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Abstract. This paper studies weak limits of oscillatory functions where the oscillations are introduced
through a multiple number of vanishing scales - f(z, =, o), e L0 This shown that the weak limit
equals the average of the function over an affine submanifold of the torus T". The submanifold and its
dimension are determined by the limit ratios between the scales, o; = lim £, their linear dependence over
the integers and also on the rate in which the ratios between the scales approach their limit. This unexpected
phenomenon, of unstable dependence of the weak limit on the small scales, is also demonstrated graphically.
Applications to a dynamical system and to homogenization of convection-diffusion equations are given.
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1. Introduction. This study revolves around the following question: Let f(z,y) be
a function of a real variable z and the periodic variables y = (yq,...,¥,) on the unit n-
dimensional torus, 7™ = [0, 1}?, and let f,(z) be the oscillatory function

(1) @) = Jla, e )
£ En

where g; > 0, 1 < ¢ < n, are small scale parameters. Then what is the weak limit of felz)
whene; | 07

This question is motivated by one of the most important problems in nonlinear partial
differential equations — translating a microscopic level model to an effective macroscopic one.
One of the forms that this problem may take is the following: given oscillatory solutions of a
small scale dependent problem, what are the corresponding homogenized equation and data
which determine the weak limit of those solutions when the scales tend to zero? (see [3], [5]).

In [10] we have addressed this question in the case where only one vanishing scale exists.
We have studied oscillatory solutions to convection-diffusion problems which are subject to
initial and forcing data with modulated 1-scale-oscillations, i.e., functions of the form (1.1)
with n = 1. As a first step, we determined the weak limit of such functions [10, Lemma 2.1]:

LEMMA 1.1. Assume that [ = f(z,y) € BV,(Q x T?) and let [ (z) := f(z,%). Then
[1fe(2) — JF(m)Hw—l.w(n) <Ce , C~|fllerrmvey
where F(2) = s 12, y)dy.

Here, and henceforth, Q = {a, 5] denotes a bounded interval in Ry, || - lw-1,.0(q) stands
for the W-1>¢-norm in {2,

lo(@) w1 = | [ 9Vl

and BV, (Q2xT") is the space of all bounded functions f = f(z,y),z € Q, y = (y1, 92, .-, Yn) €
T, which have a bounded variation in 2.

In this paper we are concerned with the multiscale case. To this end, we assume hence-
forth that f = f(z,y) € BV,(£ x T") and view all scales as continuous functions of a
common parameter, &; = &;(¢) > 0, such that lim, 4+ &; = 0, 1 < i < n. Hence, we seek
f(z) — the weak limit of f.(x), (1.1), when ¢ { 0.

This question turns out to be more complex than the analogous question in the simpler
l-scale case. The answer, or, better yet, the array of answers which we reveal here is quite
interesting, sometimes even surprising. T. Hou has discovered in [5] a part of the picture. He
dealt with the 2-scale case and found that f(z) depends on the limit ratio e = lim, o £ in
the following unstable manner: If « is 0 (or, equivalently, infinite} or an irrational number,
the weak limit is the average of f(z,y) over the 2-dimensional torus,

(12) f@)= [, vy
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in case @ is a nonzero rational number, ™, the weak limit is the average of f(z,y) over the
projection of the straight line Spang{(n,m)} on T%,

(1.3) flz) = J[p fla,nyy, my)dy, .

The assumption under which these limits where obtained, was that r := 2 —« tends to zero
faster than €, and €,.

In §2 we complete the task and unveil the entire picture in the 2-scale case. If o is zero
or irrational, we prove that the weak limit is as in (1.2), regardless of the rate in which
r vanishes (Theorems 2.1 and 2.7). If, however, « is a nonzero rational number, the weak
limit depends on the value of & and, in addition, on the rate in which « is approached by £,
namely — the order of magnitude of r. In Theorem 2.4 we show that (1.3) holds only when
Irl << Oeq,€5); if |r| = O(eq, €4), f(z) takes a similar form of an f-average over an affine
curve on T2 which is parallel to the linear curve along which the integral in (1.3) is taken;
however, if |r| 3> O(ey,€,), the weak limit switches unexpectedly from a one-dimensional
integral to the double integral in (1.2). Our convergence proofs, in the cases where a is
rational, are accompanied by convergence rate estimates.

In §3 we deal again with the case where the limit of the ratio £ is a nonzero irrational
number. We offer alternative convergence proofs which — apart from being interesting and
different from the one in §2 — provide, in some cases, convergence rate estimates as well.
These proofs are based on some results from number theory and the theory of quasi-Monte
Carlo integration methods which we review briefly in the Appendix.

In §4 we extend our discussion to the case of a multiple number of scales. First, we
introduce an equivalence relation, ~, on the set of scales, S = {&;}1<icn- This relation
enables us to reduce the problem of homogenization of [ with respect to S to a problem of
homogenization of another function with respect to the smaller set of scales, S/ ~. After
that we show that the weak limit of f.(z) is an average of f(z,-) over a submanifold of 7™,
This submanifold is determined by the ratios between the scales and, like in the 2-scale case,
takes the form of a projection of an R™affine subspace onto the torus T». In case that all
scales are proportional, i.e., & = o; > 0 for all 1 <¢ < n, the dimension of this submanifold
is determined by the degree of linear dependence between the o;’s over Z: if they are linearly
independent, the submanifold is the entire n-dimensional torus; in the other extreme case
where they are all rationally-proportional, the submanifold is 1-dimensional. In the general
case where the scales are not necessarily proportional, the limit-submanifold depends also
on the number of different orders of magnitude among the scales, as well as on the rate in
which the ratio between two scales of the same order of magnitude tends to its limit, in
resemblance to the 2-scale case.

85 is devoted to applications of our analysis. In §5.1 we study the motion of harmonic and
quasi-harmonic oscillators in several dimensions; in §5.2 we apply our results to the homog-
enization of nonlinear convection-diffusion equations. Finally, in §6 we provide convincing

visual illustrations of our weak convergence results.
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We conclude the Introduction with some notation remarks. Throughout this paper, Z,Q
and R denote, respectively, the sets of integer, rational and real numbers; Z*, Q* and R* stand
for the same sets with the exclusion of 0. We also define the following smoothness classes:

DEFINITION 1.2. BV{y 1 < 4 < n. ic the close mf all functions f € RV_T(O e Tn)

Al LA ¥ \y} I > b oduy #O LU LrWwoo Vg wer Juidrris ied
which have a uniformly bounded variation with respect to y; in Q x ™.
Lip(y;) (or Lip(z)) is the class of all functions f € BV,(Q x T") which are uniformly
Lipschitz continuous with respect to y; (respectively, x) in 0 x T™,

2. W-l=.Convergence Analysis with Two Scales. Throughout this section and
the following one, §3, y = (¥1,%) € T2, f = f(z,y) € BV, (2 x T?) and f.(z) = f(z, &, £).

We identify the common parameter ¢ with &,, i.e.,
(2.1) gy =¢6{e) , € =¢.

Denoting, as before,

(2.2) r=——a—=0,
€2
we get that
(2.3) g, =oac+ 6 where §=re=o(g).

2.1. Case 1: Zero limit. Here we deal with the case where the ratio & tends to zero.
In this simple case, the following holds:

THEOREM 2.1. Assume that £ — 0 and that f € Lip(y,) or f € Lip(z) 0 BV (y,).
Then

(2.4) 1) - (mvm@<0mn( +§),
where
(2.5) J@= [, ).

Proof. Defining

xr
o(om) = @), 9@)= [ g,

2
and

h(m,yz) = fTi f(wa yny‘z)dyl 3 H(C’") = ]Tl h(a:, yz)dyz ;
)



the difference in (2.4) may be decomposed as follows:

— T B T -
(2:6) |fe(=) = f(@)llw-ro0() < llo(2, '8"1") = (@) llw-reo@ + [IAlz, ) = h(@)|lw-1.00 () -
Using Lemma 1.1 for the two terms on the right hand side of (2.6), we get that

2.7 |Iflz) = f@)lw-1.00(0) < Const - (Hgnbl(Tl;BV(Q)) <&+ ||”llr r;Bviay) '82) :

One can verify that either of the smoothness assumptions that we made on f implies that

(2.8) ol (rr,8viay < Const - €5
Therefore, (2.4) follows from (2.7) and (2.8). O

2.2. Case 2: A nonzero rational limit. Here we deal with the case where the ratio
o tends to a nonzero rational limit. We first assume that this limit equals 1, namely, in
view of (2.3), &; = £ + § where § = o(¢).

In Lemmas 2.2 and 2.3 below we prove that the weak limit depends on the ratio between
6 and £2 in the following way:

(29) i - $) le f(w,yl—cm,yl)dyl if s%—n:
. N AN
e+ 8¢

fsz flx, 41, y2)dydy, if % — 0

LEMMA 2.2. Assume that & — ¢ and f € Lip(y,). Then

(2.10) I, fg) — F(@)llromiay < Comst ( +i5-d) |
where
(211) f(w) = .[I'l f(mayl - Cm:yl)dyl ‘

Proof. We decompose the error in {2.10) as follows:

212) If(e, g0 2) = (@) lw-ro <
(£ (=, E+5a$) f(ﬂ?,g—cm:§)||w-1,°°(n)+||f($,g—cwag)—f(m)nw—l-m(n)-

The first term on the right hand side of (2.12) may be upper bounded in L*°, using the
Lipschitz continuity of f(z,-,ys):

(2.13) |\f(=,

) f= ‘”"“Cma )”w 1e0(Q) S
6
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£r x T T
911 g0 D) = 10, = 2, Doy <

< I
v

f N1 3
(——cm)‘ < Const - ic—

Const - 1
£

e+ 6 e+ eb

Finally, one can easily verify that the upper bound on the right of (2.13) may be written as

).

In order to upper bound the second term on the right hand side of (2.12}, we define

9(z,3) = fle,yy — ez, y1) and §(z) = Jmg(z,p1)dy;. Clearly, g € BV,(Q x T} and
G(z) = f(z). Hence, by Lemma 1.1,

+5’

T z x )
@14) (i@ — )f@;—mgmwwmgwmr@+b—c

z
215) 1o = 2,2 = @lymsomie = (2, ) = 3@ y-voey < Comst e
Error estimate (2.10) now follows from (2.12), (2.14) and (2.15). 0

LEMMA 2.3. Assume that & — 0 and that f € Lip(y,) or f € Lip(z) N BV (y,). Then

(2.16) I/ (z, 5—7-5’52) — f(z)|lw- neozy < Clonst - (|5l + ;3;])
where
2.17) Fw) = [, (e,n)dy

Proof. We consider the function g(z,y1,v,) = f(2, 91,31 + ¥2), which is 1-periodic with
respect to iy, ;. Clearly, g is as smooth as f with respect to 2 and y, and, therefore, safisfies
the assumptions of Theorem 2.1, With this, we rewrite our function as follows:

@ 3:) ( x w) | 5 g2 4 eb
8_]_5, g$7h ™ where 1y =€+0, 1= 5

@218  f(,

Since & >> |§] => €2, we have that

2

(2.19) m~e—0 and nzw%—ﬁi.
Moreover,
(2.20) o, 0.

2

- ] o



Hence, in light of (2.19)~(2.20), we may apply Theorem 2.1 to ¢ and conclude that
z 5 g?

(221) oG, 2, 2) = 3w @y < Const - (' Ly )
h T 18]

where

(2.22) f] T, Y1, Y2)dy1 dy; -

Using the definition of ¢ and a change of variables in (2.22), we obtain that

(2.23) 9(2) = [ [ fle, v va)dyadys

where D is the parallelogram with the vertices (0,0), (0,1), (1,1) and (1,2). Finally, using
the 1-periodicity of f with respect to y,, we get that

(2:24) 9(8) = f(e)= | f()dy
and (2.16) follows from (2.18), (2.21) and (2.24). O

Remark. In Lemma 2.2 we assumed that f € Lip{y;). In case this assumption does
not hold but f € Lip(y,), we may define a new scale, £ := & + §, with respect to which
f(=, 5, 2) = f(x,%,3%;) and proceed as before. Also in Lemma 2.3, where we assumed
smoothness with respect to y,, we may interchange the roles of y; and y, by applying the
above rescaling.

The same principle holds for all our statements henceforth where the smoothness as-
sumptions with respect to y; and y, are different: when needed, one may always apply an
appropriate rescaling in order to interchange between those two variables.

Finally, we deal with the general case of a nonzero rational limit:

m

THEOREM 2.4. Assume that 2+ — T where m,n € Z* and 7 = 2 — .
(1) Ifr—e then

(2.95) 1£.(2) = F(@)lw-rmiy < Comst- ( +|Z- ) .
where

nicx
(2.26) F@)= [, fyny = 2 mun)dys

provided that f € Lip(y,).
(2) If 2 — 0 then

(2.27) 1£.(2) = F(@)llworen(@y < Comst - (|r| ¥ ﬂ) ,
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where
(2.28) F@y= [, f@ )y,
provided that f € Lip(y,) or f € Lip(z) N BV (ys).

Proof. Introducing the notations & := me, and 8§ 1= nre,, we get that ney = £+ § and

)

nr mz. z

(2.29) fe(w)mf(ﬂ:,i,f;) = flo, —, 22 = g(a, -

ne; Me, E+ 6

mzl&%

milony

where g(z, 41, vz) = £(&>nys, mys). Since
in order to obtain the W=1eo-limit of g(z, ¥z, %) and, consequently, that of f.(z).

3
In the first case, Z- — ¢, we have that

= % .p — 0, we may apply Lemmas 2.2 and 2.3

+

= — — .

) nr ne
5 m262 m2

Hernce, since the assumption on f implies that also g € Lip(y,), we conclude by Lemma 2.2
that

z T, 6 nc
(2.30) lo(e, 25, 2) - ) lho-rmtsy < Cont ( MU %—) |
where

: _ ne
(231) 3(@) = [ oo, = e )

As the definition of ¢ implies that

20
(2.32) ] flz,ny, — E_if my )y ,

(2.25)-(2.26) follow from (2.30) and (2
In the second case we have that
conclude that

32)
% — 0. We, therefore, apply Lemma 2.3 to ¢ and

T T, 8] &

: — ) - T to | 24 =
(2.33) llg(= s 7)) = 3(@)llw-s.0(e) < Cons (5 + IS!) ,
where
2.34 j(a) = dy .

(234 9(@) = [ o(zv)dy

Since the 1-periodicity of f implies that [ g(z,y)dy = fr f(z,y)dy, we arrive at (2.27)-
(2.28). O
g



Remark. Consider the first case where = — ¢, r = 2 — 2. It may be verified that in

this case -Z-;’- — —2¢% where 1’ = 2 — - (consult Proposition 4.2 in §4). Hence, the weak limit
f(z) in (2.26) ta.kes also the alternative form

(235) F@)= [, feynysmys + ~—)dys

Indeed, replacing the integration variable in (2.26) with y, = y; — 7F, we see that the two
forms of the weak limit in this case, (2.26) and (2.35), agree.

Example. Consider the basic functions which span BV, (Q x T?),
(236) Em,n(ylay'Z) = 621ri(my1+ny2) y MM EZ, Y,Y2 € 7.

According to Theorem 2.4, if |§] << € | 0, the following hold on any bounded interval §:
ML e

237 By D) = B (e)lraomgey =0
where
2rincxy —
= _ _ _Joe if m+n=0
(2.38) Em’n(cm) o /Ts Ep (17 ez, Jdy; = { 0 otherwise !

@ UL -0,

T oz ~
(2.39) 1B g 5~ Bl = 0
where
~ 1 f m=n=0
2 _
(2.40) El.= f/,ﬂ B in (Y1 92) i dyz = { 0 otherwise
Indeed, denoting E(z) = e?"®,
T g2+ ed
E -\ — — 1 = .
,n( +63 ) (n) wiere 9 (m+n)5_§_n6

When 5— — 0, 7 — 0 for all (m,n) # (0,0). Therefore, by Lemma 1.1, [[E(E){lw-1.00 <
Const - [g| — 0. Since the case m = n = 0 is straightforward (Eoo = 1), we get the weak
limit in (2. 39) (2.40).

When & — ¢, we consider two cases: if m +n # 0 then n ~ ¢ — 0 and, therefore as

before, the weak limit is zero. However, if m 4+ n =0, E,, (%5, %) = E(nz - 5 <2—). Since
;5% — ¢, we obtain, owing to the Lipschitz continuity of E, the strong convergence in L

E (55 2) — E(nez) = €2m7%, in agreement with (2.37)-(2.38). &

The integral in (2.26), or (2.35), is taken along a closed spiral curve in T2. The larger
are m and n — the longer is the curve. Let o be an irrational number and let {"“"h}keN be a
10



sequence of rational numbers which converges to a as k — oo, Let L, = {{ngyy,mu:) + 11 €

T} be a typical curve in 17 assomated with 7% by (2.26). Then, since my,n; — oo, the
length of £, tends to infinity as ™ — « and the "limit-curve”, so to speak, covers the entire
torus T2, Hence, it is natural t@ mmpf-‘r that when fl -+ o, «v irrational, the corresponding
weak limit of f.(z) will take the form of a two- dnnensmnal integral over T2, like in (2.28),
rather than a line integral as in (2.26). This is the subject of our discussion in the following

subsection.

2.3. Case 3: A nonzero irrational limit. Here, 2z —»a €R \ Q. We start with the
following straightforward lemmas:

LEMMA 2.5. Let By ,(y1,y2) be as in (2.86), « € R\ Q and |§| << e | 0. Then there
ezists a constant C' > 0, such that for every fized (m,n) # (0,0),
ae? +ed

1,00 < = .
)”W (1) Clnl where n = (m-l—nar)s-i—n(?_)o

(241) Bl

Proof. Denoting E(z) = €™, E,, (2%%,2) = E(%), with n as in (2.41). Since the
irrationality of o implies that m + no # 0, we conc]ude that  ~ ¢ — 0. Hence, applying
Lemma 1.1 to the real and imaginary parts of £ (;*]"»), both of which have a zero average, we
obtain the weak convergence rate in (2.41}. 0

LEMMA 2.6. Let g € BV(Q) and f € W-1eo(Q). Then g-f € W-1e(Q) and

(2'42) Hgfuw—l»w(n) < (HQHLw(Q) + ”gHBV(Q)) ’ ”f”w—lm(n) .

Proof. Let F(z) denote the primitive of f(z), F(z) = [7 f(£)d¢. Then

(2.43) f 9f = g(z)F(z) - f gF .
Taking the supremum in absolute value over 2 on both sides of (2.43) we arrive at (2.42). 0

We may now proceed to prove the main theorem of this subsection:
THEOREM 2.7. Assume that &8 — a € R\ Q and that f € L>(Q, H*(T?)), s > 1. Then

(2.44) 1fo(x) = F(@)lw-s.0(0) = O,
where
(2.45) f@)= | vy

11



Proof. Using the notations (2.1)-(2.3), we shall show that for any p >0
xr T -
(2.46) I f(z, poard E) = f(@)lw-reo@) S 1

for sufficiently small €.
Let fn denote the Nth order Fourier approximation of f,

(2.47) fN(may) = fN(w:y11y2) = Z fm,n(:c)Em,n(yl:y'z) H

—N<mn<N

where fm'n(m) are the corresponding Fourier coefficients. Then, for any value of r, 1 <r <'s,
it holds that

(2.48) 1£(2,7) = fn(e, My < Const - i (w}\;)s'_f’f”) ¥z €0

(consult {9]). Hence, since the L*™-norm in R? is dominated by the H™-norm for r > 1, we
conclude that

oo (@250

(2.49) [|f — fullLeoaxrey = sup 1f(z,+) = (e, )llpoogrey < Const - Noer moﬂ :
We may now proceed to prove (2.46). By (2.49), there exists N such that
J7i
(2-50) “f(fcay) - fN(may)“Lm(ﬂxT?) < m .
Therefore, for this value of N,
T T, = 1 r oz,
(2.51) ||f(=, PO E) — f(@)lw-reo () < ) + || fn e, PP ;) — f(@)iw-10000) -

Since f(z) = fo’o(m), we may upper bound the second term on the right of (2.51), using
Lemma, 2.6, as follows:

T T, = A r oz
(2.52) {|fw (=, as_l_&,g) — f@)llw-ro0) < 2 mal@) M w20y 5
where the sum is taken over —N < m,n < N, (m,n) # (0,0) and |-} := ||+ ||zeo(y + |} * [|Bv (-
Since, by Lemma 2.5, each of the terms on the right of (2.52) tends to zero when & 10,
z z - H
(2.53) ||fN($,mag) — f@)lw-ree) = 55

for sufficiently small &. Therefore, (2.46) follows from (2.51) and (2.53). O

Remarks.
1. The assumption f € Leo(§, H*(T?)), s > 1, could have been replaced by the
" weaker assumption that f has a uniformly convergent Fourier series; namely, (=) —
In (@ y)|lpeourey — 0 as N — oo.

9. 1t is possible to quantify the convergence rate in (2.44), by assuming a rate of decay
of | fm,n(:c)l and a lower bound for C'y := min |m + na| where the minimum is taken over all

—N <m,n <N, (m,n) # (0,0).

12



3. The case of a nonzero irrational limit revisited. In this section we deal once
again with the case where the ratio Z* tends to a nonzero irrational limit. In §2.3 we have
obtained the weak limit of f.(z), without a convergence rate estimate. Here, we attack the
same yroblem with entirely different techniques, which ~ apart from bemE interesting for

PR 2320 R s LRI D LSS Y

their own sake — render convergence rate estimates in some subcases.

We first handle the relatively easy case where the ratio between the Sca,les is kept fixed,
& = o € R\ Q, and then we proceed to the closely related case wherer = 2 — « is of order
of magnitude no larger than O(ey,6,), ie,, & > c€R. We establish the weak convergence
of f.(z) to the average of f(z,) on T, by classical arguments of ergodic theory; moreover,
for some values of a we obtain convergence rate estimates as well (see Theorem 3.2 below).

The case where |r| > O(e;,€,) is much more intricate. Here, we are able to obtain
convergence rate estimates only for a subsequence of f,(z) (Theorem 3.3) or for the entire
sequence, whenever « is an algebraic number (Theorem 3.4).

The analysis presented here involves some terminology and results from number theory
and the theory of quasi-Monte Carlo integration methods. The reader is referred to §7 where
a brief review of these terms and results is provided.

We start with the simplest case where the ratio between the two scales remains fixed.
The following lemma is a modification of [5, Lemma 2.2}:

LEMMA 3.1. Let f € BV,(4 x T?) and o € R\ Q. Assume that f is differentiable with
respect to x and is in class BV (y,). Then

.’17 €T

(3.1) 1£ (@, —, =) = J(@)llw-100(0) < Cle) —0,

CBE £ e—0

where
(3.9 f@)= [ fev)dy .

Furthermore:
(1) If « is proper, then C(e) = O(e|logel);
(2) If « is of type n and f(z,yy,") is in class E* for k > 1, then C(e) = O(e).

Proof. By normalizing f, we may assume that f(z) = 0. For the sake of conveniency, we
shift the z-domain, {2, so that = [0,4]. We therefore have to show that for any z, € [0, 8],

[ e, = D

aE €

—0.
g—+0

(3.3)

We first prove the assertion for functions f which do not depend on their first variable,
f(z,y1,¥2) = f(¥1,y2). By a change of variable in (3.3) we get that

1 M
v fU Fy1, oy )dy,
13

<b-

(3.4) f — = d:c

CYEE

¥




where M = 2. We need to show that the right hand side of (3.4) tends to zero as M ~+ oo.
It sufﬁces to show that only for integer values of M. Using the 1-periodicity of f with respect
to y,, we get that

Z/ fylanl'i'Cm dyl""—z ”C‘f )

n-—U

(3.5) "Alz /OM S (1, ayq )y, =

where F(z) := [} f(y1, ays +2)dy, . Since F is 1-periodic, we may apply the ergodic theorem
of equipartition modulo 1, (7.4), to conclude that

1M"1F IF d r dy,d
(3.6) 3 X ) o [ = [0 [ =0

Therefore, (3.3) follows in this case from (3.4)~(3.6). The convergence rate estimates (1) and
(2) are consequences of Propositions 7.2 and 7.5 in §7.

Next, we deal with the general case where f depends on its first variable, [ = f(z,y1, %)
Using the identity

T d
f(xsagss) dm/f(maggds_ff“’ dS,

we get that

(3.7) L f(a:,f;,i—)d:c: /: f(:co,;, )ds — f f fu(w, — —)dsd:c.

Since the function ]}.(w,yl,yz) is 1-periodic with respect to y;,y, and has a zero average,
Jp2 fo(2,y)dy = £f(z) = 0, we may apply our previous arguments to the integrals with
respect to ds in (3.7) and thus conclude the proof. U
THEOREM 3.2. Assume that & — o €R\Q andr = 2 —a. Let f be differentiable with
respect to x and in class Lip(y;) OV BV (y,). Then if
.
(3.8) — —c,

€

it holds that

(3.9) 17.(0) = F(@)llw-s.om) < Clensen) — 0,
where

(2.10) f@)= [, fev)dy
Furthermore:

(1) If « is proper, then C(ey,€,) = Const - (aﬂlog gql) +
14

);




(2) If « is of type n and f(z,y,,") is in class EF, k > 7, then Cleq, &) = Const -
(2t o= <)

em 1g gimilar to the one of TLemma 2.2 and, therefore, is

:n
_a—"
42}
O
i
;'D
2
ot
w
@
:
uadd
o
_,.

DPrnnf Tha T\" qu Of ] 1

A FUVf. & e Yaad

outlined shortly:

311) L) - f@)lw-reg@ <

17— 5 = £ = 5 Dllwemiey + 1@ o = 502 = F@lwmiey
Since

1 1 e 1/ 6 % r
we conclude, using the Lipschitz continuity of f(z,-,y;), that
(312) If(a, —. — (2,2 = 25, lh-soeqay < Const (“"512 +52) =0

Applying Lemma 3.1 to the function g(z, v, y2) = f(2, 91 — &, y,) (which, like f, is in class
BV(y,)) and observing that [r» g(z,y}dy = [r2 f(z,y)dy, we conclude that

cx X

(3.13) || f(, —_azi_)_ F@)lw-rmgmy — 0.

ey,62—0

This concludes the proof of (3.9)-(3.10). As for the convergence rate estimates (1) and (2),
they follow from the analogous estimates in Lemma 3.1 and from (3.12). O

Now, we are concerned with the case where |r| >> ¢, The approach here is different
from the one employed above for the case where |r| ~ &, or jr| << ;. Our two convergence
rate results in this case are as follows:

THEOREM 3.3. Lete; = ;(v) > 0,1 = 1,2, be two vanishing scales as v — 0F. Assume

that v : —a — 0, where a €R\ Q, and that f € Lip(yy). Then if
(3.14) 6—: S0,

there ewists a subsequence of scales, £,(1,), vy — 0F, i = 1,2, such that the corresponding
sequence of functions, f, (z), satisfies:

(5.15) ||fuk(m)-f(m)nw-i,wm)soonst-( i ) F@) = [, £y

15



Proof. By Proposition 7.7, there exists an infinite sequence of pairs of nonzero integers,
{(my, ny), such that

1
nk'

o
Ifbku

LYY

A

i 100
(210}
For a given pair in this sequence, (my, n;), we define v to be the scaling parameter for which

[8(m )] 2
E(b’k) | (Vk)i ni )

(3.17)

(8, ¢ and r are as in (2.1)~(2.3)); if the convergence of |r| = [r(v)] to zero is not monotonic in
v, we choose v, to be the first value of » for which (3.17) holds. For the sake of conveniency,
we use henceforth the notations m, n, €, 6 instead of my, ny, e(v;), (). We shall show below
that for these values of £ and &, it holds that

z |61
(318) “f( _{_6’ )_ ( )”W —Leo {01} <Const (‘5* +\/_)

and, thus, prove (3.15).

We introduce the function ¢(x, %1, ¥2) = f(2,¥; + ny;, my,). Clearly, g € BY, () x T?),
and it is in Lip(y,) with a Lipschitz constant that equals the one of f (z,-,y2). Moreover,
one may easily verify that §(z) = [z 9(z,y)dy = f(z). With this, we have that

r =
19 = el
(3.19) o2 D = oo, 2,5
where
)
(3.20) n, =me and 1, = me(ae +9)

(m —na)e —né
By our choice of m, n,¢ and &, we conclude, using (3.16)(3.17), that

|(m — na)e —né| < — +n|6|—3;6;

|(m — na)e — né| = nlé| — |m — nale > nl] - % - i ,

The above two estimates, together with (3.20) and (3.17), imply that

(321) 7_?1 — I(m - na)E —né < Const — Const - £6| ’
M2 ae -+ n €
ac + 8 g?
. = . < t- = el
(3.22) |72| = me (= nae —nd Const - n%*c = Cons H

16



Hence, by Theorem 2.1,

A - T T
v sty = Bt S ooy <
I (z, e + 6 e) f(@)lw- (™ llg(=, 7?1’?72) gz lw- o=
i g? 16] _ S92
Const- [ |ln] +|=|] < Const- | =+ — | =Const-| =+ Vil .
72 1] £ Irl

THEOREM 3.4. Assume thatr =2 —a— 0, where ¢ is an irrational algebraic number,
and that

&g

- (8.23) < Const-eb  for somep>0.

r|

Then if f € Lip(y,), the following error estimate holds for every positive number v > 0:

(3.24) |fe(z) - FNlw-100) < Const, - r|™ - (% + \/’lﬁ) , flz)= sz flz,y)dy .

Remark. Note that assumption (3.23) guarantees that the error bound in (3.24) indeed
tends to zero when €;,€; | 0, for sufficiently small values of ». This error bound agrees with
the one that we got for a subsequence in Theorem 3.3, modulo a spurious factor of lr|-v.

Proof. Letting g(z,y1,y2) and 7,7, be the same as in the proof of Theorem 3.3, we get

that

We fix 0 < ¢ < 1. Then, as a straightforward consequence of Proposition 7.6, there
exists a constant ¢ = c(«, q) such that for all 4 >0

(325)  [Ife(=) — F(@)llw-1() = llo(2; f; ;—2) = §(z)llw-reoey < Const - (l??2| +

53
T2

(3.26) lna—m|<p = n2cp?.

Now, we set

(3.27) b= (% : @) m .

£
Hence, by [4, Theorem 36] and (3.26), there exists % € Q such that
(3.28) lno—m|<p and cp? <n<ph.
Using (3.27) and (3.28), we get that

2
(3.29) 2ue < nid| < —Hte and |na—mle < pe .
17



Therefore, by (3.28)-(3.29), we conclude that , and 7,, given in (3.20), satisfy:

/51

o
e

(3.30)

'(m—~nae—n5
ae + 6 |~

£ &

161\* (l6]\ D
Const - (g + p?) < Const - p? = Const - — :

ag+6
(m — na)e —né

2t
2 5 31
(3.31) ;| = me - < Const- = Const - e (-l—gl) !

I 6]

Hence, by (3.25), (3.30) and (3.31), we arrive at the conclusion that for every 0 < ¢ < 1
there exists a constant, Const,, for which the following error estimate holds:

[

2 1) &1\ o1
(3.32) I fe(z) — f(@)lw- eo(q) < Clonst, - (;ﬂ + u . (u)

Finally, let v be a small positive number, 0 < v << 1. Then, by taking in (3.32) ¢ = ;:; and
recalling that L_l = |r| and IE5I = {&, we arrive at the desired error estimate (3.24). 0O

4, W-le~-Convergence Analysis with Multiple Scales. Here we study weak limits
with respect to multiple number of scales and generalize the results of §2.

As a first step, we define an equivalence relation, ~, on the set of scales, S = {e:h<i<n-
Later, we use this relation in order to reduce the problem of homogenization of f with respect
to S to a problem of homogenization of another function with respect to the smaller set of
scales, §/~.

DEFINITION 4.1. The two scales €;(€),¢;(¢) € S are said to be equivalent, &; ~ €;, if
there exist a € Q* and ¢ € R, such that

£;

-a
.1 ! .
(4 ) Ej s—t_O':’c
Remark. Theorem 2.4, which dealt with the case where lim £ = « € Q*, was separated

into two subcases: when e, ~ g,, (2.25)—(2.26) hold, while otherwise (2.27)-(2.28) hold.
PROPOSITION 4.2. The relation ~ is an equivalence.

Proof. The relation is clearly reflexive (with & =1 and ¢ = 0). Next, we prove that it
is symmetric. Let g;,¢; satisfy (4.1); then

(4.2) g— =(c+r)g; +a where r — 0.

e—0t
18



Hence, using (4.2) and (4.1) we get that

£: 2 3 By 2 3
()" (o) L [E ey ] ()
bo\&i/

g _ 1  &g_ 1l
£ o o -3
€; £; \é&:i/ L & &% E;

— Ei

| &

)

3 "

£

This proves that g; ~ ¢; and, thus, the symmetry of the relation. Finally, assume that

s 5.8

p

1 — C and Zk ey d.
53’ st E e—0t

Then

Eg Ej € Er w0 F

£i o 2 5

-« - — o : -

£k ﬂﬂea (i) +_€_’°.__ﬂ..a__>cﬁ2+da.
Hence, the relation is also transitive and, therefore, an equivalence. O

PROPOSITION 4.3. Let C = {e1,...,6x}, k = 1, be an equivalence class and

& _ Pi
7§

(4.3) v

1<s,j<k.

Ej B 4 Ct',j
Let f(z,y) € BV,(Q x T%) be Lip(y;) for all 1 <1 <k with the possible exception of ¢ = j.
Let g(z,y,) be defined as follows:

'n,".zC." - .
(4.4) 9z, y1) = f(@, 21, ) where z=mgy — === 1<k,
J
Then
(45 (@2, =) = g(e, — gy < Const -y N
R el o0 on . ; - R
,81, ,Ek g ’nj5j Leo(§ly = oy i € 1,4

Proof. Since f is Lipschitz-continuous with respect to y; foralll <:<k,i#7j,all we
need to do is to estimate the difference in the corresponding arguments in the two functions
on the left hand side of (4.5). Using the definition of g, (4.4), the difference in the th

argument is
n;x nir nic ;T
Ei = - - 2 .
1;€; njaj n:

i
Note that since ¢;; = 0, we have that E; = 0. Simple algebraic manipulations yield that

2 s
(4'6) E,;:M, (Eﬁ_w——sf n’) .

n‘,‘, TI.J n;€;

19



Next, we observe that since ne; = nje; + O(e2),

g _ B g0
(4.7 S B Ofe)
fogoy lvjwj

Therefore, by (4.6)-(4.7), we conclude that

& . D
€4 g
Y]

_)

(4.8) |E,} < Const - (5,- +

which proves our assertion. [

Proposition 4.3 enables us to unify equivalent scales into one scale in the following
manner: instead of studying the weak limit of f(z, &, ..., i), wheree; ~ g; forall 1 <4,5 <k,
we may study the weak limit of g(z, ~%-) which depends only on one vanishing scale, n;e;.

We would like to point out that if f is Lipschitz-continuous with respect to all of its
y-variables, we may choose each of the quantities n;e;, 1 < j < k as a representative for
the equivalence class. Each choice will induce a different 2-variable function, g;(z, nij).
However, it may be shown, along the lines of the remark after Theorem 2.4, that the weak
limit of g;(z, "nf_s,)’ Jr1 9;(, 41 )dy,, is independent of 7.

Assume that the equivalence relation ~ defines £ equivalence classes in the set of scales,
S = {ei}icicns 1€,

S/ ~= {Cm}1§m52 y 1 g £ S n,

where
Emi T, 5 .o
Cm = {Emil, .."8m|km} a'nd = . ]' S Z’j S km *
é:‘m,j T,
Defining a new set of scales,
ETf'm, = Ny ifmy l1<m< { )

where &,, ; is a representative of its class C,,, 1 <14 < k,,, we may define a function g(z,y} €
BV, (2 x T*) such that
T T z T
(49) ”f(m, -y ,'—) - g(r::, Ty ey T)”W—-»-l,oo(ﬂ) < C(El, ...,En) — 0.
g1 €En & Ep
The exact expressions for the new function g and the bound C(ey,...,€,) may be obtained
by applying Proposition 4.3 to each of the equivalence classes, separately. We omit further
details to avoid tedious notations. In the reminder of this section we shall assume that
f(z,y) is Lipschitz-continuous with respect to all of its y-variables. It is easy to see that this
implies that also g is Lipschitz-continuous in its y-variables.

In view of the abave, the problem of finding the weak limit of f (z, 25 £ ) reduces to
finding the weak limit of g(z, £ ;—E) For conveniency, we elect to keep using the notations

20



f, & and n, instead of g, & and £. Hence, in the reminder of this section we assume that
all scales are mutually non-equivalent. We shall also assume that all scales are proportional,
i.e.,

€
(4.10) 2 =q; >0 1<2<n.

&
This assumption is made since our goal is to indicate a phenomenon of weak convergence to
averages of the function on submanifolds of T: to this end, it suffices to concentrate on the
simple case (4.10). After the complete study of the 2-scale case in §2, it would be bothersome
to repeat the entire analysis in the multiscale setting as well. Indeed, assumption (4.10) may
be avoided by separating scales of different order of magnitude along the lines of §2.1, and
handling the case where the ratio between scales only tends to a positive number by applying
similar methods to those used in §2.2 and §2.3.

In view of the above, we aim at finding the W-1=-weak limit of
T

fs(m) ﬂf(:n,————,..., = )a

c &

where o; > 0, 1 < i < n and o, = 1. Note that since we assumed that no two scales are
equivalent, ¢ are irrational for 1 <¢<n—1. Wenow set a = (@, ..., ) € B™ and define:

DEFINITION 4.4, Let a = (o, ..., @) be a vector in R™. Then M(a) denotes the Z-
module of vectors in Z* which are orthogonal to a, t.e.,

(4.11) M(a) = {(my,...,my) EZ* ¢ Zmiai =0} .

If M(a) =0, {a;}1cicn are said to be linearly independent.

Let My(a) denote the R-subspace of R” spanned by the vectors of M(a), and Mg(a)t be
its orthogonal complement in R”. Since Mpy(a) has a basis of vectors in Z», so does My(a)*.
Hence, denoting k = dimMpg(a)*, there exist vy,..., v €Z" such that

k
(4.12) My(a)t = (P u5v; + ¥; R}

Our statement is as follows:
THEOREM 4.5. Under the above assumptions, if f € Lo(Q, H*(T™)), s > 3, then

(4.15) 1£.(2) = F@)lw-som) = 0 »
where
~ k
(4.14) f@) = [ Il v = )

21



Before proving this theorem, we give three examples in order to clarify it:

Examples.

1. Let n = 2, oy be a positive irrational number and o, = 1. Then this is the case
covered by Lemma, 3.1 according to which the weak limit of f,(z) is fr= f(2,y)dy. Indeed,
here ¢ = (y,1) and M(a) = 0; hence, My(a)* = R? and, therefore, {4.14) agrees with
Lemma 3.1.

2. Lletn=3, 0, =7%, aqy=m,azg=1landg; =%, i= 1,2,3. Consider the function

r r T

(415) fs(m) :f(x’ ;;1-7 5_2'5 g) where f(ma Y1 Y2 y3):COS(4’ﬂ'(:}C + yi)) COS(‘Zﬂ—yZ) COS(ZﬂyS)'

Since 7 is transcendental, {o;};<i<3 are linearly independent and therefore M(a) = 0. Hence,
Mg(a)t = R3 and, by (4.14),

- 1 el gl
(1.16) J@y= [ [ ] 5 v1vev2)dundyadys = 0.

3. Consider the same problem with o; = 715, oy = 1—_1\73 and o = 1. Here, M(a) =
{(2m,m,m) : m €z} Hence, My(a) = {(2t,t,t) : teR}and

MR(G’)J- = {ylvl -§-y21)2 oY ER y 11 = (_1)210) s Ug = (w17972)} =

{(—yl - y232y172y2) oYY € ]R} .

Therefore,

B 1 1 cosfdnz
(4-17) f(i') = fo /ﬂ f(% — - y2,2y1,2y2)dy1dy2 = (4 )
A

Remark. The integral in (4.14) does not depend on the choice of basis vy, ..., v € Z™; We
omit the proof of that.

Proof of Theorem 4.5.
Step 1. Let f,,(z), m = (my, ..., m,) being a multi-index, denote the Fourier coefficients
of f(m:y)a y €T e,

(4.18) fay)= 3 fu@)E.(y)  Euly)=e™mv.

mezu

Then f(z), as given in (4.14), may be written as follows:

k

(4.19) flz) = fT @Y vy = %;( | F(e).

22



Indeed, by (4.18),

i=1 men" meM(a)

(4.20) f(z,3oyv) = 3. fu()E ):y;, v)= 3 fu m)exp(%zz ¢;(m)y;) +

> fola) expl 2«32 = Si(z,y) + Solz,¥) ,

mg M(a}

where y = (y1,.,yx) € T and ¢;(m) = m - v; are integers. In the first sum, Si(z,y), all
¢;(m) = 0 since v; are orthogonal to every m € M(a). Hence,

Si(z,y) Z fm(:r:

mEM(a)
and, consequently,
(4.21) [ sG@ydy= 3 fule
meEM(a)

On the other hand, for every m ¢ M(a) there exists at least one j, 1 €3 < k, for which
c;(m) # 0. Hence,

(4.22) / Sylz, y)dy = 3 Fl :L')H/ exp(2mic;(m)y;)dy; =
T*
m¢M(a)
Equality (4.19) now follows from (4.20)—(4.22).
Step 2. Let fy be the Nth order Fourier approximation of f,

(4.23) fn(e) = 5 fu@Ealy) Il = max|my]

Im|<N

The assumption f € Loo(Q, Hs(T")), s > %, implies that
(420 1£(2,9) — flert)limaxrny 20

(for more details, see in the proof of Theorem 2.7 and consult [9]). This implies that the
sum on the right of (4.19) converges uniformly to f(z): denoting

k
(4.25) fn@)i= [ v ey = 3 (@),
i=1 meM({a) tmi<N
(the proof of the last equality is similar to that of (4.19)), we get that

(4 26) ”f(fl’) fN($ HL‘”(Q) </ f(z ZJ;’UJ Inl m?Eytv )“Lw{nm)dy <

i=1 =1
23



Il (2, y) — Fv (@ ¥)llLoo(axmy mo :

Step 3. Let ¢ > 0 be an arbitrary small positive number. Then, by (4.24) and (4.26),
there exists N > 0, such that

(4.27) 1 (@) — (s ) llzeqaxrmy + 1F(@) = Fn(@zeqey < 2—{3—] .
For this value of N,

z o, T oy o

(428) “fs(m) - f(w)l|W—1xm(ﬂ) < ”f(mi a_;wu vy ) - fN(ms -6—, ey :m)”W"llm(Q) +

4

e A "‘;”) — In@llw-reo(y + 1Fn(2) = Fl@Mlw-1e0ay -

Hf N (3: H —5—
The sum of the first and last terms on the right of (4.28) does not exceed £ in view of (4.27).
Hence, it remains only to show that, by choosing ¢ sufficiently small, the second term on the
right of (4.28) becomes also less than £. To this end, we observe that by (4.23) and (4.25),

o T (43
fN(ma “"E':—a ey =

%y - (o) =

£

S h@ewritn-0Zt - L fa@= 3 Jalew{zritnag).

Im|<N meEM(a},|m|<N mgM(a)jm|<N

Since m - @ # 0 for all m ¢ M(a), (4.11), each of the terms in the last sum tends in W-1
to zero when ¢ | 0, in view of Lemma 1.1. Hence, for sufficiently small £,

i
5 -

oy

(4'29) ”fN(x'.\_"E_:"'?

o, -
" ) — In(@)lw-1000) =
This completes the proof. [

The case where {a; };<icn are linearly independent is of special interest. Here, Mpg(a) =10
and Mg(a)+ = Rn. Hence, Theorem 4.5 implies:

COROLLARY 4.6. If {ci}1<icn are linearly independent, the weak limit of f.(z) is

(4.30) fay= [ fv)dy .

5. Applications. In this section we provide two simple applications of our results.
In §5.1 we study the motion of an n-dimensional harmonic oscillator (or, equivalently, of n
independent penduli) and a 2-dimensional quasi-harmonic oscillator, while in §5.2 we describe
briefly an application to convection-diffusion equations.
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5.1. A dynamical system. For any fixed ¢ = (o, ) € (R, n > 2, let Gla) =
{g**};cr denote the group of the following continuous one-to-one mappings of the torus I
onto itself:

(5.1) $ e T - gio(®) = P (P +ta},

P, being the projection operator of R™ onto T™. Let Lg(a) be the G(a)-orbit in T™ which
passes at ¢ = 0 through the point &, i.e., Lola) = Gla)® ={g®*(®) : t € R}. Then Theorem
4.5 implies the following:

THEOREM 5.1. The orbit Lg(a) is dense in the T™-submanifold Yola) 1= P (@ +
Mg(a)L), where Mg(a)* is given in (4.12).

Proof. Since ta € My(a)* for all t € R, it follows that Lg(a) C Lg(a). Next, we prove
that Lo(e) is dense in Dg(a). Assume, by contradiction, that there is an open set of positive
measure in Tg(a), S, such that S0 Lg(a) = @. Let f(y) be a smooth function on T such
that f(y) > 0fory € Sand f(y) =0fory € Yg(a)\ S. By our assumption, the function
f.(z) = f(® + Za) is identically zero in R,, for all values of ¢ > 0. However, by Theorem 4.5,
f.(z) tends weakly to the average of f over ©g(a), which is positive. This establishes the
contradiction and the proof is therefore complete. O

COROLLARY 5.2. Lg(a) is dense in T iff o are linearly independent over Z and it is
a closed curve in T™ 4ff all o are rationally proportional, i.e., a; = 10y, where r; € Q*,
1<:<n.

Remark. The case n = 2 is of special interest. Here, the orbits are dense in T2 iff
the ratio %;— is irrational. This well-known result is a consequence of Poincare’s Recurrence
Theorem (consult [1, §16]).

Now, we use the above in order to study the motion of an n-dimensional harmonic
oscillator,

Bi(t) = —wiz(t) I<i1<n.
The general solution is given by
(5.2) () = A; cos{w;t + ¢;) 1<i<n,
where A; > 0 is the amplitude in the ith direction. Hence, the orbit of the oscillator,
(5.3) X = {a(t) := (z1(2), - (1)) * L ER},

is confined to the box B» = [I1,[—4;, AJ]. Such orbits are called Lissajous figures (see [1,
§51).
Let F, denote the one-to-one mapping of [—A;, A;} onto [0, 1},



and F;™! denote its inverse,
Fri(y) = A;cos(my) -

Furthermore, we denote by F' the tensor product of F; which maps B* onto [0,1]* and,
similarly, let -1 denote the tensor product of F1 which maps {0,1]® onto B™.

We define the new variable y(t) = F(z(t)) and let Y denote the corresponding orbit in
Tn, ie,Y = {y(t) : t eR}. Then, using our previous notations,

1 1
(54) y(t) = Pn((I) + ta) where ¢ = ;(qsl, sy ¢n.) y &= ;(wla -"1wn) H

and, hence, Y = Lg(a). Since, by Theorem 5.1, Y is dense in the T n_submanifold L4(a), we
conclude the following:

THEOREM 5.3. The orbit of the n-dimensional harmonic oscillator (5.2)-(5.3) is dense
in the Br-submanifold F~1(Xq(a)), where & and a are given in (5.4).

Examples.
1. The Lissajous figure of the 2-dimensional oscillator with
3w
Alz?‘:AZ:l } wl"—_wuw2:27r ) ¢1=ﬂ5_:¢’2:0:

is the closed curve in Figure 5.1 below.

1 T T

0.8

0.6

0.4F

_1\ 1 i 1 1 1 1 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 5.1

2. Figure 5.2 describes the orbit of the 2-dimensional oscillator with

T
AJZAzzl 3 Wl‘—”lngmz’” ) 951":0,@52:51
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for 0 < ¢ < 20. When t — oo, this curve becomes dense in the box B? = [-1,1]2.
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Figure 5.2
3. Consider the 3-dimensional oscillator

x(t) = (cos(mt), cos{at — g),cos(t)) .

Here, a = (1,1, 1) and, therefore, Mgl(a)t = {(t1,t1,12) + tite € R}. Since & = (0,—-1,0)
in this case, the orbit is dense in the following submanifold of B3 = [-1,1]3,

F-1(Bg(a)) = {(cos(rty),cos(nt;, — g), cos(mty)) @ ty,t, € T},

which is the cylinderical manifold

{zeB®: a?42l=1}.

Next, we would like to study the motion of a quasi-harmonic oscillator,

(5.5) 2i(t) = Ascos(fi(t)) , filt) —oo  1<iZm.

t—co

The harmonic oscillator, (5.2), is a special case of (5.5) where f:(t) are all linear, We
concentrate on the 2-dimensional case and examine the orbits of such oscillators,

(5.6) X = {2(t) := (z,{t), x(t)) : tER}.

Let us assume that lim,_,, A() — &, Then, by §2, we conclude (along the lines of the proof of
t=o0 foft)

Theorem 5.1) that when « is zero or irrational, X is dense in B? = [— Ay, A{] X[~ Ay, Ag]. The
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case of a nonzero rational limit, o = 2 (m and n are mutually prime), is more interesting.

In this case,

g(t)

L@ o

(5.7) fi(t) = — fat) +g(t) vihere

313

We consider three subcases:

1. lim,_,o, |9(2)] = co. Here, part (2) of Theorem 9.4 may be applied in order to conclude
that X is dense in B2, See Figure 5.3 where the orbit, of the quasi-harmonic oscillator with
fit) =7 (t+0.8) and fot) = 27t + 102 is depicted for 0 < ¢ < 20.

Figure 5.3

9. lim,_, o §(£) = goo- In this case, the orbit E(m,n; g.) = {(&(1),&(F) : t€ R} of the
harmonic oscillator

6(0) = cos(mt + g0) 5 &a(t) = cos(nd)

serves as an attractor for X when ¢ — oo, Figure 5.4 depicts the orbit which corresponds to
Fi{t) =7 (t+0.6) and fo(t) = 2mt + (1 + £)~1 whose attractor is the one in Figure 5.1.
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(5.8) X CUyefgy,00 S, n;7)
where E(m, n;7) is, as before, the orbit of the harmonic oscillator

(1) = cos(mt +7) , &(t) = cos(nt) .
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We note in passing that if g, — ¢;] = 1, the union in (5.8) covers the entire box B%. This
union of orbits is very apparent in Figure 5.5 which corresponds to fi{t) = 7 - (t 4+ 0.6) and
fo(t) = 2xt 4+ 0.1 - sin(t).

5.2. Homogenization of nonlinear convection-diffusion equations. Here, we com-
bine our analysis with the homogenization theory of [10] (see there for more details).

Assume that ug(z,y) and h(z,y,t) (tisa parameter) are functions in BV, ({2 x T} which
are constant for z ¢ 2, and let

T x z T

(5.9) us(z) = uo(z, o ,a) ,  he(z,t) = uy(z, Z z
where ¢; = £;(€) > 0 and &; = &(e) > 0 vanish when & — 0*. Let iiy(2) and h(z,t) denote,
respectively, the W—1-weak limits of ug(z) and he(z,1). Consider now the convection-
diffusion problem

(5.10) ué = K(us,ul), + he(z,t}) , ue(z,0) = ui(z),

with modulated initial and forcing data, ug(z) and he(z,t), as given in (5.9). Here, K =
K (u,p) is a non-decreasing function in p and u¢(z,1) is the unique entropy solution of the
problem, namely, that which corresponds to & §(u,p) = K(u,p)+6p, § | 0. Then, according
to [10, Theorem 2.3], u(-,1), t = 0, tends weakly in W=1 to u(-,t), the entropy solution
of the homogenized problem,

(5.11) wp = K(u,u), + h(z,1), u(z,0) = f(z) .

Moreover, if the equation is Wer-regular (in the sense that its solution operator maps
bounded sets in L into bounded sets in the regularity spaces, Wy;, s > 0,1 <7 < 00),
this type of weak convergence may be translated in positive times into a strong one; namely,

(5.12) s, 8) = u(s Dlliogmy =30+ E>0,

for some values of p € [1, 00}, consult [10, Theorem 3.1].

As examples, we mention convex hyperbolic conservation laws, K{u,p) = —f(u), f* >
Const > 0, which posses W1li-regularity and the subquadratic porous media equation,
K(u,p) =mum1p, 1 <m <2, u20, which possesses W21-regularity {10, Propositions 4.1
& 5.1].

6. Graphical demonstrations. Here we provide visual illustrations of the results of
our analysis. These convincing graphs not only confirm the analysis but even reveal some
other interesting phenomena in the behavior of the oscillatory function when the scales tend
to zero.

We start with demonstrating the results of §2. To this end, let

r

(6'1) f(y1$y2) = COS(2ﬂ-yl)COS(2ﬁy2) and fE(.'L') = f(aa a) :
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Denoting € = £,, we consider five cases:
1. g; = €%

2. 1 =8
3.y =e+e%
4. gy = €+ €b5;
5. & = TE.

In case 1 the weak limit is, according to Theorem 2.1,

s
(6.2) [ [ 1 vdundn =0
The first part of Theorem 2.4 implies that the weak limit in case 2 is
1 . 1

(6.3) f flvnw)dy =5,

0 2
while in case 3 (where r = & — 1= ;) it is

1

(6.4) / flyy — 2, 0)dyy = cos(?:rr:n) :

Finally, the weak limit in cases 4 and 5 is as in (6.2), as implied by the second part of
Theorem 2.4 and by Theorem 2.7,

Figures 6.1-6.5 depict f.(z), and the corresponding weak limits, in cases 1-5 for the
following two values of &:
a. & = 0.0408;
b. £ = 0.00273.

Next, we demonstrate our results in the multiscale setting for the BV, (]0,1] x T%)-
function given in (4.15). Denoting & = &3, we consider here three cases:
6. e, =& +et, gy =6+2%
T.ey=3, 75

8. e,=+v2-¢, e, = (1—2) e

In case 6, all the scales are equivalent in the sense of Definition 4.1. Using the notations
of Proposition 4.3, ny =ny =ng =1 and ¢; 3 = 1,63 =2,¢33=0. Hence, this Proposition
asserts that the weak limit of f.(z) coincides with that of

X
9.(z) = g(z, g) where g(z,y) = f(=,y — 2,y ~ 22,¥),

which equals

/ gz, y)dy = ! cos(tivr:r,)
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The weak limits in cases 7 and 8 were already studied and are given in (4.16) and (4.17),
respectively. The graphs of f.(z) in these cases, for the same two values of ¢ as before, are

given in Figures 6.6-6.8.

Finally, we consider the following initial value problem for the hyperbolic Burgers’ equa-
tion:

(6.5) w4 (), =G5 >0

Z €T

ce+t+et’e

)

where f(-,-) is given in (6.1). The weak limits, when € | 0, of the right hand side of (6.5) and
the initial value (6.6), are given, respectively, in (6.3) and (6.4). Hence, according to §5.2,
the entropy solution of (6.5)~(6.6), ue(-,t}, tends weakly in W1 to u(-,t), the entropy
solution of the homogenized problem,

(6.6) ue(2,0) = f(

1 1
O A .
(6.7) ut—l—z(u)m 5 t>0;
1
(6.8) u(z,0) = 5‘305(2“3:) .

Moreover, apart from an initial layer of width O(e), us(-,t) converges strongly to u(-,%). In
Figures 6.9a-d we plot us(-,), with & = 0.0408, and u(+,¢) for the following time values:
t, = 3.75 % 1074, 1, = 7.5 x 104, £, = 1.5 % 10-3 and t;, = 0.04 (uc is described by the solid
line and u by the broken one). We see that the compact solution operator of the nonlinear
equation cancels out the oscillations and that the convergence of us(+,t) to u(-,t), for ¢t > 0,
is in the strong sense. Note that at £,,1,,1, << € the oscillations in u® are still apparent,
while at ¢, =~ £ they no longer exist.
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7. Appendix. Here we provide a brief review of some results from the theory of quasi-
Monte Carlo numerical integration methods and related topics in number theory, [6, 71.

Let f(y) be a function in BV[0,1] and {z,} be a sequence of points in [0,1}. Then, a
quasi-Monte Carlo approximation for the integral of f is given by

1 N
(7.1) [ sy~ 5 3 5w

n=1
In order for the approximation to converge, the sequence of points must be ”well-distributed”
in the interval of integration. The discrepancy of the sequence, defined as
#{z;: 1<i<N, z;€[0,r]}
N

(7.2) Dy{zy,2q, ..., xy) = sup -7,

0<r<t

is a mean to quantify how well the sequence is distributed. With this definition, the following
error estimate holds {6, Theorem 2.9]:

< Dy(zy, @y oy zn) [ fllBvio -

1 N
(19) [ o= 55 2 St

n=1

Hence, in order to obtain an error estimate for the quasi-Monte Carle method, one must
upper-bound the discrepancy of the corresponding sequence of points. Since it was proved
that for any sequence

Dy >0.06-N-1log N for infinitely many N ,

we cannot hope for an error estimate better than O(N-1log N), unless we agsume more on
the smoothness of f.

We are interested here in sequences of the form z, = P,(na), where « is an irrational
number and P, denotes, as before, the projection of R onto T (namely, Py (z) is the fractional
part of ¢). For such sequences we may apply the ergodic theorem of equi-partition modulo
1 (Bohl-Serpinskii-Weyl) [2], which implies that

(7.4) [ 1w -+ > flen)| 0

Convergence rate estimates are available in some special cases. We cite below two of the
more important results in this direction.

PROPOSITION T7.1. If a is a proper irrational number (defined below) then Dy =
O(N-1log N), where Dy is the discrepancy of the sequence z, = Py (na).

An irrational number, e, is called proper if the partial quotients a; in its (unique} con-
tinued fraction expansion,

a=ag+1/(ay +1/(az+..)) , @ €Z,a; 21 Vi1,
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are such that 37, a; = O(m).
In view of (7.3) and Proposition 7.1 we conclude:

PropPOSITION 7.2. If f € BV[0,1] and z,, = P,(na), a being a proper irrational number,
then

(7.5) lflf( )d —iif(ﬂj) < Const- N-tlog N
. X Y N 2 )| = gV .

By further assumptions on the smoothness of f, we may obtain an O(N-1)-error esti-
mate. To this end we define the following:

DEFINITION 7.3, Let o be an irrational number and let S = S, be defined as
S={o : Je=cle,0) such that dist{an,Z)> Z Vne N} .
no‘

Then if S # 0, « is said to be of type 1, where n =inf 5.

DEFINITION 7.4. Let f be a 1-periodic function and assume that 1F.] < O(|n|=*) for all
n # 0, where f, are the Fourier coefficients of f, () = Sonez [oe>™v. Then f is said to be
of class E*.

PROPOSITION 7.5. Let f be a I-periodic function of class E¥ and o be an irrational
number of type n < k. Then the following error estimate holds:

1 d L N1
Ifo fly)dy ——Nn;f(na) < Const - .

We conclude this brief review with some remarks on the type of irrational numbers.
Whenever the type n = n(a) is defined, it is greater than or equal to 1, as implied by
Proposition 7.7 below. Moreover, if « is an algebraic number, n(a) = 1; this may be stated
in the following straightforward manner:

PROPOSITION 7.6. Let o be an irrational algebraic number. Then for any o > 1 there
exists ¢ = c{a, o) such that [an —m| > en= for all T € Q.

This property of irrational algebraic numbers, which we use in our convergence analysis,
is an immediate consequence of a theorem by Roth [8] which asserts that for irrational
algebraic numbers o and any ¢ > 0 and o > 1, there exist only finitely many ™ € Q for
which |an — m| < en—¢. This statement is no longer true when o = 1; for this value of
the power o we have the following proposition, 4, Theorem 185}, which holds for all real
numbers a:

PROPOSITION 7.7. For any o € R, there exist infinitely many ™ € Q, such that
lan —m| < n-1,
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