re,
and the Froude number, Fr, do not scale identically between model scale and
full scale. Experimental design optimization can often be time consuming.
Hence there is a need to improve the computational methods for ship flow,
both to reduce the cost and time to optimize a ship design.

The time-dependent flow around a cargo ship (for example, a tanker) is
very complex in some domains of the flow. The relatively simple flow around
the bow and along the hull can be computed to satisfactory accuracy from
an engineering point of view. This is done using various simplifications of the
Navier-Stokes’ equations. One of the common simplifications is to use a a
boundary layer approximation close to the hull. Further away from the hull
the flow is stationary and irrotational, therefore the flow can be described by
potential flow. The solutions of the boundary layer approximation and the outer
potential approximation are then matched by enforcing some kind of continuity
condition, for references on these methods cf. [37, 40]

However, these approximations cease to be valid in the domain around and
after the stern, where it is necessary to use the incompressible Navier-Stokes’
equations to model the physics. The stern flow has been extensively studied,
but a satisfactory solution has not yet been computed. There are a number of
reasons for this: The flow around a large tanker has a very high Reynolds num-
ber 0(10°). The fiow is therefore quite complicated and fully turbulent. There
is also an interaction between the unsteady wake and the free surface. Mostly
second-order accurate spatial discretization has been used, It is farthermore a
nontrivial task to generate a grid for the complex geometry of a ship that both
resolves the solution in the boundary layer and optimizes the distribution of
gridpoints in the outer flow domain.

Current methods to compute the flow around a ship can mainly be divided
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Figure 2: The three flow regime domains. I Boundary layer flow. II Potential flow. III

Viscous wake flow.

into two classes:

Methods of class 1. depend on domain decomposition, see figure 2. The
flow domain is partitioned into two or three subdomains. Domain I cover the
boundary layer and the immediate vicinity of the hull from the bow to a plane
placed approximately 1/3 of the ship’s total length from the stern. Most of the
methods model the flow in this subdomain with some kind of boundary layer
approximation incorporated into the Navier-Stokes’ equations. This results in
a parabolic equation that is relatively inexpensive to solve. Domain II covers
the fluid volume behind volume 1 and includes the wake. In this subdomain
the flow is fully three dimensional and oftenly time dependent. Therefore the
full Navier-Stokes’ equations are considered in this subdomain, usually with
some kind of turbulence model. This subproblem is very expensive to solve.
Domain IIT consists of the remainder of the fluid. Here the flow is considered
to be essentially steady and irrotational. This gives that the velocity can be
described by a potential function which is governed by Laplace’s equation. The
solutions in these subdomins are then coupled by enforcing certain interface
conditions, usually by utilizing a Schwarz type iterative method. This iteration
converges in'a few cycles. For a more thorough description of this method
cf. [36]. Some methods in this class only use two domains to model the flow. The
flow in both domain I and III is modeled by the incompressible Navier-Stokes’
equations and the flow in domain I7 is modeled by potential flow, cf. [11]. Y.
Tahara et. al. [54] has also developed a method that uses desomposition into
two subdomains. )

Methods of class 2 usually model the flow in the whole computational do-
main with the Navier-Stokes’ equations, with or without turbulence model.
The most common turbulence models used in this field are the Baldwin-Lomax
and the k- model, These methods require much more computer time than the
domain decomposition methods.

In this work we simplify the problem by neglecting free surface effects and



replace the surface by a lid where a symmetry condition is imposed. in the
future we will incorporate a free surface into the model. We also congider the
flow to be symmetric with respect to the z—z-plane, see figure 2.

It is generally a difficult task to discretize both the geometry of a ship hull
and the wake efficiently. We do this using composite overlapping grids in three
steps: First, we generate a nonsingular description of the surface of the hull
using a number of overlapping two-dimensional patches. These patches are
constructed such that they are smooth, even for complicated geometries, by a
projection method. Second, for each of these body-covering patches a compo-
nent grid is generated. Having a set of smooth, nonsingular surface patches it
is easy to generate a set of smooth component grids without singularities. The
component grids can be constructed using appropriate existing grid generation
techniques. Finally, we use CMPGRD [8] to generate a composite overlapping
grid around the ship from a number of component grids. This enables efficient
resolution of both the boundary layer and various flow phenomena around the
hull such as the unsteady wake and trailing vortices astern of the ship.

We use the incompressible Navier-Stokes’ solver CGINS [22] to compute a
solution to the problem. The Baldwin Lomax and k-€ turbulence models are
included in CGINS. The latter turbulence model is found to be the better. It
is easy to enter more refined turbulence models into the present method. The
equations are discretized using second or fourth order accurate finite differ-
ences. The numerical solutions on the different component grids are coupled
by enforcing sufficiently accurate interpolation relations. We use explicit, time
accurate timestepping by utilizing a second order accurate predictor corrector
method.

This solution procedure can be used in methods of both classes, described
above. Either as a method for subdomain II (the wake) in a domain decompo-
sition method, or as the entire solver in a Navier-Stokes’ method. We choose
to implement this method as a part of a domain decomposition method, mainly
due to the lesser computational time and storage space needed by this method
to obtain a satisfactory solution.

The contents of this paper are organized as follows: In §2 we discuss previous
work on this subject and in §3.1 we define the incompressible Navier-Stokes’
equations that describe the flow around a ship, especially the formulation of the
equations that is employed in the CGINS solver. The different turbulence mod-
els are described in §3.3. In §4 we present a theoretical discussion of the errors
introduced by the outflow boundary conditions. In §5 we describe the numer-
ical method. We elaborate on the discretization of the complex 3D geometry
of the flow using the composite overlapping grid-technique in $5.1. In §5.2.1-
5.2.2 we describe the mapping method used to discretize the incompressible
Navier-Stokes’ equations on a composite overlapping grids and in §5.2.2, we
describe the boundary conditions, especially the farfield boundary conditions.
The solver CGINS is described briefly in §5.3. Finally, in §6 we present nu-
merical results. A number of example geometries are presented in §6.1 and
numerical solutions of flow around the example geometries are displayed. We
also validate the method by forcing the solution to be a choosen function. A
concluding discussion including an objective for future work is given in §7.
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2 Previous Work on the Subject

In this section we describe previous related work. First in §2.1, we elaborate on
some of the important work on constructing computational methods for ship
flow. Second, in §2.2 we discuss some of the work done in flow computation
using overlapping grids.

2.1 Computing the Flow Around a Ship

It is known that a complex interaction exists between the waves, generated
by a ship, and the viscous effects in the boundary layer and in the wake. As
engineer’s strive to improve the ship design, there follows a need to predict
both wave drag and viscous drag accurately. Up to a couple of decades ago
this work was conducted by analytical methods, very simple computations and
- more important - experimental research on model scale ships in towing tanks.
Unfortunately the two similarity parameters, the Froude number (Fr) and the
Reynolds number (Re) do not scale identically between model scale and full
scale. A great effort has therefore been spent to develop numerical methods
to solve this problem, in order to construct complementary methods to the
experimental design development tools.

The state of computation of ship flow has been assessed in a series of work-
shops. Some of these are mentioned here. In 1980 SSPA held a workshop in
Gothenburg on “Ship Boundary Layers”, cf. [35]. There it was found that the
boundary layer flow around the bow and the fore part of the hull could be
predicted accurately. However the boundary layer approximation is not valid
on the aft part of the hull and in the wake so the stern flow predictions were
not satisfactory. To investigate the development of methods for computing
stern flow a workshop on “Ship Viscous Flow” was held in Gothenburg in 1990,
cf. [37]. The computed results predicted the bow flow and the flow on the fore
part of the boundary layer with acceptable accuracy, just as in the 1980 SSPA
workshop. However, despite a rather wide variety of numerical schemes, grid
resolutions and turbulence models, most of the methods produced very similar
wake distributions and all of them failed in simulating the hook shape observed
in the experimental wake contours. The trailing vortices were badly predicted
by most participants.

In 1994 a CFD workshop for “Improvement of Hull Form Designs” was
held in Tokyo, cf. [40]. There it was stated that some of the problems in
predicting the flow around the stern and in the wake were due to inadequate
turbulence modeling. There was, however, a disagreement on how the turbu-
lence models should be developed. Some contributors argued that the use of
non-isotropic second moment closure of the Navier-Stokes’ equation would en-
hance the performance of the turbulence model. Others argued that simpler
turbulence models should be tailored to each class of ship flow.

One of the main methods used for computing the flow around a ship is rep-
resented by “SHIPFLOW?” by. L. Larsson et al. cf. [36]. In this method the flow
is modeled by different mathematical models in the different fiow regions, cf. fig-
ure 2. In domain I the flow is considered to be of boundary layer character and



it is modeled by inserting a boundary layer approximation into Navier—Stokes’
equations. This results in a parabolic equation that can be efficiently solved
by marching from the bow and downstream along the hull. In domain II, that
includes the wake, the flow is modeled by inserting a turbulence model into the
Navier—Stokes’ equations. The equations are discretized by finite differences on
a structured grid. This problem is then solved using an implicit line relaxation
method, see L. Broberg [6]. The flow in domain III. is considered to be essen-
tially steady and irrotational. This enables the velocity field to be described as
the gradient of a potential. The potential is governed by Laplace’s equation.
This problem is solved by using a the Kelvin source boundary integral method.
The solutions in the three domains are usually coupled by some kind of itera-
tion. In “SHIPFLOW?” the potential solution is first computed for the whole
flow domain. This solution is used to compute the pressure distribution on
the hull. This pressure distribution is then used as a forcing for the boundary
layer solver. The potential flow solution and the boundary layer solution are
matched at a common surface well outside the boundary layer. The boundary
layer method computes the boundary layer flow to some point downstream the
hull. The method then uses the boundary layer solution as inflow and the po-
tential solution as a side boundary condition for the Navier-Stokes’ solver in
the wake. This matching is done at some apriori located boundary. Systematic
testing has confirmed that it is accurate to locate this boundary half a ships
length sidewise from the hull. '

One class of methods uses the Navier-Stokes’ equations to model the flow
in both domain I and IL. This type of methods is examplified by F. Stern. [54].
They solve the viscous flow in a thin boundary layer and the wake. Then
they compute the displacement thickness and compensate the hull for this. the
potential flow is now solved for the outer domain using the perturbed hull .
The two solutions are coupled by iterating a number of times.

A new domain decomposition method for viscous free surface ship flow was
presented by E. Campana et al., cf. [11]. They employ a linearized version of the
free surface condition on the mean surface. Instead of using a classical boundary
layer-potential flow iteration method based on displacement thickness, they
define a fixed decomposition of the fluid domain with matching surfaces located
a priori. They couple the different solutions using a well established procedure,
cf. [60]. However the use of this zonal approach for solving free surface flows
still needs to be investigated further. They use a finite volume discretization
on a structured grid for the viscous flow.

Another of the important methods used to solve incompressible viscous flow
problems can be illustrated by the method of T. Hino cf. [27]. This method
models the flow in the whole computational domain using the incompressible
Navier-Stokes’ equations. The method takes the divergence of the momentum
equation and iterates the pressure and velocity fields at each time step until
continuity is satisfied. Hino uses a finite difference scheme expressed in body
fitting curvilinear coordinates. Another large domain method for nonlinear free
surface ship flow was designed by Y. Tahara and F. Stern, cf. {53]. They solve
the incompressible Navier-Stokes’ equations with the Baldwin-Lomax turbu-
lence model. It is worth noting that they apply the nonlinear inviscid free



surface boundary condition on the physical free surface using a body firee sur-
face conforming grid.

A step towards computing a realistic flow around a whole ship including the
effects of a free surface was taken by J. Farmer L. Martinelli and A. Jameson,
cf. {17, 18, 19]. They use a single, structured grid discretization of the domain
and utilize a finite volume method to solve the incompressible Navier—Stokes’
equations. The rate of convergence to a steady state is accelerated by using a
multigrid scheme. The solution of the bulk-flow is then coupled to the solution
of the free surface boundary condition by an iterative method. They trans-
form the free surface onto the mean surface where they apply the free surface
boundary condition.

A new method by T. Hino, J. Farmer, L. Martinelli and A. Jameson can be
found in [28]. The method employs a single unstructured grid discretization, a
finite volume technique and an efficient multigrid method is used to accelerate
convergence. The nonlinear free surface condition is applied on the physical
surface. The method is tested for two dimensional free surface flow around a
wing profile.

In a recent paper by E. Rood, cf. [60] the future needs for computational
methods for ship flow was reviewed. They address the need for a numeri-
cal towing tank to optimize the ship-construction further., A number of areas
are pointed out, where improvements in predicting the flow around a ship are
needed. Some of these areas are: Turbulence modeling in the wake has to be
improved. There is need for a method to predict the turbulent effective wake
into the propeller. Modeling of unsteady cavitation at the propeller also needs
enhancements. Furthermore there is a demand for better understanding of the
turbulent nonlinear free surface effects. It is pointed out that there is a general
need for unsteady, time accurate Navier—Stokes’ solvers, to study phenomena
that are essentially instationary and include free surfaces.

2.2 Computing Flow using Composite Overlapping Grids

Two dimensional free surface flow around wing profiles using composite over-
lapping grids have been computed by A. Lungu and K. Mori, [38]. The three-
dimensional Navier—Stokes’ equations have been solved using overlapping grids
by C. Kiris et al. [31]. They have computed the flow in an artificial heart using
the artificial compressibility approach and second order accurate finite differ-
ences. D. Brown has computed transsonic flow, using a staggered composite
grid finite volume method, cf. [7]. X. D. Brislawn et al. has computed flow with
large gradients around various geometries using adaptive composite grids; this
is described in [5]. P. G. Buning et al. [10] computed the supersonic flow around
the space shuttle in ascent using overset grids generated by the CHIMERA grid
generator, cf, [3]. E. Pért and B. Sjogreen [44] have computed two-dimensional
flow around the Hermes shuttle using overlapping grids. N. A. Petersson et
al. [48, 39], have computed the linearized free surface potential flow around a
submerged obstacle using composite overlapping grids. Furthermore N. A. Pe-
tersson used moving composite grids to compute nonlinear steep free surface
waves, cf. [46], and computed the oscillations of a free jet, cf. [2,47. In a



Figure 3: Definition of the coordinate system {x,y,3). The ship bow is located at the origin

and the stern at ¢ = [, y is directed sideways and z vertically upwards.

recent work, J. Tu and L. Fuchs solve the three dimensional incompressible
Navier-Stokes equations on overlapping grids for flow in internal combustion
engines with moving pistons and valves [56]. They used a second order accurate
method coupled with a multigrid algorithm. Time dependent visco-elastic flow
in two dimensions has been computed by F. Olsson et al., using 2 composite
overlapping grid and a second order accurate artificial compressibility method,
cf. [41,42].

High order methods on overlapping grids have been used successfully for
a number of problems. G. Browning, [9] used fourth and sixth order accurate
methods on overlapping grids to solve the shallow water equations. W. Henshaw
and G. Chesshire cf. [13] use fourth order accurate methods to solve elliptic
problems on composite overlapping grids. M. J. Ward et al. [58] used fourth
order accurate methods to solve nonlinear eigenvalue problems on composite
overlapping grids.

The subject of conservation in the interpolation relations was considered by
M. Berger [4]. The matter is studied by W. Henshaw et al. [14]. They derive
interpolation relations that conserve the unknown quantites for two and three
dimensional problems. E. Pért and B. Sjogreen has also treated this in [45].

3 Governing Equations of the Flow

In this section, we discuss the governing equations of the flow. The momentum
and continuity equations are described in §3.1. The specific boundary conditions
for ship flow are discussed in §3.2.

3.1 Momentum and Continuity Equations

The flow around a ship is clearly incompressible, we therefore use the follow-
ing standard form of the incompressible Navier—Stokes’ equations to model the
physics of the flow cf. [34]. The Cartesian coordinate system we use is defined
in figure 3.



w+(u-Vyut+Vp—vAu—-f = 0} e, 1)

V:u = 0

B(u,p)=0 x € 0%,
u(x,0) = uo(x) -
p(x,0) = 0 ati=0.

Here p is the pressure and » the kinematic viscosity, v > 0. The domain
lies in R™ where ng, the number of space dimensions, is 2 or 3. There are ng
boundary conditions denoted by B(u,p) = 0. On 2 fixed wall, for example,
the boundary conditions are u = 0. Hereafter system (1) will be called the
velocity-divergence form of the equations.

To get a more tractable form of the continuity equation - an equation for the
pressure, we take the divergence of the momentum equation and enter V-u = 0.
This gives the following form of the initial-boundary value problem, which is
hereafter called the velocity-pressure formulation :

w4 (u-Viut+Vp-vAu—-£f = 0
Ap+Vu u, +Vv-uy +Vuw-u,-V-f = 0 x€eQ (2)
B(u,p) = 0
! Vu = 0 } Xeaﬂ,
U(X,O) fum uo(x) _
p(X,O) = 0 at ¢ = 0.

This is the form of the equations that will be discretized by the solver CGINS,
the discretization is described in §5. For a more thorough treatment cf. [22].
The velocity pressure formulation requires an extra boundary condition. Here
the condition V - u = 0 for x € 89 is added as the extra boundary condition.
W. Henshaw proved the wellposedness and stability for a 2D model problem
corresponding to this problem in [20].

3.2 The Boundary Conditions for Modeling Shipflow

In this subsection we elaborate on how we choose the boundary condition
B(u,p) = 0. At an inflow boundary we prescribe the momentum components
(u = (u,v,w)) and enforce the continuity equation.

U = Ug

v = p

w = wp |
V-u = 0

where (ug, v, W) are functions of (z, z). On the wetied part of the ship hull,
we apply a no slip boundary condition.
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On the symmetry plane, (z~z-plane, where y = 0), we apply a symmetry
boundary condition. For the bottom- and side-farfield boundaries we can en-
force a slip boundary condition if these boundaries are located sufficiently far
from the ship. The free water surface is set to be the mean surface (the z-
y-plane, where z = 0). Here we also apply a slip boundary condition. These
boundary conditions can be written in the form.

u” = 0
ou'/on = 0
du?fon = 0’
Veu = 0

where u” denotes the velocity component normal to the boundary, u’! and u’?
denotes the two velocity components tangential to the boundary and du/dn
denotes the normal derivative. Provided that the farfield boundaries are located
sufficiently far from the ship, this is a serious restriction only on the free surface
boundary. In future works we will incorporate free surface effects into the model
of the flow.

At the outflow boundary, we apply the following boundary conditions

dufdn =
dv/on =
dw/fon -
apn+fp =

It

0

0

O ?
7
where o, § and - are constants.

3.3 Turbulence Modeling

The Reynolds number for a large ship i.e. a crude carrying tanker is of the
order of 10° (Re = UL/v, where U is the velocity, L is the length of the
ship and v is the kinematic viscosity). In this case the effects of the laminar
viscosity is mainly concentrated to the viscous sublayer or where there are large
velocity gradients. The flow close to the stern and in the wake is generally quite
complicated and fully turbulent.

To be able to compute turbulent flows in realistic geometries where the
Reynolds number is high a turbulence model is necessary. Turbulence models
based on Prandtl’s mixing length hypothesis aims at mimicking the enhanced
mixing of momentum due to the turbulence, this effect results in a higher dif-
fusivity than for a corresponding laminar flow. For a concise and thorough
treatment on the subject see [59]. The turbulence model gives a turbulent vis-
cosity, that is larger than the laminar viscosity and due to this we have the
possibility to resolve the mean flow.

11



3.4 The Baldwin-Lomax Turbulence Mdel

The Baldwin Lomax turbulence model, hereafter called B-L, will be described
briefly below, for a more thorough treatment cf. [1, 57] or [49]. B-L is an
algebraic turbulence model which was originally designed for 2-D flow above
a flat plate. However numerical computations, for a variety of more complex
geometries has shown the B-L model to give results comparable with those
obtained by using other, more sophisticated turbulence models. The turbulence
model predicts a turbulent viscosity v; that is added to the laminar viscosity v.
The effective viscosity »p = v + v, is entered into the Navier—Stokes’ equations
according to

Ap—(Vu U+ Vo-uy+ Vo)~ CV-u=V-f = 0

i

uz+(u-V)u+VP—Voﬂu—~f = 0 }:DG'Q,

where C is a constant — this is descrived more in detail in $5.2.1, the corre-
sponding term is entered to decrease the divergence in the pressure equation.
Note that we are not using conservative formulation of the viscous term. We
allow this since we are not interpolating conserative between the component
grids. Furthermore, we do not have any shocks in the solution.

How to compute v
B-L is a two layer eddy viscosity model in which the turbulent viscosity v
is given by
(Vt)o ’

The inner boundary layer viscosity (v); is defined by

V= min{ ():

(n)i= 1lwl.

The mixing length [ uses the Van Driest damping length concept cf. [59}

y+
t=ry(1-eap(-43)),

where & is a constant and the wall length unit y* is expressed as

here, u, is the normal derivative of the velocity at the solid wall and y is the
distance from the wall.
The local vorticity is given by

ol = (éﬁ_éz)z+(3_”_ﬁﬂ)2 (?sz___a_u)z i
T I\8y Oz 3z Oy t\%z 52 '
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The outer viscosity (), is defined by

(Vt)o =& Ccp Fuake FKleb(y)ﬁ

where @ and C., are constants, their standard values will be given below.
The definition of Fugke is

- yma»meﬂ-m
F = min
wake { kayma.a:ugi_f/Fmax !

where Fi,qq is defined as the maximum value of F which occurs in a profile. In
2D, we define a profile to be a plane perpendicular to the free stream velocity
vector, In 3D we define a profile to be the set of points that share the same
closest point on the ship hull. F is defined by

y-!-
Fy) =y |w| (1 - ezp(="3));

and Ymee is the y value for which Fior occurs.
The intermittency factor Fiies cf. [59] is

Ck e - .
Frles = (1 + 5_5(__1‘_1.i._y_.)6) 1.

yma:r:

The quantity wugis Tepresents a velocity scale equal to the difference between
maximum and minimum total velocity in a given profile

ugis = (VU2 + 92 + 0oz — (Vu? + 92 4+ wnin.

The standard values of the constants in the B-L model] are

AT = 26
Cp = 16
Ckies = 0.3
Cuor = 025
Kk = 04
a = 0.0168

Discretization of the equations

The B-L equations are discretized using second order accurate finite differences,
even when the momentum and pressure equations are discretized to fourth order
accuracy. The discretization is done in the same manner as for the momentum
equations, this will be described in §5 '

3.5 The k- Turbulence Model

The standard k—e turbulence model is described below, for a more thorough
treatment cf. [49] or [59). This is a two-equation, eddy-viscosity model. Two
new equations are added, one for the turbulent kinetic-energy k and one for

13
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the turbulence dissipation rate, ¢, Ine compute
used to calculate a turbulent viscosity vg.
The equations we solve are

w4+ (u-Viut+ Vp—-1phAu-1 =
Ap—(Vu-uz+Vo-uy+Vw u,)-CV-u-V.f
Es+(u-V)k=P—e—V-(nVk) =

&+ (u-V)e— Cale/k)P + Calef/k) ~ V- (v Ve) =

[own R cnn [ e L v

z € Q.

We are using a non conservative formulation for the viscous terms, for details
see §3.4. The boundary- and the initial-conditions for k¥ and ¢ can be written

B(k,e) = 0 z € 09
k(z,0) = ko(z) t=0
e(z,0) = ez) t=0

The boundary conditions for the momentum components and the pressure are
found in §3.2. The other constants in the equations above are defined by

vr = C,(k*/e) turbulent eddy viscosity

vg = v+ur total viscosity

vy = Oglp viscosity coeflicient for k

Ve = Qg viscosity coefficient for €

P = vr¥;0u;(0u; + 8;u;) turbulence production term

The standard values of the constants used above are

C, = 0.09
Cq = 145
Cea = 192,

ap = 1,

a, = 0.77

3.6 Boundary Conditions for k and ¢

The turbulent quantities k and e are treated analogously at the boundaries as
the momentum components. At an inflow we impose

k = ko
€ = €

where (kg, €) are functions of (y,z). On the wetted part of the ship hull, we
apply a no slip boundary condition '

k= kmin

€ Emin
Where kmin, €min are small quantities 0(10"4), since ¢ has to be larger than
some § > 0 to prevent overflow.
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The boundary condition ai the symmeiry-, suriace-,
boundary is

Okfon = 0

defdn = 0 °
At the outflow boundary we set

fon = 0

de/dn = 0 °

The k—e model can be used with the boundary conditions as stated above or
we can choose to use the wall law boundary condition instead of the boundary
condition at a no slip boundary.

Wall law boundary condition

The boundary layers of the turbulent quantites k and € close to a solid sur-
face for example a ship hull are very thin for high Reynolds numbers. Instead
of applying the boundary condition (3.6) on a solid surface and resolving the
thin boundary layers it is possible to use a wall law that predicts the values of
k and € in the boundary layer. For a more thorough discussion and a derivation
of the wall-law cf. [57] or [29]. The wall law is used to set the values of k£ and
¢ one grid step into the flow from the solid wall, it can also be used to set the
momentum components at the same location. When the wall law is used to set
both momentum components and the turbulent quantities, the first gridpoint
is required to be situated between y* = 30 and y+ = 150, for the wall law to
be valid. We currently only use the wall law to set the values of the turbulent
quantities, in this case the first point must be placed at y* < 5. We plan to
use the wall law to set the momentum components at a no slip wall too.
For each point on the solid surface, we compute

and one grid step into the flow we set

k=C';1/2=uf.

3

Uy

€= e
where & is the von Karman constant mentioned in §3.4, (x = 0.41).

The most negative effect of the wall law is that it delays the separation
on the ship hull and thus moves it further downstream. This causes the slip
vortices to be generated at the wrong place. The flow in the slip vortex can
be strongly affected by this effect. Therefore it would be interesting to be able
to resolve at least the boundary layer of the momentum components. This is,
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Figure 4: The domain of the modelproblem. We study the effect of the outflow boundary
condition by comparing the solution on the halfplane domain (0 < =) with the solution on a
bounded damain (8 < = 5 1).

however, a hopeless task with todays computers since the Reynolds number of
a model scale flow is 108 and for a full scale flow 10°

Discretization of the equations

The equations for % and € are discretized to second-order accuracy {even when
the equations for u are discretized to fourth-order accuracy ). The discretization
is done in the same manner as for the momentum equations, this is described
in §5.

4 A Study of Outflow Boundary Conditions

In this section, we study the effects of imposing artificial inflow and outflow
boundary conditions on a two dimensional model problem, such as the errors
introduced by the inflow and outflow boundary conditions in the solution. The
domain of the model problem can be found in figure 4, we require the solution
to be 1-periodic in y. C. Johansson [30] has studied the effects of either an in-
or an out-flow boundary condition on a halfplane problem. Here we study the
problem in a finite truncated domain that has both in and outflow boundaries.
The model problem is the 2D incompressible Navier-Stokes’ equations:

Ut U+ uy P —vAu—fr = 0
vt+u-vptv-vy+p,—~rviv—f, = 0 x € 3)
Uy +vy = 0

we assume that f; =0 and f, = 0.
The following inflow boundary condition is used for both the halfplane prob-
lem and the finite domain problem ‘

16



U =
» = v § at the inflow boundary, z = 0. (4)
Uz +vy = 0

Two similar sets of outflow boundary conditions are studied and compared
to the halfplane problem. Boundary condition I is
Fu .
=t 0

k)
azd

P

and boundary condition II is

o »at the outflow boundary z = L. (5)
0

i

Sy _
gt T 0
i
Qx?

Uy +vy, = 0

i

0 t at the outflow boundary z = I, (6)

where j is an integer larger than or equal to zero.

We have found that the errors in the velocity components caused by the
errors in the velocities at the boundary decrease with increasing j. From this
respect boundary condition 1is as good as boundary condition IL It is also seen
that boundary condition II restricts the flow pattern less at the outflow than
boundary condition.

4.1 A Study of the Effects of the Outflow Boundary Conditions

We shall now discuss how the solution to the halfplane problem changes when
we introduce outflow boundaries. First, we linearize the model problem around
a constant mean flow. Then we study the halfplane case where we only have an
inflow boundary condition, cf. (4). The effect of two different outflow boundary
conditions is discussed, cf. (5,6). The results clearly shows that these boundary
conditions are appropriate when the flow has settled behind the body and that
they introduce boundary layers when they are applied too far upstream.

To get an equation for the pressure we differentiate the first equation in (3)
with respect to & and the second equation with respect to y and use #z4+v, =0

Ap+2- (vl 4+ uyv:) =0,

We specify the domain @ tobe: 0 <z <, 0<y<1,t>0, cf. figure 4.
We linearize (3) around the constant mean flow, (U,V) = (U, 0), this gives
us the following equations

uy + Uptz — V(u:r:z + uyy) + P = 0
vy + Upve — (Vg + ) +2y = 0 .
P:r::z: +pyy - 0

Discussions of the wellposedess of similar linearizations of (3) are performed
by C. Johansson [30] and W. Henshaw [20].

i7



To solve this problem, we use Fourier expansion in the y—direciion. For the
u velocity and the pressure we use a cos—transformation:

oo
'w(y) = Z'Lf)k cos(wky), wg = k- T, k=10, 1,2” any
k=0
and for the v velocity we use a sin—transformation:
oo
wiy) =Y brsin(wry), wx =k-7, k=0,1,2,....,
k=0

to simplify the analysis, we assume that w(wo) = 0. Furthermore we apply the
Laplace transform with respect to time ¢

w(t) = [:: e*t(s)ds,

and obtain the following system of equations

I

su+ Ugtiy — ¥(Uge — wit) + Po 0
sv + Ugvg — V(Vzg — Wiv) — Wi 0 . (7)
Poz — wﬁp = 0

This is a system of three coupled ordinary differential equations. We de-
termine the general solution by writing the pressure solution in the following
way.

p= Ae?e(z=h) 4. Be~wk (8)

Entering this expression into the equations for the velocity components (u,v),
equation (7), yields:

—Viigg + Upty + (s + I/wz)u = —wk{Ae“’k(‘”") — Be~wT)
2y = wi(z—1) —ep) (9)
Vg + Upty + (s + vwily = —wp{Ae™® + Be~w+*}

The solution, can be written as the sum of a homogeneous and a particular
solution, for 4 we have u = up + up. We determine the particular solution by
employing: 4, = Ce“x(==) 4 De~"k%, into equation (9). Similarly, for v, we
can write v = vy, + vp, where we choose: vp = Eews(z=1) 4 Pe~ws=, This gives
the following result for the constants of the particular solution

C = - Aty
- wg+s
w

D = —guts
— —=Aw *

P

F = ~Upwg+s

We find the homogeneous part of the solution by employing the following
ansatz
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U Uy
v = E O';GA"'” ™ )
P ReMi<0 i

into (9). Hence, we get the following eigenvalue problem,

ay +bihi—vA¥ 0 A , Uj 0
0 a1+ bihi —vA? N v =101},
0 0 M-l Pj 0

where the constants a; and by are given by

a1
by

The eigenvalues are given by

v(wi + s)
Us )

1l

1 b1 :!:3{ b% +4ray

Mz = 3 ”
)\3‘4 = M\ 2 (10)
Ase = dwg

Knowing the eigenvalues, we can write the expressions for the velocity compo-
nents (u,v) on the form

- Ge)\l(g,-—l) +H6A2x+ ﬁgﬁewk(:cml) +.,_BHL8-wka:

! g ! :U wgts (11)
v = IeMlE=D g Jedem 4 Uowy+s ewr(z=1) _Uowu;-l-.ge_“kz

The half plane problem

First we solve the half plane problem, 0 < 2 < 00, 0 <y < L,t> 0. In
this case we need to specify a requirement to prevent the solution from growing
infinitely when z — o0 :

2 00
v | <| oo |, when z — oo.
P 00

This condition kills the growing terms in the expressions (8,9}, hence, we
get the following expressions for u,v,p

— A2z Buw —why 2
w = Hew+ qpiige
— x Wi —WR L
v o= JeWt+ -UOWk""'Se * ‘ (12)

p —_ Be“wkz

By entering the expressions in (12) into the inflow boundary condition (4},
we obtain the following expressions for the constants (B, H,J)
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B = ( «-Uowk +s5 )( Aoty Fawptn )
Aztuwg
wy(ug —v
1 -
J = ( gul-l-w n )
Azt

By substituting these expressions back into equation (12), we receive the
solution, that is denoted (o, Voo and Poo)

o wkgul s | ! /\gw Agu: +£U||"Ul —wi
uoo(x) - W Ag ( Wi + 2 )e
eel) = “ywuw)}e‘u(#—“" sie)ear (1)
Poolt) = (FRUAER)(AgEL)e

Outflow boundary condition I

To study how the outflow boundary conditions affect the solution, we now
apply the following boundary conditions

B - 0

)

% = 0 at the outflow boundary z =1,
p =0

where 7 is an integer larger than or equal to zero. By inserting the ansatzes
found in equations (8,11) into the boundary conditions we have the following
equation system

(- _Aw ol , __Buw Ge—M

Ugw-l-se ; —Uﬁw-i—s + \ -+ H = Uy
—Uoww se—w - -~U9::+s + IeM + J = ™
2
$ U§$+Se_wt - —-[?0‘:+s + GA16—~AI + H)\g = —iy
+1 Buiti(—1)i . ,
-t + —“_’m(,nl' + GN + HMeM = 0
41 (1) . .
- 6:(:-}-5 + %’E‘L + IA{ + JA‘;EAz! = 0
\ A + Be‘“""’ = 0
Where the first order approximation of the solution is given by:
TR "u,oo(:l:) + Uerr,u * eh {z—1) + Uerrp - ewk(a:—2!)
= 'Uoo(ﬂ:) + Verru - eM(z=1) + Verrp - ewr(z—20) , (14)

P Poo() + Perryp * ewr(@-2)
where (ueo,00 and po,) denote the solution to the half plane problem. The
other terms are errors introduced by errors in the boundary conditions. The
unknown quantities in {14) are given by.

¢ ' i

_ w Aot g 1
Uerru = — -:\-;h (—mf-L) (--1).1
” . ~Uwg+s Aoty Fwpy ewl
erTp Ugwi+s . Az
w? Aoy St 1
| Verrm = ')'f (—-L——-LA2+Wk ) (—1)
v —  _ —Upwpts Aoty fwp vt ewl
erTypy T Uowr+s Aztwi
. _ =lowits Aptey et vy e—wl
L\ Perrp = wk Aoty




Outflow boundary condition II

We now study a new set of outflow boundary conditions and how they
affect the solution. These boundary conditions are when we introduce artificial
outflow boundary conditions. For this purpose we consider equation (3).

&y
du — g

5zt

% — ¢ }at the outflow boundary z = [, - (15)
uy+vy = 0

where j is an integer Jarger than or equal to zero. Entering the expressions in
equation (11) into the boundary conditions (4,15), gives the following equation
system

(Cmgpe b st OO0 T E =
_Te_wr s N C;A .Y ¥ I\ _ "
Tohepe T e O T e
—55%}*3 + ngé"";iwz + IM + J)\“ze":: = 0
~ Towts — Uu+se + GM 4 HAgeM +

| (il - g 4+ + Jel)

Where the first order approximation of the solution is given by:

U = ’u,oo(m) + Uerpa * eAI {3'-""1) + uer?‘,p . ewk(:n—2l)
v = VoolZ) + Verr - €1 +vgry ewrle=2l) (16)
p = Poo(m) + Perrp * ewk(m—ﬂ)

where (teo,Uoo and Poo) denote the solution to the half plane problem. The
other terms are errors introduced by errors in the boundary conditions. The
unknown quantities in (16) are given below. (Note that these are the leading
terms in a first order approximation.)

' Yerrau — (z_c‘jéri)('"l)jvl)e_wkl
Uerrp 0 1
} verra = AN (Din)e
Verrp = 0 '
\ Perrp = 0

We clearly see, that the error, due to velocity error on the boundary, in the
velocity components decay as 1/X] for both boundary conditions I and II. This
error has boundary layer character and decays fast upstream. For boundary
condition II the error in the pressure is significantly smaller than for boundary
condition I, for which the error, due to pressure error on the boundary, in all
solution components is not affected by the order j of the boundary condition.
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Thus, by increasing j we suppress the boundary layer in the velocity com-
ponents. For boundary condition I, we observe that one has to specify the
pressure at the outflow boundary to get it correctly. Since the pressure often is
unknown, we recommend using boundary condition II with j = 2.

If we study the flow in a b units wide canal, the Fourier modes become
wg = k-w/b, k=0,1,2,...,. Hence, for a wider canal the error, due to the
error in the pressure at the outflow boundary, travels further upstream.

The results obtained for this model problem behave qualitatively as the
solution for the Euler equations obtained by G. Kreiss, cf. [33], except for the
boundary layers at the outflow.

Therefore a practical method to evaluate if the outflow boundary conditions
are disturbing the solution would be to calculate the solution using two com-
putational domains of different length. Check if the flow close to the outflow
boundary for the shorter domain is similar to the flow at the same position

for the larger domain. If this is the case, we could safely apply the outflow .

boundary condition for the shorter of these two domains.

For ship flow it is important to have an outflow boundary that lets out
longitudinal slip vortices with varying pressure across the vortex. This indicates
that bouncary condition II is better that boundary condition I.

5 Numerical Method

5.1 Discretizing the Geometry using a Composite Overlapping
Grid

In this section we describe how we discretize the flow domain of interest using
composite overlapping grids. This is done in three steps, which will be described
in the subsections below.

1. In §5.1.1 we describe how a nonsingular representation of the ship hull
surface is constructed by using a number of overlapping 2-dimensional
patches,

2. In §5.1.2 we elaborate on how these body covering patches are used to
generate component grids such that the union of these component grids
cover the vicinity of the ship hull and overlap where they meet. Note
that it is easy to generate these component grids so that they do not have
singularities in their grid transformations.

3. In §5.1.3 we describe how a composite overlapping grid is constructed

from a number of component grids, using the composite grid generator
CMPGRD.

This method to discretize a domain is general and applies easily to a complex
geometry.
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Figure 5: The standard method to describe a ship hull is here represented by four ship frame

sets.

5.1.1 Discretizing the Surface of the Ship Hull

The standard method to represent the geometry of a ship hull is by several 2
dimensional patches since the topology of a cargo ship is generally too compli-
cated to be described by a single patch. Each patch is topologically simple and
contains a number of ship rib-frames. We consider a right handed Cartesian
coordinate system with the z-axis directed in the opposite forward direction
of the ship, the y-axis is directed sideways and the z-axis vertically upwards,
cf. figure 3. A rib-frame consists of a number of (z,y,%) coordinates on the
intersection between the ship hull and a constant-z plane. In figure 5, we show
four surface patches — or frame sets that define a typical cargo ship hull. We
use symmetry and only represent one half of the ship.

The set of rib-frames can be viewed as one or several topologically rectan-
gular surface patches. We define each patch by its transformation from the unit
square parameters to the physical coordinates. This mapping is exemplified in
figure 6.

Removing patch singularities by the projection technique.

The rib-frame description often have polar and line singularities in the co-
ordinate transformation. For the frame set in figure 6, there is a singularity at
the side s = 1. The parameter side maps to a single point in physical space.
These singularities can render a poor computational grid where special care
often has to be taken when solving the equations. To avoid a typical singular-
ity we define a nonsingular topologically rectangular patch. This patch is then
projected onto a domain on the ship hull containing one or several singularities
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Figure 6: The transformation that defines a rib frame set. The transformation is singular at

the line s = 1, which maps onto a point. This may render a poor computational grid.

using Newtons method in the parameter space. In figure 7, we demonstrate the
projection technique by constructing a smooth representation of a surface that
previously was described by a singular frame set.

The patches are projected using various map projection techniques. To
get a smooth representation of the geometry it is advisable to take a natural
coordinate system for the projection.

By this method we construct a set of topologically rectangular and nonsin-
gular surface patches that overlap each other where they meet and the union
of these patches cover the whole ship-hull. We can formally write the represen-
tation of the hull as:

Bagise = Edisc(Tiry S5, k) 0<r; €1, 0<s;81, 0 < k < nr. of patches (17)

where &gise = (%,9, #)disc denotes discrete representation of the physical co-
ordinates of the hull, r; is the parameter in each rib-frame. s; is the frame
parameter and k is the patch index. Here 0 < ¢ < nrj, 0 € j < nr; and
r; = i/nr; and s; = j/nr;.

To generate a continuous representation of the coordinates of the hull, we
interpolate this discrete representation using a bicubic spline parametrization.
This is done using the ESASPLINE package cf. [43]. For a concise treatment
on the subject of spline interpolation cf. [15]. For surfaces with very large dif-
ferences in curvature in the two main axes of curvature and/or very quickly
varying curvature it may be necessary to use cubic-linear or linear-linear inter-
polation. The linear interpolation is used to avoid cusps in the description of
the surface. This continuous representation of the hull can be written:

Teont = Feont(128,k)y, 0<r <1, 0£s<1, 0% k < nr. of patches

where 7 and s are the continuous versions of the variables in Eq. (17).
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Figure 7: To avoid the transformation singularities we use a projection method., Here we
project a nonsingular patch onto a singularity.

5.1.2 Construction of Component Grids that cover the Ship Hull.

As the next step we create one of the body covering component grids by using
one of the ship hull patches as the body attached surface in the corresponding
grid. The component grids can be generated by the use of various techniques,
some of them will be described briefly here, for 2 more concise treatment cf. [55]
or [25, 24].

Many useful techniques require the parameterization of at least two surfaces,
that correspond to opposite sides of the grid. The boundary surface is fixed to
the geometry of the body, but there is some freedom to specify the opposite
surface. The outer surface can be generated by using normals to the surface of
the ship hull. This technique enables simple and efficient discretization of the
boundary conditions. Another technique is to copy the body covering surface
and rescale this surface to construct an outer surface. The outer surface can
also be constructed by using a simple surface with analytical geometry or by
some kind of blending of known surfaces. The component grid is then generated
using some suitable interpolation from the bounding surfaces. It can also be
generated by the use of elliptic/hyperbolic grid generation, where some kind
of field equation is solved and the solution is used to compute the distribution
of gridpoints, for more details see the books [55] or [32]. A generic component
grid covering a part of the vicinity of a ship hull is shown in figure 8. The
component grid is now defined by the mapping from the unit cube parameters
to the physical grid. We can write this continuous transformation.
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Figure 8: Construction of a component grid, originating from a ship hull patch. This com-
ponent grid is constructed by transfinite interpolation between the surface on the huli and an ..
outer surface. The cuter surface is a rescaled and translated copy of the surface on the hull.
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Figure 9: A set of overlapping component grids covering the propeller hub and the overhang
of the stern.

§k1,cont = ikhcont(rasat): 0 <r S 11 0 S 8 S 1: 0 S t S 1,

where 7, 3, are the grid parameters and k; is the component grid index,
1 < k1 < ar. of component grids. :

It is furthermore easy to generate these component grids so that they do
not contain any singularities in the grid transformation, even for very complex
geometries. In figure 9 we show a couple of component grids that cover a part
of a ship stern.

In this fashion we construct a component grid for each one of the body cov-
ering patches. This results in a set of component grids that overlap eachother
where they meet and cover the domain around the ship hull. To represent the
outer flow domain we construct one or several background grids. The back-
ground grid can be e.g. a Cartesian grid, a cylindrical grid or 2 spherical grid.

5.1.3 Generating a Composite Overlapping Grid using CMPGRD

We then generate a composite overlapping grid using these curvilinear compo-
nent grids and one or more background grids that covers the whole computa-
tional domain., For this purpose we employ the composite grid generator CMP-
GRD cf. [8, 24, 13]. Once all component grids have been defined, CMPGRD
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~.. 1. Discretization points

> 2. Interpolation points

=~ 3. Dead points

Figure 10: The three types of points in a composite grid.

automatically determines interpolation conditions, of desired order of accuracy,
to connect the component grids. CMPGRD has a general algorithm for do-
ing this, which can handle any number of component grids. It can generate
the component grids appropriate for higher order interpolation, higher order
discretization, cell-center or cell-vertex grids and the sequence of coarser grids
needed for the multigrid algorithm [23]. There are three types of gridpoints in
a composite overlapping grid.

1. Discretization points, (Inner or boundary points).

2. Interpolation points.

3. Dead, unused points.

The three types of points are exemplified in figure 10

The composite overlapping grid covers the whole computational domain and
resolves the computational geometry — in our case a ship and the surrounding
sea, cf, 11,12. It is also very simple to increase the resolution in any part
of the flow in an efficient manner by adding gridlines where they are needed
and/or by adding new component grids. A boundary layer is easily resolved
by introducing the proper stretching in the curvilinear grids that attach to
the body. A trailing vortex can be effectively resolved by adding a cartesian
grid that covers the domain around the vortex. Furthermore a very complex
geometry, as a propeller or a rudder can be described by a set of component
grids which can be added to the composite grid describing the hull of the ship.

To efficiently resolve flow phenomena, varying in time, adaptive composite
grids can be used, for example to compute unsteady trailing vortices. Yor a
description of adaptive composite grids, cf. [5]. Unsteady flow around a moving
geometry, eg. a ship with a rotating propeller or a moving rudder, can be com-
puted using moving composite grids to discretize the geometry, for a description
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Figure 11: A composite grid covering a ship stern.
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of this technique cf. [46]. The two techniques of adaptive composite grids and
moving composite grids, combined can be used to compute the nonlinear free
surface flow, close to the water surface. For a description of a finite volume
method that computes free surface flow around a ship cf. [17).

5.2 Discretizing the Equations on a Composite Overlapping
Grid

In this section we elaborate on how the incompressible Navier-Stokes’ equa-
_tions are discretized on a composite overlapping grid. In §5.2.1 we describe
the spatial discretization of the PDE. in some detail. We describe the extra
numerical boundary conditions needed for fourth order accuracy in §5.2.2. The
interpolation between the component grids is discussed in §5.2.3. We describe
the artificial dissipation introduced in the momentum equations in §5.2.4. Fur-
thermore in §5.2.5, we describe the timestepping scheme.

5.2.1 Spatial Discretization

We use the method of lines to discretize the incompressible Navier—Stokes’
equations (2), ie. we discretize the system of PDEs in space which yields a large
system of ODEs that can be written in the form

dUu

"—:&“‘ - f(t, U, P),
where U is a vector of all solution values at all grid points. For the purpose of
discussing time-stepping methods it is often convenient to think of the pressure
as simply a function of U, P = P(U).

Let U; and P; denote the discrete approximations to u and p so that

U;~ulx;) , B~ p(x;) -

Here U; = (Uy;, Ui, Usi) and 4 = (41, iz, i3) is a multi-index denoting the three
coordinates. After discretizing in space, the equations (2), are of the form.

LU + (Ui - Vp)Ui + ViP— v Ui — £(xi0) = 00
ALP: — Yo VUi s D Ui — Cy(v) ViV - U; — Vi f(x,-,t) = 0

B(U,‘,P{) = 0 )
Vi -U; = 0} x; € 00
U(x;,0) = Up(x;) att=0
where .
1 1 1
Vi= ma At A,

The subscript “h” denotes a second or fourth-order centered finite difference
approximation,
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Fxtra numerical boundary conditions are also added, see [22] for further de-
tails. An artificial diffusion term is added to the momentum equations. This is
described in §5.2.4.

Approximation of the derivatives by using the mapping method

The derivatives with respect to (z,v, z) are approximated by transforming
them to the computational parameters (r,s,t) by use of the chain rule. For
simplicity, we exemplify this with the first and second order derivatives w1th
respect to (), on component grid k.

(f?_) a'rk 8 3Sk 8
0z )y Bz Ory, Oz Osy,

sz_ _ (6'rk 2 b* ark 3_% o
Oz? . - Br 3$ Oz Bri0s;
Osk 6 T O 0%s, 0

2 r—— ———A— TTTTT——
t (G 52t 9 o T B2 O

On the discrete side, we have the first and second order central finite
differences.

Brk 6‘sk
D?n,xk = a Dgz 7Tk + a Dgft,sk
- oy, ary, 63k
D;:. wk'Dm,z;c = ( )2Dm R rn.,‘ir';= +23 am ?nrk ?nak

6‘sk

- a%ry %5y,
)2 mskDmsk+ Oz 2D?nrk+ 922 D?n,sk

+ (5
The other differences are mapped in an analogous way.
Ay, Am— are the forward and backward undivided difference operators in
parameter direction m.

ViUl = ng? Toty Tods | DmpUsil
ATU; = Ui(r +1,72) = Ui(r,72)
ATU; = U,-('rl,'r2) - Ui(r1— 1,72)
ATU; = Ui(ry,r24 1) = Ui(ry, r2)
A;U; = Uilr,r2)— Ug(r,r2—1) ete.

The discrete differences are examplified by the second order accurate
discretization.

D}, U; = (ATU; — ATU;)/(2dr)
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The other differences are defined analogously.

As stated above, the component grids are defined by the transformation from
the parameter space (7, $,%}, where 0 < 7, 5,1 < 1, to the physical space. This
transformation can be used to extract the physical coordinates of a gridpoint
(2,9, 7) and the derivatives of the transformation with respect to the physical
coordinates, e.g. (0r/8z, dr/dy, Or[dz, ds/0z) and higher order derivatives, .
if needed. This information is provided by the composite grid generator
CMPGRD.

5.2.2 Numerical Boundary Conditions

The numerical boundary conditions are applied on extra lines of ghostcells, one
line of ghostcells s required for second order accurate discretization and two
lines for fourth order. Numerical boundary conditions are derived by applying
the momentum equations and the pressure equation on the boundary. The
normal derivative of the divergence is also specified on the boundary. The
numerical boundary conditions are:

w+(u-Viut+ Vp=vAu+i = 0
Ap+Vu-uz+Vo-u,+Vw-u,-V-f = 0 x€dQ. (18)
£(V-u) = 0

On the second line of ghostcells the pressure and the tangential compo-
nents of the velocity are extrapolated. The second-order accurate version of
this method does not require these extra numerical boundary conditions. The
boundary conditions are discretized analogously as the PDE.

5.2.3 Interpolation between the Component Grids

The grid functions on the different component grids are coupled by using suf-
ficiently accurate interpolation formulas. The function values of the unknown
variables of a component grid ky, that overlaps another component grid kg are
interpolated from the gridfunction on grid k2. The interpolation is carried out
in the unit cube parameters, (r, s,t) of grid k; using a Lagrangian interpolation
formula of sufficiently high order. In one dimension, the interpolation formula
can be written.

=Tl — ), (19)

Gap T

we denote ®;(z) = [Tz 7o
Ty
We write biquadratic interpolation in 2 dimensions using this notation, see
figure 13. ‘

flr, )= z &:(r)®;(s) (735 85)s (20)

i
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Figure 13: The interpolation from grid k: to grid ki is performed in the parameter space of
grid k». '

Chesshire et al. cf. [14] has shown how to choose the order of interpolation
to obtain the same overall accuracy as for the discretization of the PDE. For
a second order accurate discretization of the PDE, in 3 dimensions it is neces-
sary to use a tri-cubic interpolation. Furthermore, for a fourth order accurate
discretization of the PDE. in 3 dimensions a tri-quintic interpolation formula
is required. These conditions require a larger overlap for higher order methods
which results in stronger restrictions on how the component grids can be con-
structed. For a more detailed discussion cf. [13]. The subject of conservative
interpolation is treated in [14].

5.2.4 Artificial Dissipation

For the second order accurate discretization we use an artificial diffusion based
on a second-order undivided difference. In the fourth-order case the artificial
diffusion is based on a fourth-order undivided difference. This type of artificial
viscosity is based on the results on least scales of incompressible fluid flow
by W. D. Henshaw, L. Reyna and H. O. Kreiss [26]. The idea is that if the
constants in the expressions for the artificial dissipation, (ad21 and ad22 or ad4i
and ad42), are properly chosen, the size of the smallest scale in the solution
could be controlled.
In the second order case the artificial diffusion is:

g
do,; = (ad21 + ad22|ViUil1) Y AnsAn-U;

m=1

and in the fourth order case:

nd
ds; = — (adst 4 ade2[ViUilr) Y An A7 Ui

m=1
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Here |V, U;}1 is the magnitude of the gradient of the velocity.

The artificial diffusion is introduced in the momentum equations according
to:

d

-(EU; +(U; - VR)U; + Vi P - vALU; ~ f(x,t) — dpmyg = 0
however, it does not alter the pressure equation. The artificial diffusion does
not affect the order of accuracy for the method. This is described in detail
in [22].

5.2.5 Time Stepping

To discretize the large system of ODE’s obtained by the method of lines an
officient Adams PC Time-Stepping scheme is used. The second-order Adams
predictor-corrector method uses fewer evaluations of the pressure equation than
of the momentum equations. Given the solution and its time derivative at
time t, (U(), F(t)), the solution and time derivative at the next time (U(t +
At), F(t + At)) are determined from the following modified Adams predictor-
corrector method

U* = U(@t)+ At(F(1)
P* = P(U*) , F*=F(i+AtL,U" P

U(t + At) U(t) + At (-;-F* + %f(t, U, P))
P(t+At)=P* , F(t+ At)= F(t+ A1, Ut + At), P)

-

Note that when computing F(t+At) the pressure is fixed to be the predicted
value P*. P* is still a second order accurate approximation to P(t+ At) so the
overall method is second order. We have observed that the stability of this new
method is unchanged since the pressure terms acts to damp the divergence and
it is not necessary in stabilizing the momentum equations.

5.3 The Second/Fourth Order Accurate Solver CGINS

In this section, we give a brief description of the equation solver CGINS, used
in this work and some of the experiences we have had using the code. Specifi-
cally §5.3.1 contains a general description of the solver and references to further
information about this program. Following in §5.3.2 we describe how the pro-
gram solves the Poisson equation for the pressure equation. Then, in §5.3.3 the
various time stepping schemes available are discussed.

5.3.1 General Description

CGINS is a program for the solution of the incompressible Navier-Stokes’ equa-
tions on regions that have been discretized with a compressible overlapping grid
created by the grid generation program CMPGRD [8]. The spatial discretiza-
tion of the equations is described in §5.2.1, further details of the method of
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discretization used by CGINS are described in [22]. A discussion of solving
PDEs on overlapping grids is given in [13], including a description of the way
that CGINS interpolates between component grids. CGINS use the DSK sub-
routines, cf. {12] to manage its data structures.

The code can solve problems in two and three space dimensions to second
and fourth order accuracy. Two turbulence models ate currently available, a
Baldwin-Lomax model and a k—¢ model. A number of time stepping procedures
are also available, this will be described in more detail in §5.3.3.

CGINS solves the incompressible Navier—Stokes’ equations written in the
pressure divergence form, analogous to equation (3)

llt'{'(U'V)u-i-vP--yAu_.f w— 0 '
AP“(VU'U3+VU-uy+VM~uz)—Cd(y)v.u__v.f — 0 XEQ(21)
B(u,p) = 0
Vu = 0 } XEBQ

u(x, 0) = up(x) att=10

There are ng boundary conditions, B(u, p) = 0, where ng is the number of space
dimensions. On a no-slip wall, for example, u = 0. For numerical solution, an
extra boundary condition is required for the pressure. The continuity equation
is added as an implicit boundary conditions for the pressure. The boundary
condition V-u = 0 is added. With this extra boundary condition it follows that
the above problem is equivalent to the formulation with the Poisson equation for
the pressure replaced by V -u = 0 everywhere. The term Cy(v)V - u appearing
in the equation for the pressure is used to damp the divergence [22].

5.3.2 Solving the Pressure Equation

CGINS solves the pressure equation (21) by using the Composite Grid El-
liptic equation Solver, CGES, cf. [21]. CGES is an interface to a number
of standard linear algebra package solvers, among others: a Yale sparse ma-
trix direct solver, which is efficient for 2-dimensional problems, and iterafive
solvers as: Bi-conjugate gradient squared cf. [52, 16] and GMRES, [51] for 3-
dimensional problems. For large 3D problems the Composite Grid Multigrid
Solver, CGMG. cf. [23] can also be used.

We have found the restarted GMRES-iterative method, utilized with an
Incomplete LU preconditioner, to be the most effective method for our compu-
tations. In the beginning of a run GMRES needs a large number of iterations
to compute the pressure in each timestep, but when the solution is converg-
ing to steady state, the pressure changes slower and slower. GMRES therefore
converges to the pressure solution faster and faster during a run, since it uses
the pressure solution from the previous timestep as an initial guess for the next
timestep. In the end of the convergence phase GMRES needs O(3) iterations to
compute the pressure. Furthermore it is not necessary to compute the pressure
field every timestep, we have experimentally found that it is sufficient to update
the pressure every fifth timestep in the end of a run.
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5.3.3 Temporal Discretization
Currently there are three time-stepping procedures available.

¢ A fourth-order Runge-Kutta method.
¢ A second-order accurate predictor-corrector method, cf. §5.2.5.

¢ A second-order mid-point rule.

We have used the second order accurate predictor corrector method. The
midpoint rule is unstable for purely hyperbolic problems but is good if there is
dissipation.

The time-step is chosen automatically. The time step is chosen so that

At = ¢£1/Amax

where Amax is 2 bound on the largest eigenvalue of the discrete time stepping
matrix normalized by the size of the stability region. With this definition for
Amax @ choice of cf1 = 1 should usually be appropriate.

6 Numerical Results

6.1 Computational Examples

In this section, we describe the computational examples, that has been chosen
for validation and testing of the numerical method. The testing consists of
accuracy tests and “real flow” computations. For this task four test geometries
have been chosen, one 2D geometry, cf. §6.1.1, and three 3D geometries of
increasing complexity in §6.1,1-6.2.1.

The accuracy tests validate the order of accuracy of the method. This is
carried out for the test geometries described in §6.1.1-6.1.2. These accuracy
tests are performed by adding a forcing term to the equations. The forcing
can be chosen so that the continuous solution is a desired function, We choose
this function to be a second order polynomial in all coordinate directions. By
using this forcing in the computation of the solutions for a number of different
gridstep-sizes we can see if the order of accuracy in the numerical solution
obtained corresponds to the order of accuracy of the discretization scheme. In
all test cases, we have found that the numerical scheme has the desired order
of accuracy.

“Real flow” computations are performed for all of the four test geometries
in §6.1.1-6.2.1. The results from these computations are displayed in the cor-
responding sections.

In §6.1.1, we present results for a simple 2D test geometry - a circle in a
box. In §6.1.2 we present results for a 3D test geometry, consisiting of a cylinder
mounted to a wall. Furthermore in §6.1.3 we present results for a simple 3D
model stern geometry and finally in §6.2.1 we present results for a 3D HSVA
tanker stern geometry.
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Figure 14: Test geometry 1: a circle in a rectangle.

mounted to a wall. Furthermore in §6.1.3 we present results for a simple 3D
model stern geometry and finally in §6.2.1 we present results for a 3D HSVA
tanker stern geometry.

6.1.1 A Simple 2D Test Geometry

As a test geometry for 2D fiow we have chosen a circle in a box, see figure 14,
for accuracy tests the height of the box is 1.0, the length 1.0 and the radius
r = 0.2. The accuracy tests for this geometry are presented in tables 1-4.
We have tested laminar and turbulent flow using both second and fourth order
accurate discretization. The accuracy tests indicate that the solution has the
correct order of accuracy. Note that the k and e equation are discretized to
second order accuracy also when the momentum equations are discretized to
fourth order accuracy.

For the 2D “real flow” computations, we use the large box showed in fig-
ure 14, the following boundary conditions are used for 2D flow. We set the
divergence to be zero at all walls. At the upper and lower walls, we impose
symmetry boundary conditions.

dufén .= 0
{ Bofon = 0 (22)
At the circle no slip boundary conditions.
v = 0
{ v = 0 (23)

At the inflow, we prescribe:

{'”' -0 (24)




Nr. of gridpts. erru errv errp
14x14425x4 0.023 0014 0074

quota 4,04 4.37 4.11
order 2.01 2.13 2.04
97 % 27+49x7 0.0057 0.0032 0.018
quota 4.38 4.44 4.39
order 2.13 2.14 2.13

53 x 53+ 97 x 13 0.0013 0.00072 0.0041

Table 1: Accuracy test: 2-dimensional laminar flow around a circle, second order accurate

discretization

Nr. of gridpts. erru errv errp ertk  erreps
1dx 14 +25 x4  0.015 0.014 0.076 0.020 0.082
quota 3.85 5.19 3.80 3.77 4.32
order 1.95 2.37 1.93 1.92 2.11
27 % 27+49x 7 0.0039 00027 0.020 0.00563 0.019
quota 3.90 3.55 3.64 3.53 3.80
order 1.96 1.83 1.85 1.83 1.93 -

53 x 53 +97 x 13 0.0010 0.00076 0.6055 0.0015 0.0059

Table 2: Accuracy test: 2-dimensional turbulent flow around a circle, second order accurate

discretization

and for the outflow boundary we set:

Upy = 0
vy = 0 (25)
? = Po

We compute the “real flow” around the circle for a number of different lami-
nar and turbulent viscosities. A comparison between experiments and computed
flows for low Reynolds numbers is displayed in figures 16-23. The correspond-
ing part of the composite grid used for the calculations is found in figure 15. We
observe good agreement between the measurements and the calculated flows.
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Nr. of gridpts. erru errv errp
25 x 25+ 39 x 8 0.0019 0.0012 0.30

quota 27 21.82 10.0
order 4.75 4.45 3.33
49 x 49+ 77 x 15 0.000070  0.000055  0.031
quota 23.33 27.50 9.68
order 4.54 4.78 3.27

97 x 97 + 173 x 29  0.0000031 0.0000020 0.0032

Table 3: Accuracy test: 2-dimensional laminar flow around a circle, fourth order accurate

discretization
Nr. of gridpts. erra errv errp errk erreps
25 x 254 39x 8 0.0013 0.0012 0.17 0.0056 0.020
quota 50.98 18.46 4.15 3.73 3.64
order 5.67 4.20 2.06 1.91 1.86
49 x 49477 x 15 0.000051  0.000065 0.041 0.0015 0.0055
quota 21.25 32.50 9,53 3.33 3.23
order 4,41 5.02 3.25 1.74 1.70

97 X 97+ 173 x 29 0.0000024 0.0000020 0.0043 0.00045 0.0017

Table 4: Accuracy test: 2-dimensional turbulent flow around a circle, fourth order accurate

discretization
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Figure 15: Composite grid for comparison between experiments and computations for lami-

nar 20 flow around a circle.
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Figure 16: Comparison between experiments and computations Re = 0.25.
Figure 17: Re = 3.64.

Figure 18: Re = 9,10,
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Figuare 19: Re = 13.09.

Figure 20: Re = 39.9.
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Figure 21: Re = 51.7.

Figure 22: Experimental flow at Re == 65.0.

We compare the solutions obtained by using the Baldwin Lomax— and the
k—e-turbulence model in figures 24-35. The Baldwin Lomax turbulence model
gives a stronger wake.
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Figure 23: Numerically computed flow at Re = 65.0.

Figure 24: Composite grid, second order accurate discretization
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Figure 26: Baldwin Lomax [ k-e ~turbulence model, ¢t = 1.5
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Figure 32: Baldwin Lomax / k~e¢ —turbulence model, ¢ = 10.5
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Figure 34: Baldwin Lomax [ k-¢ —turbulence model, # = 13.5.

We test the fourth order solution by comparing with a second order solu-
tion, computed using roughly the same grid. The difference between the fourth
and the second order grids is that the second order grid has less interpolation
overlap and only one row of ghostcells instead of two. The grid is found in
figure 36 and the solutions in figure 37. Enlargements of the circle and the
wake area in these two figures are found in figures 7?. We observe that the
differences between the solutions are small. For the fourth order accurate solu-
tion, the recirculation bubbles have sharper “corners” at the separation points
and at the point where the wake rejoins downstream. Furthermore the center
of the recirculation bubbles are further from the symmetry line. These obser-
vatins indicate that the fourth order accurate solution have at least slightly
higher accuracy. This is especially useful in 3D. computations, since memory
requirements often are severe.

Figure 35: Baldwin Lomax / k-¢ —turbulence model, ¢ == 15.0
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Figﬁre 36: Composite grid, second order accurate discretization

Figure 37: Comparison between second / fourth order accurate discretization
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Figure 38: Enlargement of the composite grid above

47 .



Figure 39: Enlargement of the comparison between second [ fourth order accurate discretiza-

tion

Figure 40: Test geometry 2: a) a cylinder in a box, b) a cylinder in a box smoothly fitted
to the wall.

6.1.2 A 3D Cylinder

As a simple example 3D geometry to validate and check the solver, we have
chosen a cylinder mounted to a wall in a box, see figure 40. The side length
of the box is 1.0 and the radius of the cylinder is r = 0.15. We study both a
cylinder mounted sharply to a wall and a cylinder mounted smoothly by the
use of a collar - like fillet. The smooth mounting is chosen for demonstration
of some of the capabilities of composite overlapping grids. It is quite simple to
create an accurate discretization of the mounting of a wing to a body by using
this technique.

We have performed accuracy tests computing both laminar and turbulent
flow, using both second order and fourth order accurate discretization of the
equations. These results can be found in tables (5-6) and they indicate that the
solution has the correct order of accuracy. The tests are performed as described
in §6.1.1.
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Nr. of gridpts. erru erfv  errw  errp
21 x21x 17+ 9 %25 X9 012 018 045 0.13

quota 2.67 375 6.08 1381
order 2.83 381 521 171
2Wx 20 %x24+12x35x 12 0.045 0.048 0.074 0072
quota 1.96 192 180 2.12.
order 1.94 1.88 170 217

41 X 41 x 334 17x 49 x 17 0.0229 0.025 0.041 0.034

Table B: Accuracy test: Laminar 3-dimensional flow around a cylinder, 2nd order accurate

discretization
Nr. of gridpts. erru  errv. errw  errp errk  erreps
21 x 21 x17+9%x25x 9 0.068 0.093 0.651 0.27 034 0.70
quota 1.74 233 176 1.80 1.62 2.80
order 1.60 244 163 170 1.39 297
90 % 29 x 24 +12x 35 x 12 0.039 0.040 0.029 0.15 021 0.25
quota 1.90 2.11 181 179 210 1.92
order 1.85 2.15 1.71 168 2.14 1.88

41 x 41 x33+17x49x 17 0.020 0.019 0.016 0.084 0.10 0.13

Table 6: Accuracy test: Turbulent 3-dimensional flow around a cylinder, second order accu-
rate discretization

Nr. of gridpts. erru errv eIrTw  errp
20x 20 x 18410 x25x 10 0.14 0.14 0.19  0.39
quota 4.52 4.38 6.78  3.00
order 4.35 4.26 552  3.17
28 x 28 x 25+ 14 x35x 14 0.031 0.032 0.028 0.13
quota 3.44 3.56 424 342
order 3.56 3.66 417  3.55

30%39x35+19x49x 19 0.0091 0.0091 0.0066 0.038

Table 7: Accuracy test: Laminar 3-dimensional flow arcund a cylinder, fourth order accurate
discretization
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Nr. of gridpts. erru errv errw errp  errk  erreps
21x21x174+9x25x9 0.071 0.000 0053 024 031 0.60
quota 3.76 3.56 3.72 3.18 164 240
order 3.82 3.67 3.79 3.34 143 2.83
20%x29x 24+12x35x12 0.019 0025 0.0014 0.075 0.19 0.25
quota 3.86 3.77 3.61 293 209 193
order 3.90 3.83 3.711 3.10 213 190
0.13

41 % 41 X 33+ 17 x 49 x 17 0.0049 0.0066 0.00039 0.026 0.089

Table 8: Accuracy test: Turbulent 3-dimensional flow around a cylinder, fourth order accu-

rate discretization

1§t

Figure 41: Discretization of the cylinder in testcase 2 a)
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Figure 42: Flow around the cylinder in testcase 2 a), isocontours for the pressure
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Figure 44: Discretization of the cylindex with fillet in testcase 2 b)

52




. 3845

R

o]
=hm

Figure 45: Flow around the cylinder with a fillet in testcase 2 b}, isocontours for the pressure

6.1.3 A Simple 3D Ship Hull

We model a simple 3D ship stern by a half of a circular cylinder mounted to
the fourth of a sphere, see figure 47. We consider the flow to be symmetric
around this model stern. The composite grid used to discretize half of the test
geometry is found in figure 48. We have performed a series of computations of
both laminar and turbulent flow.

We show a plot of the solution in figure 49-50.
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Figure 46: Flow around the cylinder with a fillet in testcase 2 b), isocontours for the axial

velocity

Figure 47: Test geometry 3: A cylinder fitted to a quarter-sphere.
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Figure 48: Composite grid discretization of test geometry 3, a part of a sphere mounted to
a part of a circular cylinder.
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Figure 52: A submerged simple ellipsoid in a box.

6.2 3D Submerged Obstacles

Tn this section we examplify flow around submerged obstacles. We have chosen
a single ellipsoid and a double ellipsoid for this task, see figures 51,52. Dr’s
G. Chesshire and N. A. Petersson has generated the double ellipse grid. We
then display a figure showing computed flow around the double ellipse.
Further details of the composite overlapping grids used to discretize the
geometries are displayed in figures 33,54.
We show a plot of the solution in figure 55.
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Figure 53: A composite overlapping grid, discretizing a submerged simple ellipsoid in a box.
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Figure 54: A composite overlapping grid, discretizing a submerged simple ellipsoid in a box.
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Figure 55: Flow around a submerged double ellipse. Contourplot of the axial velocity.

6.2.1 A 3D Tanker Hull

We use a HSVA, see figure 56, tanker as a reference geometry for our compu-
tations. This tanker has been extensively studied and there are experimental
data available for this ship hull. It has also been used as a reference geometry
in several workshops on the subject, cf. {35, 37, 40].

The discretization of the stern is viewed in figures (11,12). An isosurface
plot of flow around the hsva stern is found in figure 57. The Reynolds number
for this flow is 10% and the k-e turbulence model is used.

In figures 58-61 we compare the axial (longitudinal) velocity obtained by
our method with both experimental results and computational results. The
experimental and computational results are taken from [37]. The computational
results we compare with were computed using the method described in {36]. We
observe that the boundary layers computed using the present method are far
to thick. This is due to the fact that we use an explicit method to solve the
momentum equations. The very small gridsteps, needed to resolve a boundary
layer, forces the timestep to be prohibitively smail. This is one of the flaws with
the present method and we are working on local timestepping and/or using an
implicit method to update the momentum components.
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Figure 56: Test geometry 4: A HSVA tanker, described by ship rib-frames. a) The bow, b)

The stern
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Figure 57: Flow around a ship stern. Contourplot of the axial velocity.

Figure 58: A comparison between results obtained by our method, Other calculations and

experiments
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Figure 59: A corr_lp;irison between results obtained by our method, Other calculations and

experiments

Figure 60: A comparison between results obtained by our method, Other calculations and

experiments

o

Figure 61: A comparison between results obtained by our method, Other calculations and

experiments
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7 Discussion and Objectives of Future Research

We have presented a fourth order accurate method for calculation of viscous
ship flow. In this paper, we are considering double model flow - ie. assuming
that the flow is symmetric with respect to the water surface. However, we
are currently working to incorporate free surface effects into this method. The
computational method developed in this paper is carefully tested and validated
on two and three dimensional examples. In this method we use composite
overlapping grids to discretize the geometry. The physical equations governing
the flow are discretized by the use of finite difference methods. This enables
accurate and efficient resolution of the geometry and the flow phenomena.

A drawback of the present method is that the timestepping of the momen-
tum equations is explicit, this prohibits decreasing the size of the gridcells below
a certain limit since the timestep becomes too small for practical compufations.
To be able to increase the resolution in general and specifically to increase the
resolution of boundary layers one idea is to use local timestepping for time ac-
curate solution of the momentum equations. An alternative would be to use
implicit timestepping for the momentum equations. '

Another problem is the fact that a the number of gridpoints needed to gen-
erate a fourth order accurate grid around a ship hull is very large. It is not
feasible to perform fourth order flow computations for a ship grid using the
current method on a modern vector computer. Therefore an effective paral-
lelization of the solver would be fruitful for solving large problems with high
order accuracy. We would like to use the multigrid method for solution of the
pressure equation, where GMRES could be used to solve the pressure equation
on the coarsest grid.

We plan to study viscous free surface fiow around submerged obstacles and
surface piercing ships. Here, we aim at discretizing the fluid up to the actual
free surface by the use of an adaptive moving composite overlapping grid. To
study unsteady phenomena, we need to refine and speed up the grid generation
process. An interesting application is to study the interaction between the
flow around the hull and the flow through the propeller and past the rudder.
To accomplish this we need to utilize a moving composite overlapping grid
technique. Another interesting application is to model the vibrations in the
ship structure and the acoustic sound field generated by ship, after having
computed the flow field around the hull.
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