UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Asymptotic and Numerical Approximations of the
Zeros of Fourier Integrals
David Senouf

March 1995
CAM Report 95-12

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555



ASYMPTOTIC AND NUMERICAL APPROXIMATIONS OF THE
ZEROS OF FOURIER INTEGRALS

DAVID SENOUF*

To the memory of Midge Bennahum

Abstract. The asymptotic behavior as y — +oo of Fourier integrals of the form
o n g .
= [ e neNnz,
—00

is derived via the method of steepest descents. A general formula is found for the coefficients of the
expansion of fn(y) in the sector |argy| < 2217 centered about the anti-Stokes line y € R. High
order asymptotic approximations of the zeros of fn(y) which are all real is also obtained, A simple
numerical method designed to compute the zeros of fa(y) is described. For n = 2 and n = 3 the

asymptotic estimates of the zeros are compared to numerically computed values,
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1. Introduction. In [20], Pélya showed that functions of the form
00
(1.1) ] emet AN e byt gy neN,n2l,a>0,beR,c2 0,
- 00
have only real zeros. Similar results are found in [19] concerning functions of the form

e neNn2

(12) fuw) = [
In [6], de Bruijn generalized Pdlya’s results to a larger class of functions whose zeros
are real. Recently, Paris analyzed in [16] a generalized form of the Pearcey integral

of which the “Pélya” functions given by (1.1) are particular cases. He studied the
agsymptotic behavior of

oo

(1.3) PUX,Y) = / SUTHX Y gy e Non 3 2,

—o0
as | X| — oo or |Y| — occ. By rotation of the path of integration (u = te¥+) and use of
Jordan’s lemma, it can be expressed as

(1‘4) P,';(X,Y) = Py(z,y)= eﬁ/ —‘zn—ﬂ"-ﬂ‘ytdt,

with z = Xe~% and ¥ = Ye®n. For n even, ¢ > 0, P,(z,y) falls into the category
of functions (1.1) considered by Pélya. For z = 0, f, and F, are related by f,(y) =

* Department of Mathematics, UCLA, Los Angeles, California 90095-1555. Research partially
supported by NSF Grant # DMS-9306720.
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e™ 3 P,(0,y). The Pearcey integral (P4(X,Y)) has been studied by Kaminski [14] and
Paris [17], and references therein, The advantage of the method described by Paris
is that it avoids the complicated, sometimes impossible task of finding a closed form
expression for the saddle points.

Although a large portion of this work is devoted to the derivation of the asymptotic
expansion of f.(y) as y — +oo, our main objective is the derivation of asymptotic
approximations for the zeros of f,(y). The order of this real analytic even function
which is defined as the positive number A, for which maxy. [fa(y)] < exp(ri=*9),
Ve > 0 as soon as r is sufficiently large, is the rational number 1 < A, = 3#; < 2. The
order being fractional, it is known that f,(y) has infinitely many zeros [2, 4], which,
from the results of Pdlya, must be real; thus we are mainly interested in the behavior
of P,(0,y) for large real values of y. The expansion we find is an expression on the
anti-Stokes line arg y = 0 where two saddle points have equal contributions. Hence we
first consider the real valued function f,(y): R — R, which by the change of variable
t — z(éy;)ﬁi“_l, for |argy] < 22=1Z, can be expressed in terms of another function
F,.(u) defined as follows:

15) 0= (377 (G ™)

where for |argpu] < %

(1.6) Falp) =] et rie=2"" gy = 2f+ cos(2ny,z)e_“z2“dz.
-0 0
The advantage of introducing the function F,(u) is that its saddle points are fixed to
the unit disk, contrary to those of f,(y) which depend on the large variable y.

The expansion of functions of the type of f,(y) can be found as early as 1916 in
the work of Brillouin in [5], and then in 1924 in the work of Burwell [8] who obtained
first order asymptotics for the location of the zeros of such functions (see also [3]).
Recently, Christ also characterized the zeros of similar functions in [9, lemma 2.1].
In [18, chap. 3], Paris and Wood investigate the asymptotic properties of high order
differential equations whose solutions have integral representations closely related to
(1.2). In their work, they derive recurrence relations to determine the coefficients of
the asymptotic expansions (see for example {18, equ. 3.4.16]). We provide a different
approach than Paris’ and Wood’s using the classical method of steepest descents, and
we derive the full (generalized) asymptotic expansion of F,(¢) as p — +oo valid in
the sector Jargu| < 7/2, together with high order asymptotic approximations of its
zeros. We provide a systematic way of calculating every coeflicient of the expansion
of F,(u) via series reversion in terms of multinomial coefficients. This formulation
can be compared to the results of Paris and Wood in [18] in which the coefficients are
described by a 2n-term recursion relation which is derived from ODE methods.

In the last section, we describe a simple numerical algorithm which computes the
zeros of the function F,(x). This algorithm is efficient for small values of the zeros,
and for n = 2 and n = 3 it is implemented to gauge the accuracy of the asymptotic
estimates. We use the following definitions and notations:

DEFINITION 1.1. Compound asymptotic expansion (c.a.e.) of f(z) with respect to
the asymplotic sequences {P(2)} and {$2(2)}: we write

HOMCAO [i A2 {qss.(z)}] +0a(2) [i 22 {qsi(zn} ,

n=0
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where it 15 understood that
)~ 0e) |35 i)+ 0(¢3=(z))] +0u2) [0 F206) + 82| a5 2 20

As an alternative to a c.a.e., it may be possible to express the asymptotic expansion
of f(z) as a generalized asymptotic expansion:

DEFINITION 1.2. Generalized asymptotic expansion (g.a.e.) of f(z) with respect to
the asymptotic sequence {¢,(2)}: let {d.(z)} be an asymptotic sequence as z — 2, € R,
where R is a region in the complex plane, and f(2), f.(2), n=0,1, -, are funclions
such that for each positive integer m

flz)= mZ- fa(2)+ O((2)) (2 — 2 € R).

Then we say that Y, f.(z) is a generalized asymptotic expansion with respect to the
asymptotic sequence {¢,(2)} and write

f(z) ~ Efn(z); {$a(2)} as z — 2, € R.
n=0
For convenience we also write it as

R E fa(2)-

{45»( )} B

We prove the following;:
THEOREM 1.1. Let n € N,n 2 2, and for |argp| < 7 /2 let

fn(ﬁ)=/ el (@niz=2"") gy

The generalized asymplotic ezpansion of F,(p) as p — +oo with respect to the as-
ymptotic sequence {¢;(p) = 7}, valid in the sector |argp| < §, is

£ "5 e e { - n = D (255 ) b,

Mo (p) = E“‘“’" cos (p(zn —~ 1) cos (411 2) + 4;_ S(1-n(1+ 2j))) :

where

and the coefficients a,, ; are normalized rational numbers (o, o = 1) given by
I(j +1/2) (1/2-j- m)m m-2 >
-3 SHa(r)
Vrn@n-1)Y a0l (e(2n-— s kot OF!

The summation Y, is to take place over all possible ¢ = (0, ++,03,_5) € N**~? such
that 1+ 09 + +++ 4 gy = m, and oy + 205 + -+ - + (2n — 2)04,_» = 25. Moreover,
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the first order approzimation of the k-th ordered positive zero of F,(p) is given by (for
k>1)

0 _ T T n—1 ) (l)
”k."m4nm256C(4nm2)(2n-—1 1+2k)+0(5) sk oo

Let
_ sec{755) . nr by — 20, ( 2nx )
Gnlp) = p + Gn-1)p {a"slsm (2n - 1) T op M \on-1

of 1 — 30, 10, 5+ 3y, 5 sin ( 3nw ) _ sec( 575 ) aﬁ,l sin? ( nT ) ’
3u? 2n—1 (2n—1) p? 2n -1

+

then the fourth order approzimation is given by
1
Hepn = Un (I—".g?r)x) +0 (‘E,{) as k — +oo.
The corresponding k—th ordered zero g, ,, of f,(y) is given by

(1.7) Yo = 2(20) s .

Similarly, the corresponding expansion for the function f,(y) is obtained from the one
of F,, (1) by the relation (1.5).

2. Asymptotic expansion of F(u) = [ e***~*")dz as p — +o0. We first
describe the procedure for » = 2 corresponding to a special case of the Pearcey inte-
gral, which we generalize in the following section to arbitrary » € N. The result in
this section has been derived by Paris and Wood in [18, pp. 64-72] using differential
equation methods, and will serve as comparison. The coefficients they derive corre-
sponding to the coefficients a5 ; in Corollary 2.1 are given in terms of a recurrence
relation, whereas we offer a different approach, and a different formulation in terms of
elementary functions and combinatorial coeflicients. This section serves as exposition
for the general case n € N, and as such contains more details.

We are interested in deriving an asymptotic expansion of F(g) as p — 400, where
F(p)= / ez, w(z) = 4iz - 2

The method we use to do so is a standard method for asymptotic expansions of integrals
depending on a parameter (cf. [6, 11, 22]). This method, known as Debye’s method
of steepest descents, is based on deforming the original path of integration through
the local extrema of the integrand. The new path is chosen in such a way that along
it, the integrand does not oscillate; i.e. the imaginary part of w(z) remains constant.
If there are several extrema z,, only those for which Rw(z,) is greatest are taken
into consideration. Those that qualify are called the contributing saddle points. In
our analysis, we expect two such extrema which must satisfy the condition Rw(z) =
Rw(2;). These two equally relevant saddle points allow for the cancellation which
generates the zeros of F(u).
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2.1. Saddle points, steepest paths and contour deformation. We first lo-
cate the zeros of w'(2) which we denote z, = £, +¢7),, and refer to as the saddle points
of the integrand. For the quartic polynomial w(z) = 4iz — 2*, there are three saddle
points:

(2.1) 0 =w(z)=4i—42) = {z, 21,25} = {e%i,eﬁ_gi,e—%i} .

To determine which saddle points have a dominant contribution, we find Rw(z,) for
s = 0,1,2. Since 0 = & w'(2,) = iz, — 2}, we find w(z,) = 4iz, - Z} = 3iz,, and
therefore '

{w(z0), w(z1), w(z)} = {3¢7¥,3¢°¥, 3}
= {-3/2+43v3/2,-3/2 - i3V3/2, 3}.

It would therefore seem that the dominant contribution comes from 2z, = —:¢. However
we will see that it is not possible to deform the original integration path through z,.
It is also apparent that z, and z; are equally valid candidates for they have the same
contribution:

Rw(z) = Rw(z) = ~3/2.

It is in fact this symmetry which allows for the cancellation of the two asymptotic
expansions generated by z, and z,, which in turn will permit the determination of the
asymptotic zeros of F(u) with as much precision as necessary. Note that subsequently
we often use the subscript s to state a property that is valid for both relevant saddle-
points indexed by s = 0, 1. The deformed path of integration must satisfy the following
conditions:

(i) The new path must go through a zero z, of w'(z)

(i) Sw(z) = Sw(z,) on the new path

(iti) Rw(z) € Rw(z,) on the new path

The next step consists of analyzing the hills, valleys, and paths of steepest descent

and ascent of these saddle points. The level curves separating the hills and valleys of
the saddle points z, and the steepest paths emerging from them are given by

(i) Steepest Paths: S{w(z) — w(z)} =0

(ii) Level curves: R {w(z) ~ w(z,)} =0
where

w(z) = w(é +1in) = 4i(€ + in) — (§ + in)*
= —dn— £+ 696" — i + 4i(€ — En+ n°E).
The level curves that separate the hills and valleys above and below the saddle
points are determined by the real branches of the following equations:
—dn — £ 4 692 — n* = Ruw(z,),
{Rw(zp), Rw(z), Rw(z)} = {-3/2,-3/2,1}.

Solving the bi-quadratic equation in £, for £ as a function of % wherever it is permitted
(both £ and 7 are real variables), the asymptotic behavior of these curves as § — oo
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is given by €(n) ~ +1/3 £ 2v2n; that is, they all end at oo exp(2iri), for some
keN.

The steepest paths out of each of the saddle points are determined by the real
branches of the following cubic equations:

€€+ &p° = Suw(z,)/4,
{Sw(2), Su(x), Su(z)} = {3v3/2,~3v3/2,0}.

It can be shown that the (steepest) descent paths emerging from the saddle points
go from coe’™? — z, — +o0, and from —oco «— 2z, — ooe'™?; the (steepest) ascent
paths go from coe /% — z; — oo™, and from oo™/t — z; — o00e™®™4, The
steepest descent path through z, = —i is the imaginary axis (é = 0), and as such,
we may not deform the original path through it. Therefore this saddle point does
not contribute to the asymptotic expansion of F(i1). The convergence of the integral
is preserved because the new paths always remain in the valleys of z, and z;, and
w(e'tz) = O(—(iz)") = O(~2*) as z — +oo. The path deformation through z
and z, displayed in Fig. 2.1 is justified by a simple application of Cauchy’s theorem.
The solid lines represent the steepest paths, the dotted ones represent the level curves
separating the hills and valleys above and below the saddle points 2y, 2,2,. The
complete topography of the surface u(£,n) is shown on Fig. 2.1.
‘ Although we have just seen that it is possible to carry out the full (global) analysis
of the steepest descent paths, it is not necessary do so. From a local analysis of the
steepest directions at the saddle-points, one can choose a simple path that will have
the desired properties. Let «, be the steepest descent direction at the saddle-point 2,
(also known as the axis of the saddle point z,). It is determined by the inequality (cf.
[6, chap. 5])

(z— z,)zy%%il <0 = arg{z — 2,} = +7/2 — arg{w"(z,}}.

Since @, = lim,_,,, arg{z — z,} along the steepest paths, where the correct choice of
o, is determined by the direction in which the saddle-point is crossed, we find that
a, = ~(~1)°71 /6. The path we consider is a combination of half-lines and line segments
in the complex plane: ¥ = (—oo, -—\/?_)] ULiULyU [\/g,+oo), where £, and £, are
given by (see Fig. 2.2)

Lo 2(t) = em/® pemimlfy 1<t
Li: 2(t) =50 4 1€t

Note that £, is the parametrized line interval 2() = 2z, + e’ f for ~1 < t < 1, on
which 2(0) = z,, 2(=1) = =/3, 2(1) =i on £y, and z(—1) =4, 2(1) = V3 on £,. Let
hy(t) = R{w(z(t)) ~w(z,)} : [~1,1] — R. Since h,(t) = —61% — (—1)*2¢*+1*/2, its only
maximum for { € [—1,1] is located at ¢ = 0 which corresponds to z = z,. Hence the
maximal contribution on the paths £y, £, occurs at 2y, z;. Moreover the contributions
on the real intervals (—oo,—-\/ﬁ] and [\/5, +oo) are negligible since Rw(z) = -2
Thus the new path v is admissible and we can still apply the series reversion process
that follows. Indeed, we would only need to verify that the steepest descents path
run from Fo0o to 00, and we would infer that the descent path v is asymptotically
equivalent to the steepest descent path I'.
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F1a. 2.1. Hills, valleys, level curves and stecpest paths of the saddle points zo = Pl
relevant to the expansion of F(p} = f°° pslaiz=st) gy gy # = +oo.
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Now that the path deformation is justified, we can proceed with the expansion
regardless of whether we use the exact steepest descent path [', or just an approximate
descent path +. Since on the steepest descent paths & {w(z) — w(z,)} =0 for s = 0,1,
we have w(z) ~ w(z,) = -7, 7 € R*. Therelore,

(i) as z - €T oo for k € N, 7 = w(z,) — w(z) — +oo,
(i) as 2 — z,, 7 = w(2,) — w(z) — 0.

Deforming the path of integration from the real axis to
'=Tyul), =77 -+t -T7,

F(u) can be written as

F(p)= f e (#) dy = f e G gz 4 (%) 4z,
r r

r-rf r§-ry

Here I't are the respective steepest descent paths emerging from the saddle points z,,
where the + signs refer to the corresponding branches z&(7) of the solution to the
equation 7 = w(z,) — w(z) on T,. The assignment of the correct branches 2¥(7) to the
two steepest descent paths emerging from the saddle points 2, will follow once we have
the series expansion for 2¥(r) about 7 = 0. Proceeding with the path deformation, we
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Fig. 2.2. Comparison of the local/global analysis of the hills, valleys, level curves end sleepest

aths of the saddle poinis z = '™, 2 = ¢¥™/® relevant to the expansion of F(p) = [& e#*5=7") g,
P —o0
as g — +o0o.

have
F(u) = et w)=7) g 4 ePw(zo)=7) 7.
ry-rf rH-ry
oo dzy  dat
- plw(a)-7) 290 21
- ./a ¢ dr  dr (rydr

+oo dzf  dzy
+f0 ehlwzo)=7) Tiﬁm_ -E?m (r)dr

+o0
= Y (e [T r) e ar,
0

s=0,1
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dz}  dxy
where ®,(7) = (—&7—_— - ) (7).

2.2. Series reversion. We have transformed the original integral into a sum of
Laplace integrals. It is now necessary to find a series expansion in the sense of Watson
(cf. [11, §22]) for @,(r), and justify the use of Watson’s Lemma in order o obtain
the asymptotic expansion of F(u) by term-by-term integration. From the Lagrange
formula for the reversion of series (see [12]), we can invert the equation 7 = w(z,) —w(z)
for z as a function of 7 for T near 0. We find that the two branches z(r) corresponding
to the steepest descent paths starting at z = z£(0) = 2, are given by convergent series
in powers of /7 in a neighborhood of 7 = 0:

(2.2) zE(r) =z, + i en(2,) (£VT)",

where

(2.3) en(z) = 2 im L {fz)},

n! 2oz, dzn—t
and f(z) = (w(z,) — w(z)) /(z — z,)* is defined by
7 =w(z) —w(2) = (2 — 2,) f(2) = (2~ 2,)? (622 + 42,(2 — z) + (= 2,)%} .

In the definition of the coefficients ¢,(z,), we are taking the principal value of the
square root of f(z) for which /f(z,) = v/6z,. We thus have

dzF

(2.4) (1) = i —gcn(z,) (£1)r21,

so that

Cdzt dry & 1=(=1"\ /21
0(r) = G~ g = Lol (—2——) i3,

‘We may now look into assigning different branches of zF(7) to the different paths
%, The motion of zf(r) along the paths I'f as 7 increases from 7 = 0 to some
0 < r € 1 is determined by

(2.5) 2=z taq(z)Vr+0(r) ast— 0t

Since ¢,(z,) = lim,.,,, f(2)"Y% = (vV6z,)"", we have arg(c;(z,)) = —arg(z,). Since
arg(z,) = /6, and arg(z) = 57/6, we have cos(arg(z)) = cos(57/6) < 0, and
cos(arg(2,)) = cos(r/6) > 0. Hence z3(7) has increasing real part for 7 increasing,
and therefore 2§ (7) is the branch that goes from 2z, to 400 and conversely zy (7) is the
branch that goes from z, to e'5co. We name the branches respectively I'f, and I'y.
Similarly, we find that z; (7) is the branch that goes from z; to ‘300 and 2{(7) is the
branch that goes from 2 to —co. We name the branches respectively I'T and rf.
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2.3. Watson’s lemma and asymptotic development. In order to apply Wat-
son’s Lemma, we need to verify that

dz, dz
1®,(r)] = | ==

T odr

< Kée¥”

for some positive K and b independent of  when 7 > 7, > 0 (see [11}):

r=w(z) — w(z), forz €T,
dr

*"—“>E;m——w’(z) 4(2° —-z)-—4(z - 23
dz+ dz_, 1 1
( )= ZF (TP — —r\3 _ 8 )"
dr (rP-2 ()P -4
Since |®,(r)] = O(1) as 7 — +o00, using Watson’s lemma we may substitute the

series expansion of ®,(7) (in the sense of Watson) and integrate term by term to
obtain a compound asymptotic expansion with respect to the asymptotic sequence

{¢n(p) = p="} (see Def. 1.1}):

F(,u) pmoo Z (- 1)3614'0(%) E nen(2,) (}_ﬂ—(?_—;l'):) P(g) p_ﬂlz

+=0,1

w(z, 1 —ln
=Y (~1)%e* )§(2n+ 1)02,,+1(z,)p<n+ ..2_)# (n41/2)

We let -

(2.6) an(2) = 2n+ Degmpr(2,) = (_2.1;)_!}@3_' % {fGremm),
s0 that

(2.7) Flu)" == 2 7 2 (-1 ) 3 n(z)y(n N )#

3=0,1 n=0

We proceed with the explicit determination of the coefficients a,(2,) in the expa,nsmn
of F, where a,(z,) is the 2n-th coefficient in the Taylor expansion of f(z)~***%) about
z = z,, Using the binomial theorem twice, we find

()" podze-nleede-a))
£ () @ rrenor

k=0j=0
In order to take into account every term that contributes to a,(z,), we find the range
of k over which we sum by setting 2k — j = 2n, that is § = 2(k — n). Since j ranges
from 0 to k, k ranges from n to 2n. Thus summing over k from n to 2n, we find

3z,

g-(n+1/2)

g E Z ( " —) (2(1:1 n)) (g)k
= 6‘(2n+1/2)z;’(4n+1)z ( k”+"n') (k;cn) ( )k

an(z,) =
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We introduce normalized coefficients (ap = 1} which do not depend on 2,: let

a, = I'(n+1/2) \/gaﬂ(z,)zf"“,

then the compound asymptotic expansion of F(u) with respect to the asymptotic
sequence {u~"} as p — +o00 is

F(,[L) Hmt oo / Z( l)aepw(z.)za 7 (4n+1) —n
3"0 1

where the rational coefficients a,, are given by

I3 +n) n—1\ (k+n) /8}*
(2.8) O = Tgmr 0(k+n)( 2% )(é’) '
The first five values of a, can easily be computed using a computer algebra system

such as Mathematica [21], either directly from (2.8) or using the Mathematica code
provided in Appendix C (see also Table C.1):

738 39655 665665
144 *2 = 11472 *3 = 17915004° T 10319560704

One can compare the coefficients «, to the coeflicients ¢, introduced by Paris and
Wood in [17, p. 397] and [18, p. 72, equ. 3.4.16] which are found via a 4-term recurrence
relation. It is easy to see that they are related by «, = ¢, /3". Since

3&/’

(2-9) Qg = 1, y =

= e, A= e u() = u(ed) = 5 4 2L,
Z = etiﬁm, Zg" = e"'m;_"‘, w(zl) = ‘w(e ) = _—2- - @i

we have

F(u) "= \/;—”e-%“ {e‘(“‘?“‘ DY ane iy
r=0

n=0

We can formulate this as a generalized asymptotic expansion with respect to the as-
ymptotic sequence {u~"} (see Def. 1.2):

2 \/§ T 2nw
porkoe [T -3n DAY it WP
(2.10) F(p) e E @, Cos (3 [l 3 ),u .

2.4, Asymptotic zeros of F(u). To determine the asymptotic zeros of F(u),
we make use of the compound asymptotic relation

(2.11) h(p)= \/:f 3 P(u) "3 cos (3£,u - —) Ean cos (ggﬂ-) p"

2
+ sin (Sﬁu - —) Z o, sin ( 'r;ar) [T

nml
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Let h,,(p) be the partial sum

V3 7Y e 2nw\ _,
hn(p) =cos (3—5—;& ~3 Z_:Gan cos (T) 7
(2.12) ) " ,

. V3 o\ & . (2nmy _,
+ sin (3——2—p—6)§ansm( 3 ),u )

then solving the equation h,,(¢) = 0 is equivalent to solving

V3 x SO o Q, cos(385) pn
2. ;. L — _Lons=0Tn 3 .
(2.13) tan (3 PG S (BT
that is
V3 Ll ™, 0 cos (48T) pn
2.14 31—y — — = — tan—1 n=0 %n 3
( ) 2 .u 6 k T an E:‘:I o, Sin (%Tvr) M_n ,

where | tan~! z| < 7 /2. For m sufficiently large, we have as p — +o0,

tan~! (Egﬂj oy, C::)S (i’:‘:‘a_ﬂ') #—n) :.E — 7 + 7
(2.15) Yomer G sin () /T2 96+/3p 5763 p?
49 379351 1
T 197664~3 " 268738560 V3 4 (ET“‘)

Thus we have as g — 4

V3 oow * 7 7 49
Sgr-g=kr 2~ t ; t 1
(2.16) 963 57632 497664+/3 1
_ 379351 P ( 1 )
268738560 /3 5 pe/
Letting
2T
(2.17) s = 5—\7?:(;‘: -1/3), k>1
we have

e, T {1 T 54103 } (i)
(2.18)  p=m +432,u,{1 64~ 51847 T 7memseo ) T O\ )

We now state a lemma which enables us to improve the first order asymptotic estimate
to a higher order one. Its proof is based on the reversion of (asymptotic) series by
either Lagrange’s formula (see {15, p. 21,§8.4]), or using the method of successive re-
substitution {see Appendix A):

LeMMa 2.1. If pt® = O(k) as k — +00, and

1
- (°)+ﬂ(a 9 0 Ei+ﬂi>+@(__)
PR\ s T p
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is an asymptotic relation which holds as pp — 400, then

gy — Glﬂg g — 3&1&20,3
2 + 3
#(0} ,U,(D)

ay ag
#:P(O)'{"W(M“{*E—F

RN

g — Za,la,g -+ 'Zarf;ag —daya,a, +0 ("ié‘) as k — oo,
® k

Combining (2.8), (2.17), (2.18) and Lemma 2.1 we have proven
COROLLARY 2.1. For n = 2, the rational coefficients a,; in the expansion of
Folp) = 2 e#e=2" Yy are

T3 +34) & (=5 -5\ (k+7\ (8)
01 TG fr 53 k+i )\ 2k () '
For k 2 1, the approzimation of the k-th ordered positive zero iy o of Fo(p) is given by

(0 _ 27 _ _1_
Hio = 3\/_(1‘: 3) O(k) as k — +o0.

The sizth order approzimation is
1
Prz = G (Hg}%) + 0 (ks) as k — o0,

Ga(p) = o + 132 (1 [ (1 T (1 T 12p (1 + 18900y)))> '

The fact that this is actually the expansion of the k-th ordered zero of F(u) can be
proved by the argument principle (see [12, 15]).

3. Asymptotic expansion of F,(u) as yi — +oo. Forn 2 2 and |argp| < 7/2,
we consider the function introduced in (1.6):

Faw)= [ ernie= s,

The saddle points 2, of the integrand and their contributions are given by

wp(2) = 2niz — 22 Zy = exXp (4n 5(1+ 4k))
wh(2,) = 2niz, — 202"t = 0 = { w,(z,) = (2n — 1)iz,

0 = Z2wp(z,) = iz, - z" Rw,(z,) = —(2n — 1)Sz,

Thus

i ?r —= . —_—
Rw, (z,) = —(2n — 1) sin (4’”’“ 2(1 + 4k)) ) k=0,1,---,2n-2,

On the two steepest descent paths emerging from relevant saddle points we have

'w,,(z) - wn(za) - —(Z -z )2fn(z) =-=T < 03
In—2 (J'c-i-ﬂ)(zs

e == X g (=)
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As before we expect to have contributions from two equally relevant saddle points
which come in symmetric pairs satisfying the relation z, = —Z] (see section 3.2). The
assignment of the branches 2¥(r) to the steepest descent paths must be dealt with
carefully. From Lagrange’s formula, we express zi(r) as convergent series in powers
of /7 in a neighborhoed of 7 = 0:

#0) =5+ D)V,

with
1 if2
J' z-—pz dZJ -1 {fn(z) }

Since ¢, 1(2,) = fulz,) 2 = (2")—1/2 -8 the behavior of z¥(r) in a neighborhood of
T = 0 is determined by

cn,j(za) =

11—t

)= 2% Z -
V()
In the definition of ¢, ;(z,), we have taken the principal value of \/f.(z) for which

V(7)) = /(3281 In what follows, we assume that the pair of relevant saddle
points {2,z = —%} is the first pair with smallest positive imaginary part, that is,
Zg = €Xp (4:;‘[2) and z; = —exp (-—— 4,‘;’12). This is so because it is the only pair
whose steepest descent paths are admissible, in the sense that the original path of
integration cannot be deformed through any of the steepest descent paths emerging
from the other saddle points with negative imaginary part. Indeed, such saddle points
would yield an incorrect increasing exponential behavior since we would then have
Rw,(z,) = —(2n~1) Sz, > 0. None of the other saddle points with positive imaginary
part (all saddle points come in symmetric pair {z,, —% } except those for which %z, = 0)
have admissible steepest descent paths. Even if it was possible to deform the path of
integration through another pair, their contribution would be exponentla.]ly smaller
than that of the pair {2, —Z}. On the steepest descent paths I'¢ corresponding to
the equation 7 = w{z) — w(z), we have

VT+O(r)  asT— 0%,

;=1

T
A(r)=m F (-1 e VT +O(r)  asT— 0%,
Following the motion of zi':('r) along ' for increasing 7 > 0 as in (2.5), one can
correctly choose the branches z¥ (7). Hence we see that the assignment of the branches
z¥ (1) changes from the upper branch to the lower one (as shown in Fig. 3.1) dependmg
on the parity of the index n. Note that this feature is not present in the case of z3 (-r)
In the case n = 3 the paths of steepest descent labeled I'f go fr from es P00 Zy =
et — +00; the ones labeled Tf gofrom —c0 — 2, =-F = e ¥ e*'0o. There
is a third path labeled T, which connects I'} and I'y. This third path remains in the
common valley of the saddle points z, and —Z; and is subdominant with respect to
the other paths. In other words, its contribution is exponentially small compared to
the contributions of I'y and T;. In the general case the topography remains similar.
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n even nodd n even or odd
15 +
1 q‘(" ) 1-]-_‘ ?(T ) ]{ \%{1 )
7 7 %
Pl M)
1 417) I Z(%) nf' %

Fig. 3.1. Interchange of the branch assignment zf‘(r} according to the parity of the indez n.

We expect the paths of steepest descent emerging from the saddle points at z, = ety
and 2; = —Z%; to end in respective valleys. Let

)u-{—l

T, =TF-T; +0" =" 41y

denote the new path of integration, where

" o It if neven

! 'y ifnodd
and reciprocally for I‘(l")nﬂ. The asymptotic behavior of these paths is as follows:
Id 2, = 400, T; : 2y — oo '™/®

_yn+1
i

Tyio00 "), e

i 2 — oo TN Pﬁ‘)" 12y — —00,

irfn

One can also choose a simple descent path which is the straight line 7, : §z = Sz, =
sin(;%5) in the complex plane going through both saddle points 2, and —Z, parallel
to the real axis depicted in Fig. 3.2 as a dashed path (see the argument in {9, Lemma
2.1]). We now deform the original contour of integration along the path I'; or v, as in
Fig. 3.2, and we take into account the interchange of the branches z*() based on the
parity of the index » by including a factor (—1)*", s = 0,1 in (2.7). We notice that
|@,(1)| = |dzf /dr — dz; [dr} = O(1) as T — +00, s0 we can appeal to Watson’s lemma
to find a compound asymptotic expansion for F,(g) with respect to the asymptotic

sequence {¢;(p) = p~7}:

oo 1 = o1 :
(3.1) ]_-n(#) Hrdoo 2 E (_1)a(1+n)epwn(z.) E a, j(z.s) F(j + _) M_Ja
\/ﬁ- j=0 l 2

s=0,1
. 1., ¥ i
(3.2) 0,(2,) = (27 + 1) cppjq1(2) = @ lim - {fn(z) (;+1/2)} _
3.1. Coefficients of the expansion. Let

onis(22) = g . 27 Lo},
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A

FiG. 3.2. Steepest descent path (solid) T'y = T —Tq+ f‘(l_)“+1 - I‘(I_)“ + Tz, and alternaie path
(dashed) vn : Sz = Fz0 = sin{ ;%) in the ezpansion of Fn(p) = ffw M@= 1o g e +o0 for
n 2z 3.

where

2n—2
g(2) =270 f(a)= Y (szz) 1k (5 - ),

k=0
According to the definition of Pochhammer’s symbol (z),, we let (1/2 —j — m), =
r(1/2-7)/TQ/2—Fi—m)=(-j—1/2)- (-5 —3/2)---(1/2—j—m)for m > 1, and
(1/2 = 7)o = 1, so that we may write

(3.3) Q}m)(fn(zs)) = (n(2n —1) anmz)—j—lh—m (1/2 = 7 — m)m
) 2ryEPrE 0K k< 2n—2
(34) B 0 k> on—1

Using (3.3) and (3.4) in Faa di Bruno’s formula (see (B.1)), we find
2j

a, ;{z,) = Z{ (n(2n — 1) zf"'z)_j"%"m (1/2 — § ~ m),,
(3.5) m= 5 on o
T () ) )

The summation ¥’ is taken over all 2j-vectors & = (oy,+++ ,03;) € N% such that the
following conditions are simultaneously satisfied:

0'1+0'3+"'+0'2j;m
(3-6) 01+20‘2+'.’+2j62j =2j
0;;20, Vk}Zn-—-l

The last condition o3 = 0,¥k » 2n — 1 arises from the fact that f,(z) is a
polynomial of order 2z — 2 and therefore any derivative of order k > 2n — 1 of f,(z)
is zero. In order for the product to be non-trivial, we must set the corresponding
powers oy, to zero when k > 2n — 1 (see (B.1)). This amounts to using the truncated
(2n—2)-vector & = (0, + ,03,..5) € N**~?in the last product, whereby we can reduce
conditions (3.6) to a new set of conditions

g1+ 0yt Topp =M
(3-7) 01+262 + "'+(2n—2)0'2n_.2: 2j
op =0, Vk3»2m-1
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We express (3.5) as

2j _

a,.,_,-(z,) = Z{(n@n -1) zfn—z)—J—%—m (1/2—j- )

m=0
(38) ’2!1_'_1 1 /f Im \ \ Ok
—_— n—-2-k
T () )

Using the first and second condition in (3.7), we notice that

n—2 2n-2 Fu—2

II An-2-kyor - 2 DY O Lot = F2n-m=2i

k=1

We can therefore extract the z, dependency from the summation signs in (3.8):

i (UL

(3.9) an,,( »)= (r(2n — 1))J+1/2 ! N En(zn ~-1))"

()

We introduce normalized coefficients (@, o = 1) which do not depend on the saddle
points z,:

. 2n—1 -
(3.10) an; =T(j+1/2) 11(—’;-~----~)»z;‘(1“3> Yt i (%)
The j-th coefficient for § > 0 is then a rational number given by

o - PG+1/2) |§{(1/2—j—m)m
M @ - 1)) Sl ((2a-1)7

)

where the summation ¥’ is taken over all possible o € N**~2 such that

{ o1+ 0+t 0y =M }

(3.11)

3.12 .
( ) 0'1+20'2+"'+(2n—2)0'2n_2=23

A Mathematica code is provided for the reader’s convenience in Appendix C to compute
the coefficients o, ; from (3.11) and (3.12) (see also Table C.1).

3.2. Asymptotic expansion of F,(iz) as g — 400, From equation (3.1) we

find
.u--*+00 s(14n) pwn(z,) 1—ﬂ(l+2j) —i
A" e 2 D za u,

Since zp = -7 € A={z € C : |z| = 1}, and w, () = wa(z), we find

(3.13) Fo () 2T et 3y, (),

{u-:} n(2n — )u
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where H,, (1) should be interpreted as a generalized asymptotic expansion with respect
to the asymptotic sequence {u~}:

o0

(3.14) Ho(w) =3 -‘:“;J_ cos (2 Swa(zo) + (1 — n(1 + 25)) arg(20)) -

i=0

Since w, (2} = (2n — 1)izy and z, = e™3,

Rwn(z0) = —(2n — 1)S7 = —(2n ~ 1)sin ( y 2) :

Sw,(20) = (2n — )Rz = (2n — 1)} cos (41:_ 2) .

Thus (3.13) is

(615) R\ e { - 2n - sin (55 ) e

and (3.14) becomes

(3.16) H.(p)= f: 9—;1'3;’" cos (,u (2n — 1) cos (4;-_ 2) + L -—;:El_—;Qj)) .

j=0

3.3. Asymptotic zeros of F,(p). H,(p) is the component of the expansion of
F, (1) that determines its zeros, and its m-th partial sum H,, () can also be expressed
as a compound asymptotic expansion (see Def. 1.1):

_ ™ n =1\~ njm
Hy, m{p) = cos (,u,(izn—l)cos (4n—-2) _ﬂ4n—2)z pf cos (Q'n—l)

=0

i T n-1Y) & ap; njw
(3.17)  +sin ("‘(2’”_1){:05 (4n—2) mﬂ4nm2)z w . (2?3'“1)'

=1

The first order approximation for the zeros of H, ,,(#) is found immediately by setting
cos (,u. (2n — 1) cos ( - ) - 4':;'_12) = 0. Thus we find that the k-th ordered positive

4n—-2
zero ") of Fo(p) is given by (for & > 1 so that u{’) > 0)

() _ T w n-—1 _ ) (1)
(3.18) #k'"m4n—2380(4n—2)(2n~—1 142k)4+0 K

as k — 4-00. Solving the equation H, (i) = 0 yields

3 n—1
p(?n—l)cos(4n_2)—1r4nm2

(319 = kr — tan~! (E}’;o o8 (%3) .

L T njr
n
Ej:l na 51n ( i

oo

n—
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We expand the tan~! for large 1 and sufficiently large m, and combine it with (3.18)
and (3.19) to find

 , seclms) { i { Y (a2, - i ( 28T Y -
H= i R + (Zn _ 1)“ aﬂ,l s1n 2n _ I (aﬂll 2&,“3) sin 2n - 1 2,“‘

3nm 1
3 - H —
+ (@1 — Batn, 1000 3 + 30, 3) 5in (gn —- 1) 3u?

) 4nw 1
- (aﬁjl - 4aﬁ,1an,g + 2af,,2 + 40:,,,10:,1,3 - 4an,4) sin (2 ) -4?

5 3 2 2
+ (a1 = Baj 105 2 + By, 106 o + 505 100 3 — By 20

. Snw 1 1
= b 100 4 + 5(1,1,5) sm (':?";;—_"i') W} + O (!";’5—) .

Appealing to Lemma 2.1, we define

_ (4n 7) . nr apy— 20y, 2nm
(3.20) Gu(w)=n+ ( “Dp Q1 810 (211 - 1) - o sin (2n — 1)

+a2,1 — 30, 10y, 5 + 30, 5 sin ( dnr _ Sec(énﬁ-—-z) arzl.l sin? ( nw ) .
3u? 2n-1 (2n—1) p? 2n—1

Let pti, denote the k-th ordered positive zero of F,(), so that the fourth order
approximation of y; ,, is given by

=G, (#Scﬂ’)i) + +0 (k’*) as k — 400,

Combining (3.11), (3.12), (3.15), (3.16), (3.18), and (3.20), Theorem 1.1 is proved. O

3.4. Coefficients a;;. For n = 2 we verify the validity of formula (3.11) by
finding the corresponding coeflicients aj;; which should match the coefficients o; of
section 2. The conditions (3.7) on & = (o4, -+, 04;) come out to be

Ek 1% =
ko’k—QJ
O'k--U Vk>3

From the third condition, we have that the only non-zero coeflicients are o, and o,.
From the first and second condition, they satisfy the 2 x 2 system

a'1+02:m
O'1+20'2:2j

whose unique solution is & = (o, = 2(m — j), 05 = 2j — m). Using n = 2 we have

P | o* 42(m—3) 1
YT oo oy (k+2) T @m-)) (2 -m)

- 1--31

Equation (3.11) becomes

- T +1/2) < Z (1/2~ j—m)m gm-)
Rz Rm- N @ - mt
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We discard all terms m < 7, thus we let m = k + j, so that k ranges from { to j:

_TG+1/2) L+ N 16t 1

Y 6 "R (G - k)
_F(j+1/2)§: 5 —1/2\ [k + 3 (g)*
RGN -ANET 2% J\3
= q; see (2.8)

3.5. Asymptotic zeros of F3(u). For n = 3, the first four coefficients a3 ;,j =
1,-++,4 are given by (see Appendix C and Table C.1):

11 517 —22253

(3.21) as,u = 1, aa,l _— "]"""8"""6, 03,2 = ——64800’ a3,3 = —"-‘“"""“""“174960000-

In order to describe the asymptotic approximations of the zeros of F3(y), we need the
following trigonometric expressions:

Vb —1 14++/5

sin(r/10) = — cos(37/5) = Y cos(6n/5) = — YR

sin(6r/5) = _%\/ 5 _2\/5, cos(m /10) = sin(37/5) = % 2 +2\/5’

sin(9r/5) = — sin(x/5) = —2sin{x /10) cos(x /10).

Using (3.11), the first order approximation is

o _2m ) 2 ( _ _?_) S

and combining (3.20) and (3.21), the fourth order approximation is given in the fol-

lowing Corrolary:
COROLLARY 3.1. Forn = 3 and k > 1, the approzimation of the k-th ordered

positive zero uy 5 of Fa(p) = [T e*%i7-"Y 0> is given by

27 2 3 1
(©) _ f -2 - — +
B3 = . \/g(k 10)-}-(’)("‘:) as k 00,

The fourth order approzimation is

1
#k,s*ga(ﬂ'g:g)'*‘o(‘ﬁ) as k — +o0,
11 (1 V-1 11 (1 ggﬁ-1)1)

Gs(k) = 1+ 555 %0 900\ 165 2 ) u*

4. Numerical evaluation of the zeros of F, (). In this section, a numerical
method is designed to compute the zeros of the function F,(p). The purpose of
including such an analysis is to judge the accuracy of the asymptotic approximations.
This numerical algorithm shows that the high accuracy of the asymptotic predictions is
attained for moderatly large zeros, thereby confirming the strength of the asymptotics.
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The function F,(p) is approximated using Simpson’s rule and extrapolation, to
which we apply the secant method to locate the zeros. The asymptotic approximations
of the zeros p o and pig s of Fo(p) and Fy(u) derived in the previous sections are
compared to their numerically calculated values. We also compare these estimates to
the zeros of hyo(u) = Hy io{p) and H; ;o{p) (see (2.12) and (3.17)) which are computed
with the secant method.

4.1. Numerical approximation F™(u) of F,(1) by Simpson’s rule. The
numerical evaluation of Pearcey-type integrals has been studied by Connor and Curtis
in [10]. However, since we consider a special case of Pearcey integrals, we devise a
simple algorithm to numerically evaluate F,(u). Using the alternate expression for

Fo.(p) (see (1.6)) given by

+°° 2n
Falw)=2 [ cos(enpy) e " dy,
4]

we construct the approximation by dividing the range of integration into subintervals
over which the integrand does not oscillate. Let

k+1/2
r_q1 = 0, X = Iﬂk(‘U,) ] -—('——;?;‘/L—E f()l' k e N,

0u11,9) = 2cos(rpy) exp(—py™),  TH(w) = (-1* [ lonlm )l d,

so that
Q"‘(.u) ‘R"'(ﬂ)
Folp) = Zﬁw—zfm+23ﬂm
k=m+1
where

Ty +oo
Q' (p) = fu gl dy,  RP(p) = f 9n(psy) dy.
We first estimate the remainder Ry (p):

m v g (&, pel
REGI <2 [ e dy = S,
'n,i_llﬂn
where I'(e,z) is the incomplete Gamma function defined for Ra > 0. Since I'(a,z) ~
e~*z% ' as z — 400 (see [1]), we find that

n

—HB
IRY ()] < f;t-mgm for sufficiently large pzZ?
m

The endpoint z,,(p) = (m + 1/2)x/(2nu) is chosen in such a way that the contribution
from the remainder RJ*(1) is negligible for a fixed (bounded) p. If we require that

(4.1) exp (—pz) <e=10"", k€N,

then it yields a good initial choice for m given by

2n an—1 1
(42) m= m[ﬁ; n,#maw] = Int l:"';'#mza'fr (mlogl(})il'? - "'2' +1,
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where Int [z] denotes the integer part of ¢, and ., is a bound on the largest zero
we wish compute. It is clear from this analysis that the larger fpq., the larger m will
need to be, which is why this algorithm is practical only for small roots py .

We now approximate Q7(u) by Q!(p) for large ! and moderate m (due to the
rapid decay of the integrand),

or () = i TH(u) e Q) = g;z:"(m,

where each integral Z%(u) is approximated by Z%'(u) using Simpson’s rule: I is the
number of gridpoints and the spacing h is defined by
A$k Tyl — 23 = T

h= I - l T 2nul’

Since
=1 +0 (7). Q8 =er'e+0o(F),

and using extrapolation we define

Q! (p) — On'(1)
201

F () = QR () + = Q7w = AW+ 0 (F)-

Thus the final approximation is
m i ——,u::f,(‘
Falu) = 7" (M)-i'o( )+0 P

as uz2? — 400 and I — +o00. Clearly the constraint on this algorithm arises from the
choice of I since a moderately large value of m < [ is sufficient to make the remainder
R™(p) as small as desired. Moreover it is difficult to estimate the asymptotic constant
in the term O(m/I®) which may be large since it involves £ 2 g.(n,y). Hence the
choice for ! is made by doubling its value until two successive values of all the zeros
Brn < Hmaes agree to 10 significant digits.

4.2. Numerical approximation of the zeros of F™'(¢) and H,, ,»(1) by the

secant method. We use the secant method to approximate the zeros of F/(1) and

M, m(#t) which appear in (respectively) the “Numerical values” column and the column
“'H"l (0)” of Tables 4.1 and 4.2. From (3.17), we express My, ,»(pt) as

_ T 1—n(1+2j)) =
Heom(p) = Za"»i cos (,u(Qn —1)cos (411 — 2) A [T

j=0

and let K(p) stand for either F'(u) or Hum(p). Then the procedure consists in
successively evaluating for any k > 1 (x> 0)

o _ T T n-1
“"'"“4nm2sec(4n—2)( =1 1""2k>

28
lnm On"" K On & 210_2
Moo = B = RO, 00) ~ KA, — ) ) (=107

ITANE ST oo~ Voo K, i1
" " K(a) - K(min) "
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pis (2.17)

#is (Cor. 2.1)

23

pe s | Numerical zeros H310(0) (3.17)
M1 0.8221037147 0.8061330508 | 0.8227392717 | 0.8240052094
Ha2,2 2.0226889660 2.0153326269 | 2.0226917275 | 2.0226893916
M3 2 3.2252515284 3.2245322031 | 2.2202516648 | 3.2202015324
Haz 4.4372464748 44337317792 | 4.4372464915 | 4.4372464749
Hs,2 5.6457167459 5.6429313554 | 5.6457167492 | 5.6457167459
Heo 6.8544374340 6.8521309316 | 6.8544374349 | 6.8544374340
M2 8.0632985369 8.0613305077 | 8.0632985372 | 8.0632985369
Ha,2 0.2722462225 9.2705300839 | 9.2722462225 | 9.2722462225
oz || 10.4812510476 | 10.4797296601 | 10.4812510479 10.4812510479
TABLE 4.1

Numerical approzimation of the zeros uxz of Fa(p} = ff:o ehldiz=z") g,

until the convergence of ,w};'n ~+ ity » which is based upon a relative error test of the
form

+1
Ju'-;c,n B ﬂi N

J+1
Py N

4.3, n=2. I m is chosen so as to satisfy (4.1), then a crude initial choice for /
is [ = 10%/% (typically & = 12 = [ ~ 250). We take ftnq, = 11 to be a bound for
the largest zero we wish to compute, and x = 12 so that from (4.2), we find that
m = m[12;2,11] = 18. Starting from [ = 10*/® ~ 250, we double the value of [ until all
ten significant figures in the column “Numerical zeros” of Table 4.1 do not change. The
first such value is { = 1000. Note that for £ € 5 (fmaz < 6), m = 12 is sufficient. One
can see in Table 4.1 that the values computed from the asymptotic approximations
ate very good. Notice that the first zero y; » is not well approximated by any of the
asymptotic predictions since it is less than 1. Beyond the first zero, the asymptotic
approximations improve with increasing index k. For 5 < k < 8, H3, 10(0) agrees with

<tol =107

the numerical values up to 10 digits. For k& > 5, ,u(s) and the numerical values agree up
to 8 digits. For k > 8, the numerical and asymptotic values grow apart due to the lack
of accuracy of the numerlcal procedure (see the comment following equation (4.2)).
Note also that for k > 8, u{*) and Hz 10(0) agree up to 10 digits (M, 16(0) is computed
for the sake of comparison of the asymptotic and numerical estimates). In computing
H, 10(j2), the 10 coefficients ay 4,5 = 1, -+, 10 are determined using Appendix C. The
same is done for Hy 10(pt) below.

4.4. n=3. Once again we take ., = 11 to be a bound for the largest zero we
wish to compute, and & = 12 so that from (4.2), we find that m = m[12;3,11] = 25.
As in the case n = 2, starting from [ = 250, we double ! until all ten significant figures
in the column “Numerlcal zeros” of Table 4.2 do not change. The ﬁrst such value is
1 = 1000. For k > 10, there is 6 digit accuracy when we compare ,,u (see (3.1)) and
the numerical values; for 10 < k < 14, there is also 10 digit a,ccuracy when comparing
the numerical values with H31,(0), and 7 digit accuracy between ul 3 and H;10(0) for
k > 16. These results are reported in Table 4.2.
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A. Proof of Lemma 2.1. To prove this lemma, we succesively substitute higher

B3 | Numerical zeros ,u,g?g, (3.22) p,fg (Cor. 3.1) | H310(0) (3.17)
M3 0.5006640277 0.4624572398 | 0.4845169688 | 0.46750721075
M2 1.1311965433 1.1231104397 | 1.1333562062 | 1.1332534896
H3,3 1.7805548747 1.7837636356 | 1.7503635764 | 1.7903435964
a3 2.4492569634 |} 2.4444168394 | 2.4492848081 | 2.4492788273
Hs,2 3.1089250327 || 3.1050700392 | 3.1089251416 | 3.1089227904
M3 3.7689127436 || 3.7657232391 | 3.7689140713 | 3.7689129739
Hra 4.4290976016 || 4.4263764389 | 4.4290981557 | 4.4290975781
Hg,a 5.0854021100 5.0870296388 | 5.0894024443 | 5.0894021124
Hs,3 5.7497857943 5.7476828386 | 5.7497859980 | 5.7497857940
Hios 6.4102244359 6.4083360384 | 6.4102245680 | 6.4102244359
Hi13 7.0707027897 || 7.0689892382 | 7.0707028789 | 7.0707027897
Hia,3 7.7312107680 7.7206424381 | 7.7312108304 | 7.7312107680
P33 8.3917414319 || 8.3902956379 | 8.3917414769 | 8.3917414319
M43 9.0522898522 || 9.0509488377 | 9.0522898854 | 9.0522898522
piss || 9.7128524305 || 9.7116020376 | 9.7128524558 | 9.7128524307
Hi6,3 10.373426479 10.372255237 | 10.373426499 | 10.373426480
TapLe 4.2

Numerical approzimation of the zeros pra of Fa(p) = ff; eH(Biz=2") g,

estimates in the equation: Let { = u(®), then the asymptotic relation reads

‘We have

followed by

~

‘We now have

al( Gy g g aG) (
=C(+— |+ —+5+=5+—3]+0
pElr Bttt et
a0 1
w=c+ 2o (z).
aa o 1
e S tro(z)
a1y G0y a0y Q103 1
-38(1-52-52) o (2)
# ( ¢* Cs) ¢*
4103 Qa3 GGy 1
o () o (a)

)

so that there is a —(aya,)?/¢® and a —3ata,a3/(* correction term:

!j,__"

¢+

Gildg = G143

a1d4 — (01“2)2

a,ag — 3(1.%(32(13

¢ ¢

CS

C4

rod)
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Finally, we use

a1 a, _ ) (1 _ az‘jz _ azga 0ty —C£a1az)2 + (”'1;2)2) +0 (gg) :

w1w3 '~1=~3 (1 9 (*’*’flwz ﬂlu'.s)) +0O kcs)
oot o(d)

so that we must add a (—4alaya, + 203ad — 2a}a}) /(° correction term. Thus we find

a4 — 4,63 as — 32,890,

”:“%(“”Ec?‘* & tT o

ag — 2a,a3 + 2a3a3 — 4aya50a 1

6 103 C412 10204 +O(Z_g) as ¢ = u® = foo.
B. Faa di Bruno’s formula. For a = (a,43, "+, a,) € N*, following the nota-

tion in {1], we define the multinomial coeflicients :

n!

(n;alsa’?,,"'aa'n)= )

avl!a:g! .. 'an!
!
(n; Q13 Gz, 00, ﬂ) = (1|)a1a1|(2!)02a2 (n')““a "

The n-th derivative of the composition of two functions is given by Fai di Bruno’s
formula in [1, §24.1.2] and {13}:

Gt = g oo LU
(k) T ag
(B.1) —Z;}gw (@)Y rta H{f k!( )} ,

where the second summation sign 3 ' cn» is taken over all integer n-vectors @ =
(@y,8y, -+ ,0a,) € N* such that " kay = @y + 2a3 +---+ ne, = n and |a| = T, a;
a;tax+ -+ a, =m.

C. Mathematica code for the computation of the coefficients o, ;.

<< DiscreteMath‘Combinatorica‘;

vector[n_, j_, m_.] :=
Module[ {dim, k2},
dim=2n-2; k2=2j;
1£[ j==0, 1,
Apply[ Plus, Map[ (Apply [Times, Flatten[
MapIndexed[((Binomial[2n, #2+2]1-#1)/#11)&, #]1,111)¢,
Select[ Flatten[ Map[ Permutations, Select]
Map[ (Join[ Table[0, {dim-Length[#1}],#]1)&, Partitions[ml],
(Length[#] == dim)&]],1], (Rangeldim] . # == k2)& ] 111 1;
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ani | 1 2 3 4 5
2 i 385 39655 665666 — 1375739865
144 414732 17915904 10319560704 1486016741376
3 11 517 — 22253 — 158440051 — 3797666873
180 £4200 174960000 12R271 200000 4534063200000
4 15 705 — 23595 - 26196885 — 9089431065
2% 100352 22478848 20141047808 31681162962944
5 19 931 —111687 761484451 6741607873
270 145800 73811250 637729200000 172186884000000
6 115 29785 — 42479045 163420180175 56283394450535
1684 | 5018112 23846068224 1510B8688267264 | 239324482715346176
7 27 1485 « 1B8695 ~138332205 128908298475
364 2649072 56457088 140441520128 357844993286144
8 217 88753 — 1487341219 —~ 7471144611931
2880 | 16588800 | 716636160000 | B265648563200000
9 35 1085 ~ 295905 - 1787240455 .
459 210681 136621258 2130551220528
10 117 23049 —~ 78289029 .. s
1520 | 4620800 35718080000
TapLe C.1

Coefficients ap,; forn=2,--+,10, and j =1,..- |5,

Alphafn_,j_] := Gamma[j+1/2] / (Sqrt[Pil (n(2n-1))"j) *
Sum[ Pochhammer[1/2-j-m,m] / (n(2n-1))"m * vector[n,j,m}, {m,0,2j}];
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