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High Order Shock Capturing Methods

Bjorn Engquist* and Bjorn Sjogreenft

Abstract

Shock capturing finite difference methods of TVD and
ENO type are presented. Several schemes are described
in detail both for scalar nonlinear conservation laws
and for systems. Theoretical results are also discussed.
Some new algorithmic variants and convergence anal-
ysis are given. ’

1 Introduction

The physical laws for conservation of mass, momen-
tum and energy are fundamental in the mathematical
modelling of fluid fiow. We shall here disucss the nu-
merical approximation of nonlinear hyperbolic conser-
vation laws. For simplicity we shall mainly concentrate
on scalar problems in one space dimension and time,

{ ut‘i‘f('u’)m:ov
u(z,0) = uy(z).

(L1)

We shall also discuss the extension to general sys-
tems,

{ (e + Vo () = 0 (1.2)

Un(2,0) = ()
m=12,....M, z¢ RY d=1,20r3.

A typical application would be the Euler equation for
inviscid flow. The numerical methods for the inviscid
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equations are often used as building blocks also for the
simulation of viscous fiow at high Reynold’s numbers.

Below follows a discussion of the basic principles
guiding the scheme development. In sections 2, 3,
and 4 the total variation diminishing (TVD) and es-
sentially non oscillatory (ENO) schemes are presented
both from theoretical and practical points of view.
Some convergence theory is given in section 5 and in
section 6 the most important algorithms are given in a
form suited for computer implementation.

1.1 Background

Computations of solutions with shocks in the simu-
lation of fluid flow goes back to the 1940’s, [vNR].
The main numerical difficulty is the approximation at
the discontinuities. Nonlinear hyperbolic conservation
laws generically produce solutions with discontinuities
even if the initial and boundary values are smooth.

The standard theories for finite difference and finite
element methods do not apply and many of the com-
mon methods do not work well in practice either, in
the presence of shocks. During the last few decades
our knowledge in shock capturing techniques have in-
creased drastically from theoretical results via algorith-
mic development to production codes. No theory can
yet guarantee convergence in the approximation of so-
lutions to multidimensional systems of nonlinear con-
servation laws. However, in practice efficient 3-D cal-
cnlations of complete airplane configurations are pos-
sible. The design of these modern high resolution al-
gorithms are based on principles some of which can be
established on simpler model equations as e.g. (1.1).
We shall consider explicit difference schemes and an



approximation of (1.1) will have the form,

l uj = ug(%;),

(1.3)

h;l..i,% - h(u?—r+ls°-~au?+r), (1'4)
z; = jAz, 1, = nAt,

j=...,-1,0,1,...,n=01,...,

where u? is the approximation of u(z;, t,). The nota-
tion A = At/Az is used. A, and A_ are the forward
and backward undivided difference operators, and D
and D_ are the corresponding divided difference oper-
ators.

1.2 Design Principles

In [30], Strang showed that, for smooth solutions to
nonlinear hyperbolic equations, consistent and linearly
stable finite difference approximation convergence. If
the local truncation error is of order p the global error
in L, is O(A#). Even if stability of the linearized
discrete approximation can be replaced by a nonlinear
control of the growth of perturbations, [13] it is still a
useful concept in scheme design together with a high
order of the local truncation error.

Around the discontinuities, shocks and contacts, the

local errors are pointwise O(1). In order for these errors
not to cause blow-up of the numerical approximation
or to spread to the smooth parts of the solution, extra
conditions are needed.

The most straight forward sufficient conditions for
convergence are that consistency, conservation forms
and monotonicity implies L, convergence with error
o(atk), [17), [6],

The scheme (1.3) is on conservation form. Consis-
tency and monotonicity are respectively defined by,

hu,,...,u) = f(u),
u; — AA_ h;.‘ +i monotone as

function of u]_,,..., %4,

The initial value and flux function are assumed to sat-
isfy,
ug € L' L= N BV, f,hec.

The monotonicity requirement restricts the approx-
imation to be of only first order. The other conditions
consistency and conservation forms are present in all
approximations. Conservation form is needed to pro-
duce the correct shock speed, [18]. In order to allow
for higher orders in the approximation, monotonicity
must be replaced by other features which can control
oscillations close to the discontinuities. Furthermore,
monotonicity does not make sense for systems.

Some of the design principles for achieving the de-
sired features are artificial viscosity, upwinding and
limiters.

The traditional method of controlling the oscillations
is by adding artificial viscosity. This corresponds to
approximating (1.2) with a right hand side which typ-
ically can have the form 4-C £u. The viscosity coeffi-
cient €' is usually a function of At and £u. It should
decrease as At decreases, The early method of von
Neumann and Richtmyer, [36], used artificial viscos-
ity and so does for example the modern finite volume
schemes by Jameson and the finite element schemes by
Hughes and Johnson [17], [40]. We shall not consider
those classes of methods but concentrate on the high
resolution techniques based on upwinding, limiters and
for systems field by field decomposition.

Entropy conditions are also important in order to
rule out unphysical discontinuities.

Limiters and upwinding are technigues for control-
ling oscillations near the shocks. If the total variation
of the approximation is not increasing, no oscillations
can be generated. It is thus an important design goal to
create methods for which the total variation is not in-
creasing or increasing very little when applied to scalar
problems. The total variation of the solution of (1.1} is
not increasing with time. The total variation of (1.1)
and (1.3) are defined as,

TV (u(:,1)) = expy, 3 E lumjpr, 1) — u(z;, )],

V() = 3 [ufes — 1.
J



2  Second order TVD Schemes

The TvD concept was first introduced in [19], but it
was in [11] that it was given a name ( total variation
nen-increasing, Tvni, which was later changed to TvD
), and became widely known. Furthermore, in {11] TvD
schemes of formal order of accuracy two, was for the
first time derived. Long before these results, the flux
corrected transport method ( For ) had been derived
[1]. The Fcr method has much in common with the
tvp scheme derived in [11], however For was derived
for systems of conservation laws, and the Tvp issue
was never adressed directly. Actually the FeT method
is TvD only if the crL number is sufficiently small. We
will below present a new and more general description
of the FoT method.

Both Harten’s TvD method [11] and the For method,
are based on the Lax-Wendroff scheme. The meth-
ods consist of inserting limiters into the Lax-Wendroff
scheme, which will act to supress any Gibbs type of
oscillations.

The paper [11] was the starting point for an intense
activity in the field. Several TvD schemes, simplifying
the scheme in [11] were derived [31] [7] {38].

The advantage with the Lax-Wendroff scheme is its
low computational cost, it is optimal in the sense that
it has the highest possible accuracy of all explicit three
point schemes. However, it has also two disadvantages.
Firstly, it it not straighforward to generalize to two
or three space dimensions. This is always done by
dimensional splitting. To insert limiters into a truly
two or three dimensional Lax-Wendroff scheme is ex-
tremely complicated. Some effort to use Lax-Wendroft
ideas for systems in several space dimensions has been
made in [13], but it seems to be very costly and com-
plicated. Secondly, in steady state computations, the
steady state computed by a Lax-Wendroff method will
depend on the size of the time step. One can argue that
this is not serious, since the time step can be seen as an
artificial viscosity coefficient. However, this excludes
using implicit method with large time steps, in which
case the steady state error would be large. Further-
more, convergence iteration with the multi grid method
becomes more complicated, when one as to take into
account how the time step changes on the different grid
levels.

There was another line of development, originated
in [33] [34], where the schemes were based on the a
semi-discretization with pure centered differences for
the space derivatives. TvD schemes were derived by
non-oscillatory interpolation of either the grid func-
tion itself or by interpolating the numerical fluxes.
Schemes based on interpolation of the grid function,
which sometimes are called the MuscL scheme were de-
rived and analyzed in e.g., [4] [22]. A thorough sur-
vey of various limiting techiniques for this scheme can
be found in [29]. Schemes based on flux interpolation
were described and analyzed in [23]. We will here de-
note the MuscL scheme by the inner TvD scheme, and
the scheme based on flux interpolation the ouler TvD
scheme, to stress the analogy with the centered differ-
ence fluxes

higvi2 = f((u; + ;4)/2)
hivige = (F(uy) + fv541))/2
on which these two methods are based.

1t has turned out today that the outer TvD scheme in
a simplified form is probably the most efficient to use
in crp computations [35] [14]. This simplified scheme,
which we describe in Subsection 2.2.2 below, was also
derived in [38] from the Lax-Wendroff approach, by
simplifying away the Lax-Wendroff viscosity term.

The clagsifica-
tion of TvD methods above, is summarized in Fig. 2.1.
4 FCT )
Lax-Wendroff Harten’s TVD ]
[ Weighted LW )

mnearized outer TVD )

DO Outer TVD ]———> Flux ENO
ﬁner TVD (MUSCL) Cell ENO
PPM
(Time discretizatioﬂ

Fig. 2.1. Classification of TVD schemes.



2.1 Methods based on the Lax-Wendroff
method

2.1.1  Flux corrected transport

This is the oldest shock capturing high resolution
method. The method is in the form

u* = L(u")
"t = u* + M{(u*) (2.5)
where L is a first order TvD scheme and M is a mod-
ification such that L(u")+ M(L(x")) is TvD and the
Lax-Wendroff scheme whenever possible. We thus im-
plement the second order modification as a corrector
step to the TvD predictor. We use the predictor step
uj = uj — A _hjy

where h,, , is the numerical flux of a first order TVD
method. The corrector step is

with =i — (bjyaye — bi-1p2) (2.6)
where
bj+1/2 =
0 if AjuiA_uf <0 or
A_,_u A ui, <0
smin(3{A- ], djyip2|Ayujl, slApuial)
otherwise
(2.7
Here s =sign(A,u}) and di 4172 = Q4172 — @ L1/2)

where @1/, is the numerical viscosity of the first order
predictor, and Q7Y is the numerical viscosity of the
Lax-Wendroff method.

We can see that no change is made at extrema, and
thus that the accuracy is only first order there. It is
not hard to prove the following,.

Theorem 2.1. The FCT method (2.5) where L is a
first order TVD scheme and M is given by (2.6), (2.7)
is TVD and second order accurate away from extrema.

Remark: The method of artificial compression
(acMm) [10] was an early attempt to design high res-
olution shock capturing schemes. AcMm is on the form

(2.5), (2.6), but with

biyij2 =
0 iof AjujA_u; <G or
A+ﬂ;+1Amﬂ;+1 <0
sign(A pu}) min(|A_uf|, [A w3, |A L uf])
otherwise

this correction sharpens discontinuities and can be
made TvD with some changes, but is not in general
second order accurate (not even away from extrema).

Originally, ror was defined using the scheme with
numerical flux

11
h’J'+1/2 = (fj + fj+1)/2— 'ﬁgﬂ_!_uj

as predictor. This scheme is TvD and first order ac-
curate under the crFL condition Aa;41/2 < v/3/2. This
gives dj 1/ = i, a constant, and the computation of
the antidiffusive flux in the corrector step becomes very
simple. Furthermore, For was defined using the correc-
tor flux

bj+1/2 =
0 if AjujA_ui <0 or
A+u;f+1Amu;+1 < 0
smin(JA_u}|, dip1/al By
otherwise

(2.8)
wil, 1Ayl yal)

which in general does not lead to a TvD method.

We have here modified the flux (2.8) with factors §
in some places, to make the total method Tvp for arbi-
trary TvD predictors. Alternatively a more restrictive
crL condition could have been imposed on the correc-
tor step.

Harten’s TVD scheme with simplifica-
tions

2.1.2

This method is built on the second order Lax-Wendroff
scheme, which has the numerical flux

1
:+1/2 (fg+1 +£;) - :q—)(()"“j+1/2)2A+uj'

The crucial observation is that if for any numerical flux
function h; i1/ it holds that i; 12 = hEW PR +O0(Az?)
then h;,y/, is second order accurate, too. Here the



leading error term in the O(Az?) must be differen-
tiable.

Harten’s TvD scheme ( also called the urTl scheme )
is defined by taking the first order numerical flux

1 1
hivia = s(finn + £3) - 53 @(Agj41/2) A4
and apply it to the modified flux function f(u)+ g{u).

Q(z) is any numerical viscosity which gives TvD. The
flux of Harten’s TvD scheme is

1 1
Wi = 5+ 5 + 8500+ 95) = 3300 ) Mgy
where @}, /, is computed from the modified flux, i.e.,

itr — Gj
A+ﬂj

aM — fj+1 - f:
/2= A+’“:‘

Harten shows that the conditions

9 + 941 = 2(h 5 — hygap) + O(A2?)
giv1—9; = O(Az?)

implies second order accuracy. Intuitively, this means
that in the expression for hM, 42 above, the term
(9; + 9;+1) ~ hE¥;3 — hj,q while the rest of the
terms is hl,ys,, 50 that the sum is ~ Af[ /. The
TvD property follows by the standard theorem, ( that
Alaj+1l2| S Qj+1/2 S 1), app].ied to the flux hﬁl/?'
An important condition for making this possible is that
(9541 —9;)/ Ayuy is bounded, i.e., that g;4, = g; when-
ever u;4, = u;. The choice made in [11] is

g; = minmod(A}1/2 — hyyr/2: b5 — hyoape) =

from which one can prove Tvb under the standard crL
testriction Aajyi/0] < 1.

The scheme above was later simplified by linearizing
parts of the numerical flux. This lead to the class of
upwind - Lax-Wendroff weighted methods, which we
now describe. In these methods, the numerical flux
function which is written as a weighted average of the
upwind method and the Lax-Wendroff method,

hysaga = (L= wipay2)hiile + wigahfipae

Any first order TvD method can be used instead of the
upwind flux, h_?ﬂ%. The idea is to have w; 4/, = 1,

when the solution is smooth, and w; 4/, ~ 0 near dis-
continuities. Note that Harten’s Tvp scheme can not
be written in this way, due to the non-linear depen-
dence of Q;11/; on the modified fiux.

For this class of methods, the known results about
TvD have mainly been worked out for the linear prob-
lem %, + au, = 0. For this problem we obtain the
numerical flux

Bigase = (i +4;)/2 ~ 3lalAyu;

2.9
(Mol = () 17284 29
Example of weight functions are
_ [ é(r;) ifa>0
Yiti/z = {q5(1/rj+1) ifa <0 (2.10)
given in [31], or
Wiy = P(r;) + ¢(1/152) — 1 (211}

given in [7], or the more general {38]

Wiz = Dy, )
J+1
Where we define '

_ Ay
T Ay
as a measure of the smoothness of u;. When u; is
smooth, and does not have an extreme point, 7; =
1+ O(Az).

The function ¢(r) is called limiter. We require that
#(1) = 1, which implies that

B(r;) =1+ 0(Aa) ¢(1/m;) =1+ 0(Aq)
and consequently

hivaje = RE  + (1= w01 2)(RHT — hidhe)
=hifi .+ O(Az)O(Az)
at smooth non-extreme points, and for the weight func-
tions (2.10), (2.11). ¢(1) = 1 thus guarantees second
order of accuracy. The following theorem is proved in
[31).
Theorem 2.2. The method with numerical flux (2.9),
and limiter (2.10), approximating u, + au; = 0 is TVD
if ¢(r) satisfies

0< ¢(r)<2 0L g(r)/r<2

For (2.11), the theorem below is given in [7].



Theorem 2.3. The method with numerical flux (2.9),
and limiter (2.11), approximating 4, + a1, = 0 is TVD
if ¢(r) satisfies

0<P(r)<1l ¢(r)=0 for r <0

Example of a function satisfying the conditions on
#(r) in theorem 2.2 is

ar
r) o= r+1
sy ={;
and for (2.11) the function

_ [min(2r,1) r>10
#(r) = { 0 r<i
is often used. There is a special terminology for this
class of methods. The scheme with limiter (2.10) is
called an upwind TvD scheme, and the scheme with
the Limiter (2.11) a symmetric TvD scheme, thus in-
dicating whether the upwind direction is required in
the computation of the weight function. Note that in
both cases the upwind direction is required when com-
puting the flux AY[Y,. The symmetric TVD scheme
is simpler than the upwind TVD scheme, but we pay
for the simlicity because the TVD analysis for the case
(2.11) gives more restrictive conditions on ¢.

Another version of these methods is obtained if the
weighting is based on the entire flux function, as done
in [31). There the weight is defined by

A
¢( higrsaMigazs

hives=hiveray
¢(W) if aj1p0 <0
in the case where the low order method is the upwind
scheme ( i.e., has numerical viscosity Ala;y1/a|)-

Alternatively, we can generalize by substituting the
local wave speed a;j,1/2 for the constant wave speed
e in formula (2.9). This way seems to work best in
practice, and has a lower computational cost [38]. The
methods described here has in [38] been modified to
use centered differences instead of Lax-Wendroff, i.e.,
the numerical flux function is

ifr>0
otherwise

LW _pUPW
i—~1/2
h

2) if @0 > 0
Wig1p2 =

<

hipizz = (1= wips2)R 85 + Wigaahiga .
The scheme then becomes equivalent to one of the sim-

plified variants of the outer TvD scheme, which is de-
scribed in Section 2.2.2.

2.2 Methods based on centered differences

The point of departure for the schemes in this section
is the semi-discrete approximation of the conservation
law o, + f(u), = 0.

du, 1

— ,

3 = he ot
where h; /g corresponds to a centered difference ap-
proximation. Limiters are introduced in the scheme to
assure TVD and second order away from extrema. The
analysis is done from the semi discrete form

duy _

dt

where TvD for the semi discrete problem follows from

j+1/284%5 = DjopaB

Ciy17220 Djpp 20

in order to make time discretization possible, we also
need the bound

Cj+1/2 + Dj+1/2 <A

where A is a constant independent of Az.

Time discretization is often made with a Runge-
Kutta type method. In [27] Runge-Kutta methods
are developed which are especially suited for Tvp dis-
cretizations. The idea in [27] is to write the Runge-
Kutta method as a convex sum of forward Fuler steps.

2.2.1 Inner TVD, or the MUSCL scheme

The inner TvD schemes, are based on piecewise linear
reconstruction of the grid function ;. The method is
often interpreted as a finite volume scheme, so that the
grid function is thought of as representing cell averages
rather than point values.

The grid function u; is interpolated to the cell inter-
faces @;41/2 from the right and from the left through

R _ 1 1
Ujprf2 = Uie1 — '2"‘/)(r,-+1)A+ui+1

2.12
Uferpn = U+ () Ay (212)

where r; is defined as




This is a one sided interpolation, where the limiter ¥(r)
is introduced to supress oscillations.

If h*(t;41,%;) is the numerical flux of a first order
1rvD scheme, the second order inner Tvp scheme is de-
fined by

hitie = hl(uﬁl/m ”f-q-l/z)

Second order accuracy follows from comparison with

the second order flux f(#;4.4/2), or

|f(%54172) = h_12'+1/2| =
lhl(“yi/z’“ﬂl/z) - hl(”ﬁg/z,“ﬁ{-z/z)l <
K |ufyy s — iyl + Kalufiy — Uiyl

We require that ufY, ;,uf}1/; approXimate the values
at the cell interface u;44/, to second order accuracy.

The following theorem from [29] gives general condi-
tions on the limiter.

Theorem 2.4. If the limiter function 4 is Lipschitz
continuous and the following holds for all r

P(1) =1
m < P(r) < M
M+2-24<¥ <om

for some constants m > —1,M, A, then the second
order semj discrete method, obtained by putting (2.12)
into a first order numerical flux function is second order
accurate and TVD if the first order flux corresponds to
‘a monotone scheme.

The TvD domain for (r) is shown in Fig. 2.2. Some
examples of limiter functions are

P(r) = (r+|r])/(r+1) (van Leer)
»(r) = (r* +7)/(r* +1) (van Albada)

ifr<0 .
$(r) = min(1,r) otherwise (minmod)
if r <
P(r) = 0 dr<0 (superbee)

max{min(2r, 1), min(r, 2))

P(r) = (Ir* +7)/(Ir|" + 1)

The last limiter contains the first two as the special
cases o = 1 and a = 2. The Superbee limiter is very
compressive, and especially suited for linear disconti-
nuities. It is however not advisable to use in the non-
linear fields since there is a risk that the entropy con-
dition is violated.

The limiters are usually implemented by using the
associated slope function

s(z,y) = Pz /y)y.

With this notation the general a-limiter above can be
written

yle| +alyl* |2 y ] -
lz|* + fyl* el + lwle” O lale |yl
(2.13)

S(ﬂ:,y) =

we can clearly interpret this as a weighted average of =
and y. In this form there is less problems when y =0,
but sometimes it is necessary to introduce a parameter
€ to avoid division by zero. For (2.13), we can write

lyl* + ¢

2] + ¢ .
2t ol + Tl

2+ o + [yl=”

+

S(:lt,y) =

In general ¢ should be placed such that the scheme
becomes fully second order accurate as z,y - 0.

When 1(r) = r(1/7), then we can interpret the
interpolation {2.12) as a piecewise linear reconstruction
in each cell, i.e.,

w(@) = u; + 8;(z — 2;)/ Az @1y <& < Tjgap

with s; = ¥(r;)A_u; .

It can be seen by Taylor expansion that in the case
of a scheme based on cell averages, third order accu-
racy can be achieved for ¢'(1) = 2/3. However, this
is a purely one dimensional effect. Third order is not
possible for schemes using point values instead of cell
averages, unless the flux is linear { f"(u) = 0). Exam-
ples of limiters satisfying /(1) = 2/3 are

¥(r) = %’?ﬂ% (Speijkrese)

P(r) = 5,22#:%:2" (Koren-Hemker)
0 ifr<0
2r fo<r<1/4

¥ =9 (r+1)/3 1/a<r<5/2
2 if5/2<r

The last limiter is new, and designed for linear fields,
i.e., it is very compressive, and can be used in place of
Superbee when third order is desired.



2.2.2 Outer TVD schemes with simplifica-

tions

The outer Tvp methods can be understood ag gimilar
to inner TvD methods, but based on the second order

flux

hiips = (fja + Fi)/2- (2.14)

Alternatively, many of the outer TvD methods, can be
obtained from the Lax-Wendroff based schemes, by re-
placing hf}¥,, by the centered flux (2.14), in the for-
mulas in section 2.1.2.

The original cuter Tvp method was defined in [23],
and can be written as

h2iia = Biqape + 390 )(F(45400) = Bygaya)+
$P(r ) (F(5) = higaya)
(2.15)

where we use
) YRV () B
7 fluggn) — by 7T (o) = hjeap

The following theorem is similar to the inner Tvp meth-
ods.

Theorem 2.5. If the limiter function 1 is Lipschitz
continuous and the following holds for all r

P(1)=1
m<P(r) S M
M-2<¥)<24-_24m

for some constants m, M < 2, A, then the second or-
der outer semi discrete method, using the flux (2.15),
where k41, corresponds to a first order TVD scheme
is second order accurate and TVD.

Thus the limiter functions described in the previous
subsection can be used here, too.

By using the viscosity form of the first order flux we
can write

7t = (Aajoy/obQimnya)bot;
J gA“i+1lﬂ+Qj+1/2)A+uj
T = —Xa41/31Q541/2) 045

i T (=Aajoyet iy )Aou”

By the notation

&iape = (12 + Qjtr172/X)/2
df 10 = (@472 + Qiaapa/ )2

we can write the scheme as

hliipe = higy2 + %S(df—lfzf-\—“j?df+1/2A+uj)+

Lol d- +
23( j+3f2A+“'j+1:dj+1,'2A+'”'5')

where we have rewritten the limiter expressions in
terms of the slope limiter function s(z,y) = ¥(z/y)y.
In practice [35], one uses often the linearized version of
this,

h?-{-l/i! = Rjqap2t %df+1/25(A—uj’A+“j)+

a 2.16
%dj+1/2S(A+“:‘+h Aju;) ( )

since, it has turned out to work better in practical com-
putations with systems of conservation laws. (2.16)
has,furthermore, the advantage of a lower computa-
tional cost. (2.15) and (2.16) are clearly a type of
upwind-TvD schemes. By lumping together the posi-
tive and negative parts, using

_ 1
d;-n/z + d’j+1/2 = 'XQJ‘H/Z
we obtain the symmetric Tvp scheme

hy1je = Rygrpe + 35 @5 41/2(s(Douy, Aguy)+
(D yttj41, Dytyy) — Ayuy)
(2.17)
by introducing the weight

w172 = P(ry) + P(1/1541) — 1
we can write (2.17) as
hippe = (L= wigap)hiiage + Wisaphige

where h° = (fj41 + f;)/2. Thus we have obtained a
weighted upwind-centered difference method, compare
Section 2.1.2.

It is possible to define a non-linear version of (2.17)
by redefining

CQiyeBiuy (G fi-)/2 By

= Qraagab s~ Uyt B2 i )
The simplified method (2.17) above has been described
in [38], and it has been used in [15] as well, where a
clever modification of (2.17) was made. The flux used
in [15] has instead the weight

Wii1pe = s(1/r541 Tj):



where s(z, y) is a standard slope limiter funetion. The
limiting is extended over five points. This permits more
generous conditions on the limiter function when prov-
ing TvD, see [15].

We thus have two non-linearized outer TvD schemes,
(2.15) (upwind TvD) and (2.18) (symmetric TvD). We
also have linearized versions (2.17) ( symmetric TVD)
and (2.16) (upwind TvD ). Numerical experiments on
these methods have shown that

e The upwind versions usually give somewhat
smaller error than the symmetric versions.

o The linearized schemes (2.16) and (2.17) give
smaller error than (2.15) and (2.18).

¢ That the non-linearized schemes can give serious
problems with oscillations for systems.

¢ The symmetric schemes can not be made fully sec-
ond order accurate by the uxo limiter described in
section 2.2.3.

The UNO limiter for full second order
accuracy

2.2.3

All the second order TvD schemes in the previous sec-
tion degenerates to first order near smooth extrema. It
is described in [12] how this can be overcome by the
uNo scheme.

Consider the slope limiter

(A yuy, A_uy),

which could be dervied from any of the previously de-
scribed limiters by s(z,y) = ¥(2/y)y. This limiter is
converted to an uxNo limiter by introducing second dif-
ferences according to
s = s(ALu; — Fm(A A Uy, ALA_up),
Ay + Im(Ap A vy, ALA ;)

where m(z,y) is the minmod function. s(z,y) can be
any TvD slope limiter. (2.19) is derived by a piecewise
parabolic reconstruction, where the minmod function
guarantees that no new extrema are created. The uUno
limiter was derived for the inner Tvp scheme, but works
well for most of the upwind-Tvp methods described
above.

(2.19)

3 Second order TVD schemes for
systems

There is a large variety of first order schemes for hyper-
bolic systems of conservation laws. They are based on
approximate Riemann solvers, flux splitting, charac-
teristic decomposition, etc. We will not go into details
about this. Instead we will discuss how to generalize
the second order Tvp schemes described in Section 2.
First order schemes gwe too poor resolution for prac-
tical purposes.

All realistic problems require that a grid transfor-
mation is included into the equations. This is no fun-
damental problem, since the transformed equations of
the conservation law

e + f(u)a: + g(“‘)y + h’(u)z =
are in the form
wy + Flu) + d(w), + R(u) =0 (3.1)

where (£,7, ¢) are the coordinates of a unit cube. The
transformed fluxes contain some metric derivatives,
which acts as variable coefficients. If only the metric
is discretized such that the flux differences become ex-
actly zero for a constant flow, there are usually no ad-
ditional difficulties from the grid transformation. The
discussion below is one dimensional, but applies with-
out changes to the problem of evaluating one coordi-
nate direction flux in (3.1).

3.1 Generalization through eigendecom-
position

A linear system wu, + Au, = 0 can be decoupled into
several independent scalar problems by a characteris-
tic decomposition. For non-linear problems this is no
longer possible, however most generalizations of meth-
ods for scalar conservation laws are based on local
eigendecomposition. The most well known and widely
used method is Roe’s linearization [24]. A local Jaco-
bian matrix at the point 2;,1/2, Ajp172 = Altj11,%5)
is constructed such that it satisfies

f_-;+1 A(“:+1, 3)( J)
A(u, u) =3



We will use m to denote the number of equations,
thus A is an m X m matrix. In [24] such a matrix
is constructed for the compressible Euler equations
of gas dynamics. It has the property that A;yi/2 =
A(M(6j41,9;)), L., it is the value of the Jacobian
evaluated at a special average of u;4, and u;.

Required for generalizing the scalar methods are the
eigenvalues of the Jacobian matrix af s, k= 1,...,m
which corresponds to the wave speeds a;4q/9 in the
scalar case. The eigenvectors 7}, /2» Which is the coor-
dinate system in which the method is used, and the co-
efficients af, ,, defined as the representation of A,
in the eigenbasis,

m
Apuy = Ea;ﬁﬂlzrj‘cum-
k=1
The a-coefficients are used in place of Aju; for the
scalar problem, in all limiters etc. As an example the
first order upwind scheme

1 1
hivapr = (S + J5) = glasaaal By

is generalized to the first order Roe’s method

(f.:+1+f3 Z |afy1p2l 01212 (3:2)

J+1/2

Formulas for the compressible Euler equations of gas
dynamics can be found in [39] or [35].

An alternative to the Roe decomposition is to fix the
eigen basis at the point 4; and transfer all computa-
tions to the characteristic coordinates for the matrix
A(u;). This is often used in interpolation and recon-
struction algorithms, e.g., in the flux interpolating ENo
scheme, or when doing piecewise linear reconstruction
in characteristic variables for the inner TvD scheme. As
an example, consider the slope limiter function

8j = s(Auy, A )

According to the Roe recipe, we would represent this

as
m

_ ? k k
8 = Z 3(aj+1/25 aj—1/2)7'j+1/2
k=1

in the computation of the flux hjy1/;. For the flux
hy_1/2, 8; would probably be represented in the basis
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for A;_ /5. The second method gives instead the rep-
resentation ~ :

8; = 3( ﬁj,ﬁj - ﬁj-l)”'(’“j)

M*

L2
1]

1

where the scalars §; are the characteristic representa-
tion of u, in the basis determined by u;.

B = Hu;)

and where 7(u;) and I(u;)} are the right and left eigen-
vectors respectively of the Jacobian matrix A(u;).

There does not exist any analysis concerning the gen-
eralization to systems. Instead we make the following
comments based on intuition. The advantage with the
generalization based on the Roe decomposition is that
the aj41/2, always well represent the true characteristic
variables. When using §;, = l(uJ Y uy, if the difference
between j and k is large, §; is no longer a good ap-
proximation of the local characteristic variable. On
the other hand, one can have doubts about compar-
ing aj41/2 and aj_yj,, since they belong to two dif-
ferent coordinate systems. Perhaps that is the reason
why scaling of the a1/, can significantly affect the
computation of hypersonic flows [39] [35]. With the
(-generalization we are certain to do all computations
in the same coordinate system.

3.2 Lax-Wendroff type methods

These methods are almost always generalized through
the Roe eigendecomposition. Thus for example, the
numerical flux function

(fj+1 + f:‘,‘)

for a scalar conservation law, where @173 = (fi41 —
i) /(w51 ;) is generalized to

hjyapo = A(Aaj+1/2)2A+uf

1 1 &
hisige = 5(fj+1 + f) = 2‘;2('\“?+1/z)2af+1/2?f+1/2
k=1
for systems. Here af,;,, is the kth eigenvalue of the
Roe matrix.

Harten’s Tvp scheme hecomes

h1+1/2 - 2(f3+1 + fJ) Y 2? 1(
Q(Aak .y n+ AE L1 0)ab sy + 98 + 81075



where

9:1‘5 = fé’miﬂmf’d((?(*\afufi) - ()\a;?+1/2)3)af+1/2,
(Q(Aab_y/s) — (Maf 1y} )i _1p2)

and where

P = (gh1 — 97)/0f1j2 When afyip2 # 0
42 0 when af ;=0
These formulas are obtained from the formulas in Sec-
tion 2.1.2 by a straightforward generalization. All
occurencies of A, u; are replaced by &f 4179, and all
wave speeds a;,1/2 are replaced by eigenvalues a5y /2¢
Then the numerical flux is evaluated field by field, and
summed together in the eigenvector basis.

The reT method should for best performance be im-
plemented in the characteristic variables. However,
the scheme is implemented in characteristic variables,
only in [37], normally the anti-diffusive corrector step
is made in the conserved variables,

3.3 Inner TVD

For the inner TvD scheme, we have to compute the in-
terpolated values on the cell interfaces, ulfy, g, uf\1/er
If we strictly follow the guidlines above, this would
mean that the interpolation has to be done in the char-
acteristic variables. However, in order to compute the
total flux, a second characteristic decomposition is usu-
ally necessary in order to evaluate the first order flux
function. It is therefore common to do the interpo-
lation in other variables in order to reduce the cost.
The problem is that one sometimes observes oscilla-
tions around the contact discontinuities when limiting
is done in the conserved variables. For gas dynamics a
good compromise is to do the limiting in the density,
velocity and pressure variables, which seems to work
well in practice.

Some examples of a Mach reflection in compressible
gas dynamics are given in Figs. 3.1-3.4. In Fig.3.1
we show the solution using a minmod limiter in the
conserved variables. The minmod limiter is diffusive
enough to give a good result in these variables. In
Fig. 3.2 we show the same computation using the van
Leer limiter in pressure-velocity variables, Small oscil-
lations are seen, which dissapears in Fig. 3.3, where the

11

Fic. 3.1. Minmod limiter in_conserved variables.

Fic. 3.2. van Leer limiter in primitive variables.



Ti1g. 3.3. van Leer limiter in characteristic variables.

Fig. 3.4. van Leer limiter in non-linear fields,
superbee in linear fields.

same limiter is used in characteristic variables. When
using characteristic variables, we can take the oppor-
tunity to use a compressive limiter in the linear fields.
Fig. 3.4 shows the superbee limiter applied in the linear
characteristic variables., A sharpening of the contact
discontinuity is clearly seen.  Here the characteris-
tic variables in the limiter were computed in a fixed
coordinate system (3 decomposition).

The advantage of the inner TvD method, is that it
can be built from any first order method. There is a
large freedom of choice. Especially in problems which
are not strictly non-linear, there will be difficulties to
satisfy the entropy condition with many of the more
popular first order schemes. In such a case, a scheme
based on an exact Riemann solver could be a reason-
able choice. Using the inner TvD technique such a
scheme would be easy to generalize to second orde ac-
curacy.

12

3.4 Outer TVD

For the outer TvD scheme, we build on either the non-
linear version {2.15) or the linearized (2.16). We here
only discuss the upwind limiting. Symmetric limiting
is done in exactly the same way. For this method both
a and B types of eigendecomposition have been used.
The outer Tvp method (2.15) can be generalized to
systems, by introducing

Fu) ((f; — hjtrs2)

-k _

(3.3)

where [F(w;) is the kth left eigenvector of a Jacobian
matrix A(u;). We then define

h?iije = hivae + ’%E?ﬂ(d’(dﬁua/d}i’fuz)dﬁuﬁ‘
Wi ol dfs )i da )Ty
(3.4)

where the state u; in (3.3) for the eigenbasis, is an inter-
mediate value u;4;,, for all the dis appearing in (3.4).
Note that, e.g., df,, ,, thus is linearized differently de-
pending on whether it is used in the computation of
h3y1/5 Of B}_; ;. This is however expensive, since two
characteristic decompositions are necessary. One when
the first order numerical flux is evaluated, and one for
the second order extension.

In [23] the characteristic decomposition is done dif-
ferently. The linearization is built into the first order
method, and it is based on Riemann invariants rather
than left eigenvectors. '

The more popular Roe decomposition can be used
for this scheme, if the first order flux function can be

written
h ._l f f — li k k k
j+ife = 2( i+ i) 53) Gi1/2@ 117275412
k=1

for some viscosity coefficients ¢}, 2o We then write
the scheme (2.15)

S s LT
g Ekfz(sgdj-uza;;c—zfz 9kdj+1/2akj+1/2)+
Sy far20 4372 B 411205 41/2)) 54172

(3.5)

where we have introduced

dﬁuz = (a?+1/2 + '1;“.4-1/2/)\)/2

dj_-fw = (—afy1yn + Gfpapa/A)/2



Fia. 3.5. Symmetric outer TVD with the van Leer limiter.

Fic. 3.6. Upwind outer TVD with the van Leer limiter.

The linearized (2.16} becomes

hgz'-;’;yz = 2’:‘«!»1/2 '|; 'é" E';Z‘:i(d}fuﬁ(af_m,a?+1/2)+
d;+1/2'9(aj+3/27 C'5_,'+1/5.>))’"_f+1/2)
(3.6)

This is a very efficient method. Additional simplifica-
tions are done by using the symmetric version (2.17),
whose generalization to systems is in analogy with
(3.6).

As mentioned previously, the non-linear (3.5) can
sometimes give rise to oscillations in the solution,
whereas the scheme (3.6} has always shown good per-
formance in practical computations.

Some examples of computations with the scheme
(3.6) are shown in Figs. 3.5-3.7. The symmetric outer
vD method in Fig. 3.5 gives almost identical results as
the upwind Tvp method in Fig. 3.6, when a standard
flux limiter is used. Both methods resolve the shock
with no spurious oscillations. Fig. 3.7 shows the up-
wind TvD scheme, but now with an extremely compres-
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Fic. 3.7. Upwind outer TVD with
the van Leer limiter in the non-linear fields,
superbee in linear fields.

sive limiter in the linear fields. We see an improvement
in the resolution of the contact discontinuity emanat-
ing from the triple point.

4 ENO methods

There are several reasons why we would like o increase
the accuracy of the TVD schemes previously described.
Difference method of higher order of accuracy are usu-
ally more efficient, since a fewer number of grid points
can be used for the same accuracy. Furthermore, all
TVD schemes suffer from degeneracy of accuracy to
first order near non-sonic extrema.

Thus, in order to increase the accuracy, we have to
abandon the TVD property. We allow a few, very small
oscillations, or a very small increase in total variation.
Methods with this property are called essentially non-
oscillatory ( ENO ). However, the only instance where
such a property has been proved for a uniformly high
order method is in [25]. We also mention the piecewise
parabolic method ( ppm ) [5], which is a generalization
of the inner TvD scheme to third order. However, pPM
degenerates to first order at extrema.

ENo methods are based on an essentially non-
oscillatory interpolation procedure. ENo interpolation
consists of choosing the interpolation stencil adaptively
over a region where the function has smallest variation.
This interpolation can then be applied either to the
function itself, or to the flux functions. When the in-



terpolation is done on the function, we obtain a method
which is a generalization of the inner TvD scheme, and
is based on cell averages of the function. When interpo-
lation is done on the fluxes we obtain a generalization
of the outer TvD scheme.

The ENo interpolation algorithm is based on New-
ton’s form of the interpolation polynomial.  As-
sume that the function g(z) is known at the points
z;,5=...,—1,0,1,... Define the divided differences
[z:,.. ., Zi1r)g Tecursively by

[zilg = g(=:)

[Ziy- - . $i+r]9' = [wipaTigro~imi @iproale

Lidr—Ti

Newton’s polynomial interpolating g at the points
Zi,..., %, is then given by

n

P(z) = E("’ =z )(2 — @3) ... (& — 2io1)[By, . TilY
i=1

where (z — z;)...(z — ®;) = 1if ¢ > j. This form is

convinient, since if we want to add another point to

the interpolation problem, we can immediately update

the interpolation polynomial using the formula

PHY2) = PMz)+ (z—21)...(x — 2. )21, » Tnpalg

We now give an algorithm for constructing a piecewise
N degree polynomial continuous interpolant L(z) from
the given grid function u;, with

L(z;) = u;

and which does introduce as small amount of oscilla-
tions as possible.

Algorithm 4.1
1. Define the linear polynomial
LMz) = uj + (v — 2;)(%j 41 — 4;)/ Az
T; ST < Tjy
and indices to bookeep the stencil width
krlm'n =] k}nam =741
2. for p=2to N do
oy = [t gl
bp = [‘Ekm;-—u e 'ﬁmk;‘u‘,]u
if |a,| < [b,| then
IP(z) = LP~Y(2) + q, H:i‘;:f’:::(m - )
kg’mw = k?n_als +1 kg’u’n = kfn:i
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else L
P(z) = LP () + b, H:Z;’;.,_l(m —z)

endif

We thus add one point to the right for a, and one
point to the left for b,. Next use the smallest difference
to update the polynomial.

The numerical approximation «} at (#,,z;) can be
thought of as an approximation of the point value
w(t,,z;). Alternatively, we introduce the cells, ¢; as

¢ = {22172 < 2 < iy}

where 2,15 = (2; + ;41)/2, and view u as an ap-
proximation to the cell average

1 /%‘+ue (t,,2)d
— u(t,, ) dz.
AT Jo, 1 "
The situation is depicted in Fig. 4.1
Point j Cell }

Fig. 4.1. Grid cells and grid points.

The distinction between these two views is not impor-

tant for methods with accuracy < 2, since

1

T 12
wtnr )= 2= [ ultn, o) do + O(AT)

Tj-1/2

We will here treat higher order of accuracy than two.
We consider only the semi-discrete problem. Time dis-
cretization can be done by a Runge-Kutta method, as
described in {27].

4.1 Finite volume ENO

The cell average based higher order schemes are the
generalization of the inner TvD schemes described in
Section 2.2.1, The schemes starts from the following
exact formula for the cell average. Integrate

ut+f(u):r::0



with respect to @ over one cell at {. The result is

4 1 {Tit1/2
dt Az Jx;_.3/2 u(t,m) dz+

Ju(t @ g D= f(u(8m;1a)) a
Arx -

A~
s
—

e’

Compare this with the numerical approximation

@i_{_hjwz— =172

di Az =0

(4.2)
If the numerical flux approximates the flux of the exact
solution at the cell interface

RBjpa2 = F(u(ty %54172)) + O(Ax?)

then (4.2) is a p th order approximation of the ppE in
terms of its cell averages.

One usual way to find higher order approximations is
to make a piecewise polynomial approximation, L(x) of
u(t,, z) from the given cell averages «}. Inside each cell
u(t,,z) is approximated by a polynomial, and at the
cell interfaces, #;41/2, there may be jumps. From this
piecewise polynomial the numerical flux is obtained
as h{ufyy 3, ufy1/s), where h(ujyq,v;) is the numeri-
cal flux of a first order TvD method and the end values
are

uf+1/2 = limg g, .+ L(z)
uf-q—l/z = limg gy, - L(z)

The grid function ] is given as cell averages, but the
reconstruction gives the function itself. Thus the Eno
interpolation is not applied directly to u}. To over-
come this difficulty, there are two different variants of
the method. In the first method, reconstruction by
primitive function, we observe that the primitive func-
tion
Fit1fz g
U(zj4a/2) = f u(t,,z)dz = Z up Az

—oa k=—oc

is known at the points ;41/2. The function U(z) is
interpolated using Algorithm 4.1. The interpolation
polynomial, L(z), is differentiated to get the approxi-
mation to u(t,,z). Thus the left and right values re-
quired in the numerical flux are

'H,L _ dL{zz':tlfg"‘)
i+1f2 — dx

'H,R _ dL(wl-:t1£g+)
i1z = ar
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L(z) is continuous, but the derivatives may have dif-
ferent values from the left and from the right at the
break points z;4/2.
The second variant is the so called reconstruction by
deconvolution, which is based on the formula
T AdTf2
] u(y) dy = / u(x + sAz)ds
z—Arf2 -1f2
(4.3)
where thus %(2) is the cell average. We interpolate the
given cell averages, using Algorithm 4.1, to get an ap-
proximation of @(z), and then find the approximation

of u(z) by inverting (“deconvolute”) (4.3). Details can
be found in [13].

1/2

7(a) = -

4.2 Flux ENO

"T'he point value based higher order methods starts from
the observation that if

flu(z;)) =

1
Az

Titi/2
/ F(z)dz
Tj1f2
for some function F(z), then

Fuls;)) = F("’Hl/z);:(mj—l/z)

and thus if the numerical flux satisfies
Riyipe = Fzjq1) + O(A2F)

the scheme (4.2) is p th order accurate in terms ol
point values. The function F(z) can be obtained by
interpolation of the grid function

%it1/2 i
a kea

and then taking the derivative of the interpolation
polynomial, F(z) = dG(z)/dz. We thus form the in-
terpolant of

' i
Hj+1/2 = Az E f(uk)
k=a
by using the Algorithm 4.1, and then define the nu-
merical flux as
dH (2541/2)

hitirz = dz



The interpolation is made piecewise polynomial with
break points z;. This direct approach have to be mod-
ified somewhat. If we carry out the above scheme we
get -

Hipipp+ (&= 2540102) S5 if | £;] < | fyaa]

H(z) = {Hj-{-lf?. +(z = zj41/2) i i | fiaal <15

on the interval z; < & < z;4, which leads to

;. _,__{f,-_ if 151 < |fil
T fip i fal <15

for first order of accuracy. Although this flux is con-
sistent, the resulting method is not TvD. It is crucial
that the first order approximation is Tvp. From nu-
merical experiments, it is possible to verify that this
method is not non oscillatory no matter how high the
accuracy of the interpolant. Instead we make the first
order version of this method Tvp, by taking

Higipp+ (& —zjpa)f; M a00220
Hipipp+ (2 = 2i00p0) fin i 05412 <0
(4.4)

on the interval z; < & < zj41. The first order method
is then the upwind scheme. Continuing the interpo-
lation to higher order leads to a non oscillatory high
order scheme.

We obtain a more general way of choosing the start-
ing first order polynomial if we consider a first order
tvD flux hj,q/, and split it as

(@) = {

Rivie = i + fima

where f* corresponds to positive wave speeds and f~
to negative wave speeds. As an example the Engquist-
Osher scheme can be written on this form. Another
example is the Lax-Friedrichs scheme, or the modified
Lax-Friedrichs scheme where

fHw) = (f(u) + au)/2
F(w) = (f(u) — au)/2

with & = max|f'(u)l.
We define the starting polynomials

HL(z) = Hjpapa + (& — 2jpay2) i
Hi(z) = Hypapo + (2 = mipay2) fi§ 25 <2 <2y
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and then continue the ENo interpolation of f* and f~
respectively through the points z; to arbitrary order of
accuracy, p. Finally

_dHY(mjq0p0) | GHL(Z541/2)
= +
dz dx

The truncation error for this method will involve differ-
ences of the functions f* and f~. Thus to achieve the
expected accuracy it is necessary to have ft, fmece,
p large enough. Because of this, the scheme has mostly
been used together with the C*° Lax-Friedrichs nu-
merical flux, or the modified Lax-Friedrichs numeri-
cal flux. However the Lax-Friedrichs scheme does not
always give sufficient shock resolution. Although the
higher order versions, obtained as described above, per-
form much better than the first order Lax-Friedrichs,
there is still need for first order Tvb methods giving
better shock resolution than Lax-Friedrichs and hav-
ing more derivatives than the upwind or the Engquist-
Osher schemes, to be used as building blocks for this
method.
The flux ENo method is described in [27], [28].

hjti/2

4.3 Comparison between finite volume
ENO and flux ENO

One major difference between the two ENo methods is
the treatment of several space dimensions. The point
based algorithm is much easier to generalize to more
than one space dimension.

For the problem

uy + f(u)e + g(u)y =0

the point ENo method can be applied separately in the
z- and y- directions to approximate 8/dz and 8/dy
respectively. There are no extra complications.

For the cell centered scheme, the two dimensional
generalization of formula (4.1) gives an integral around
the cell boundary. This integral is required to p th
order accuracy, which can be done by a numerical
quadrature formula. If, e.g., p = 4 this means using
two values on each cell side. Thus for each cell, we need
a two dimensional reconstruction, which is a non trivial
problem in its own right, and then we have 8 flux eval-
uations to make, two on each side. The cell centered



scheme quickly becomes more computationally expen-
sive than the point centered scheme. However, when
no smooth grid transformation is available, the finite
volume Exo method maintains full accuracy, whereas
the flux ENO requires a smooth grid transformation.
Thus the finite volume ENo method is of importance
for computations on unstructured grids.

A high formal order of accuracy does not necessarily
lead to a high convergence rate. It has been observed,
e.g., in [26], that third or fourth order ENo schemes
can lead to a first order convergence rate. The ex-
planation is that the ENo interpolation takes the sten-
cil from the direction where the function has smallest
variation, however this direction could be the down-
wind direction, which then leads locally to an unstable
approximation. In the stencil-mix of the Eno scheme,
stable stencils has to be used sufficiently often. In or-
der to assure this, the modified ENo method in [26] in-
troduces a tunable parameter which give more weight
to the stable stencils. With the modified ENo method
the expected convergence rate is achieved in numerical
computations. However no proof on the convergence
of N0 methods exist.

A description of the finite volume ENo method in
several space dimensions is given in [2]. A comparison
between the different methods can be found in [3].

4.4 ENO for systems

The implementation of the finite volume Eno method
for system is analogous to the inner Tvp schemes. The
reconstruction has to be done in some variables. Usu-
ally the characteristic variables are used. In compu-
tations, oscillations can appear around contact discon-
tinuities with reconstruction in conserved or primitive
variables. The reconstruction is done field by field, and
the result is given as input to a first order TVD scheme.

The flux Eno method is usunally implemented in a
locally fixed characteristic coordinate system, in anal-
ogy with the method for the outer TvD method given
in (3.3).

The advantage of using the ENo scheme is clearly
seen in problems with extrema in the solution. The
degeneracy of second order TvDb methods to first order
at extrema is then a severe problem. We present re-
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Fig. 4.2. Second order TVD method.
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TFig. 4.3. Fourth order ENO method.

sults from solving the one dimensional Euler equations
of compressible gas dynamics. The initial data consist
of a constant state, a discontinuity, and an oscillatory
density distribution on the other side of the disconti-
nuity. The set up is described in [28].

Fig. 4.2 shows the result from using a second or-
der Tvp method. The solid line is a refined solution,
which can be considered as exact. The circles show
the numerical solution using 400 grid points. The TvD
method clips extrema, whereas a computation with a
fourth order accurate ENo method, shown in Fig. 4.3,
gives a considerably better resolution.

5 Convergence Theory

The mathematically rigorous convergence of nonlinear
conservation laws is quite limited. Even if most of the
results are scalar problems and rather special classes of
algorithms the theory has had an important impact on
scheme design. The importance of conservation form,
of controlling the total variation and entropy condi-
tions has played a role in the development of higher



order shock capturing methods. We shall here briefly
mention some recent results.

The most complete convergence theory is developed
for scalar equations and first order methods. The con-
vergence result for monotone schemes discussed in the
introduction can be slightly generalized to E-schemes.
For these schemes the monotonicity property is re-
placed by a cell entropy inequality, [9], [32].

There are also convergence results for some classes
of methods which are formally of higher order than
first. The proofs usually contain a compactness argu-
ment and no convergence rate is derived. An important
recent paper by Lions and Souganidis, {20], contains
convergence proof for second order MUSCL schemes
approximating scalar conservation laws in one space
dimension.

With specific knowledge about the structure of the
solution the error estimates can sometimes be im-
proved. The smooth case, with Strang’s result of opti-
mal rate of convergence, was already mentioned in the
introduction, [30]. The simplest discontinuous solution
is a shock wave with constant states on both sides.
There are a few theorems on existence and stability of
discrete shock profiles for dissipative finite difference
methods, [16], [21]. These results are for one space di-
mension. In terms of convergence these theorems show
that there are approximations in the piece-wise con-
stant shock case with O(1) errors close to the shock,
which converge point-wise faster than algebraically in
At, at a positive distance from the discontinuity.

In [8] this analysis is generalized to some special
cases with isolated shocks and variable states. For the
Lax Wendroff scheme and the Burgers flux the optimal
O(At?) point-wise convergence is proved at a distance
at least C'log(Az) away from the shock.

Even if the numerical method is formally of more
than first order and the approximation converges, the
rate may still be only first order behind the shock. This
can happen for systems where one characteristic may
propagate part of the error at a shock into the smooth
domain.

As an example of this we show in Fig. 5.1 below the
density in a steady state solution of the compressible
nozzle flow equations. These equations are on the form

Uy + f('”‘):c = g(w: u)
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The vector  consists of the components density mo-
mentum and energy. In Fig. 5.2 we show the error in
the momentum component, when it has been computed
by a third order accurate ENO method, at steady state.
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The solution has been computed on three grids of su-

cessive refinements. We see how the third order con-
vergence in front of the shock becomes first order af-
ter the shock. In a one dimensional conservation law
without lower order terms, the states to the left and
to the right of a shock are determined by global con-
servation, which is computed exactly by a conservative
method. For the nozzle flow equations, the low order
term causes numerical errors in the conservation rela-
tion, which leads to the poor convergence rate.

6 Implementation

In this section we will simplify the notations by writing
Ti41/2 Tor the matrix of eigenvectors of the Roe matrix
at Z41/0- Similarly a;,1/ will always denote the eigen-
values and a;y1/o the coefficients in the eigenbasis of
A, u;, as described in Section 3.1.



We first consider the case of one space dimension.
All algorithms described will be such that the numeri-
cal flux is evaluated at each point, and then added and
subtracted to the residual according to Algorithm 6.1.
Algorithm 6.1

forj:=1,N
res; :=0
endfor

forj:=1,N-1
compute hji1/2
Add to residual:

TCSJ' = 7'833' — Rjgifz
TESJ‘+1 = T33j+1 + hj+1f2
endfor

The problem then boils down to how to compute
the numerical flux function. In the algorithms below
the add and subtract to the residual is not written
out, but implicitly understood. Ome could evaluate
each numerical flux function h;;y/, in a separate code
segment, such as an inlined subroutine. This works
fine for first order TvD schemes. E.g., for Roe’s method
we compute the eigendecomposition at z;,/, and use
(3.2) to obtain the flux A; /5.

However, for second order Tvp methods this is in-
effcient, since many quantities are common to several
fluxes. E.g., the coefficients af,; /, are used in limiters
(4172, @5 _172) I both by and hy_y/5. We do not
want to do the eigendecomposition more than once for
each cell interface. Similarly, for the inner Tvp scheme,
the slope s; is required in two neigboring fluxes. We
do not want to compute it twice.

The problem is thus that in the computation of
hj41/2, the coeflicient a; 5/, is needed. We only want
to do the eigendecomposition once at each point ;13-
Thus the eigendecomposition has to be one step ahead,
as shown in Algorithm 6.2. All the algorithms in this
section can be applied to the inner TvD schemes as well,
with the difference that instead of the variable a;4g/s,
it is the slope s;41 that has to be evaluated one step
ahead.

Algorithm 6.2.

compute eigendecomposition at 3/2,
al :=atgjy, T:=Tgs9, 21=0z/3
forj:=1,N-1

compute eigendecomposition at 7 + 3/2,
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alp =0 4ases TPI=Ti4372, AP =058/
compute hj 44/, from alp, al, 1, and, a
al:=alp, ri=r1p, ai==ap

endfor

This implementation is memory efficient, and would
work well on a superscalar processor. One drawback
is that an initial extra step is required. This leads
to more serious complications in two and three space
dimensions. Furthermore, the loop does not vectorize
due to the wrap-around variables. To make the coding
simpler, and to make it vectorizes, the loop can be
split into two such that the eigendecomposition is made
once in each point first, and the flux computation in a
second loop. This is shown in Algorithm 6.3.
Algorithm 6.3,

forj:=1,N-1
compute eigendecomposition at j + 1/2,
41720 Tj+1/2, A0d Bjpn/2
endfor
for j:=1,N -1
compute h; gy from a;4y/s, @543/
Titiz a0d G412
endfor

This is very suitable for a vector machine. We use
more memory than in Algorithm 6.2, but we can limit
the extra work space to one dimension. In three dimen-
sions, one can generalize Algorithm 6.3 to Algorithm
6.4 below.

Algorithm 6.4.

for k:=1,N;
for j:=1,N;
fori:=1,N;-1
compute eigendecomposition at ¢ +1/2,4, &,
p1/2,5,0 Tid1/2,4,k9 and Qip1/2,4,k
endfor
fori:=1,N; -1
compute h;yq, 5 from
Q172,580 Cig3/2,4.ks
Ti+1/2,j,k, and a;+1/2,j,k.
endfor
endfor
endfor



Algorithm 6.4 computes the i-direction fluxes. In
order to compute the entire residual, it is thus neces-
sary to have three subroutines, one for each coordinate
direction which are called in sequence. However, it is
possible to make the code general, such that the same
subroutine can be called three times, once for each co-
ordinate direction. Algorithm 6.5 shows how one can
accomplish this, by using the index relation

ind= (i~ 1) +n(F - 1) +mn;(k—-1)+1

which maps the triple (i, 4, k) € [1..n;, 1..n;,1..n;] onto
the one dimensional index space 1..n;n;7.
Algorithm 6.5.

if i-fluxes then
Ny i= Ng, Nyp = Nja Nig = N;
sl:i=N; N; s2:=N; — 1 s3:=1
elseif j-fluxes then
Ny i= Np, Ny i= N,y Nyg := N;
sli=N;N; s2:=1s3:=N; — 1
else
Niyi= Ny, Ny i= Ny, Nig := Ny
sli=1 s2:=N; — 1 s3:=N; N;
endif
b := —N; — N;N;
for i1:=1,Ny
for i2:=1, N,
for i3:=1,N;z—1
ind := s1*%i1 4 s2%2 + s3*3 + b
indp := s1*i1 + s2*2 + s3*(i3+1) + b
compute eigendecomposition
between ;4 and % ap,
al(i3):=a, r(i8):= r, a(i3):=a
endfor
fori3:=1,Niz—1
compute the numerical flux h from
al(i3), al(i3+1), r(i3), a(i3)
endfor
endfor
endfor

The methodology in Algorithm 6.5 is very convenient
to use, when implementing the ENo scheme, since we
obtain linewise vectorization. The work space is one
dimensional, and we can waste memory in order to
make a simple implementation.
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This technique is not as favorable on a Rrisc proces-
sor, since the memory is swept through twice in the
inner loop, and three times for the coordinate direc-
tions. There will be more cache misses than necessary.
A more efficient algorithm for superscalar processors,
would be to merge all three flux computations into one,
as described in Algorithm 6.6.

Algorithm 6.6.

for j :=1,N;
for ::= L, N;
compute eigendecomposition at (1, 7,3/ 2)
alk(i,j) = of ; 32, etc.
endfor
endfor
for k := 1, Nk
for i = 1, N;
compute eigendecomposition at (4,3/2, k)
alj(i) = a’:,s/z,k

endfor
for 7 :=1, N;
for i := 1, N;

compute eigendecomposition for (i + 3/2,7,k),
alip := a;+3/2,3:,k '
compute by, , 5, USing ali, alip
compute eigendecompoasition for (7,7 + 3/2, k),
aljp(i) := a's,',j+3/2,k
compute hf:’j 41725 USIDE alj, aljp
compute eigendecomposition for (4,7, %k -+ 3/2),
alkp(i,j) := a?,j,k+3/2
compute kY, ../, using alkp, alk
ali:=alip
endfor
for ::= 1, N;
ali(i) = aljp(i)
endfor
endfor
for j = 1, N;
fori=1,N;
alk(i,j) = alkp(i)
endfor
endfor
endfor

In Algorithm 6.6, we only write out how the variables
a are computed and stored. The other eigendecompo-



sition quantities 7;4 /s, @j41/2 ate of course evaluated
and kept in storage together with a;44/3.

In order to obtain optimal performance, blocking has
to be added to Algorithm 6.6. l.e., it is necessary to
divide the computational domain into smaller cubes,
each of which will fit into the cache memory on the
given computer. The Algorithm is then executed once
over each subcube.

It would be desirable to have an automatic tool for
loop fusion, which could take Algorithm 6.4 or Algo-
rithm 6.5, and merge the three coordinate sweeps into
one loop.

Finally, we remark that the formulas for eigenvec-
tor multiplication can be hand optimized, by observing
that some elements of the eigenvectors for compressible
fluid flow are zero or one, some operations in the ma-
trix vector multiplications of type

(1, 1)xe{1) +7(1,2) % c(2) + (1, 3) % c(3) + (1, 4) % c(4)

(6.1)
can be disposed of. Expressions of the type (6.1) arises
from the sum in the expression (3.5). A good compiler
can do this optimization, and it is not clear how much
improvement can be gained. An advantage of not doing
the hand optimization, is that we can then consider the
multiplication (6.1) as a sAxPY operation, even though
this means more arithmetic operations, this could pay
on a vector machine, which is very fast on saxpy’s.
Note however that Risc processors are not particularly
well adapted to saxpy operations.

6.1 An implementation of the flux ENO
method

We describe an efficient implementation of the Eno
method. The particular method described in Algo-
rithm 6.7 below is the method defined by equation
(4.4). It is known as the ENo/RoE method, and is de-
scribed in [28]. ENo interpolation is done on the flux
functions in a fixed coordinate system.

In the algorithm below we keep the flux differences
in a table, tab{m, s,i) = A}’ f; where m is the com-
ponent of the PDE, e.g., density, momentum, energy, in
a characteristic coordinate system fixed at #4175, The
difference table is only updated with new information
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when the stencil becomes wider. In this way we only
need the characteristic decomposition for the points
that are actually used in the adaptive stencil. The co-
efficients in the interpolation polynomial are precom-
puted to save aritmetic operations.

Algorithm 6.7.

Computes numerical fluxes of the ENo /RoE method.
7 is the order of accuracy.

Compute the coefficients cof(m, k).

fori:=1,N

compute the flux function, f;
endfor
for::=1,N-1

compute the Roe decomposition, and store a
factorized form the left eigenvector matrix Ljy1/s
such that La_ll J2Y is inexpensive to compute.

for m := 1,3
if ﬂ;ﬂ1/2 >0 then

kmin := ¢
else
Emin:=1+1
endif
pol(m) = “%'“?}-1/2!0?«1}1/2
forl=2,r

if kmin < tableft then
tab(:, 2, kmin — 1)= L;-i-llfz(fkmin — femin—1)
tableft = kmin — 1
endif
for s=2,l-1
tab(m,s+ 1, kmin — 1) ==
tab(m, s, kmin) — tab(m, s, kmin — 1)
endfor
kmaz := kmin + 1
if kmaz > tabright then
tab(:, 2, kmaz) = ,L;—.:1/2(fkmam+1 — fimaz)
tabright = kmaz
endif
fors=2,1-1
tab(m,s + 1,kmaz — s + 1} 1=
tab(m, s, kmaz — s +2) —tab(m, s, kmaz — s+ 1)
endfor
if weighting for modified ENo is
required, do it here,
if |tab(m, I, kmin - 1) < tab(m, [, kmin)| then



pol(m) := pol(m)+
cof(l — 1, kmin) « tab(m, I, kmin — 1)
kmin 1= kmin — 1
else
pol(m) := pol(m)+
cof(I — 1, kmin) % tab(m, I, kmin)
endif
endfor
endfor
Use the matrix L4/, to transform
back pol(1), pol(2), pol(3) to standard variables:
Rizays = (Fixr + Fi)/2+ Bigapopol
endfor

In Algorithm 6.7, we use the notations of Section
3.1. The eigenvalues of the Roe matrix are denoted
a} )9, the coefficients of A, u; in the eigenvector basis
are denoted aj-‘_,_l/z, etc..

7  On line information

Some software, and additional lecture notes are avail-
able through ftp by the command
ftp ftp.tdb.uu.se

log in as anonymous, and do

cd pub/numerical/tvd

The following files can be obtained

tvdnotes.tar.gz - A set of lecture notes giving more

details and proofs of some of the theorems given here.
cfdlib.tar.gz - A set of solver routines for the com-

pressible Fuler in two space dimensions on curvilinear
grids. An implementation of several TVD methods.
xeulerid.tar.gz - A demo program which solves one

dimensional Riemann problems in compressible gas dy-
namics. The program is written for XWindows using
the motif widget set.
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