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Abstract

We shall describe numerical methods which were de-
vised for the purpose of computing small scale be-
havior in fluid dynamics without either fully resolving
the whole solution or explicitly tracking certain sin-
gular parts of it. These include shock-capturing and
front-capturing. These methods have recently proven
useful in many fields of physics and engineering and
even image processing and computer vision. This is an
overview of many collaborations — key among them is
joint work on ENQO schemes with A. Harten, B. En-
gquist, S. Chakravarthy and C.-W. Shu, joint develop-
ment of the level set technique with J. Sethian, and
more recent work in this area with E. Harabetian, B.
Merriman, P. Smereka, M. Sussman, T. Hou and grad-
uate students M. Kang and S. Chen.

1 Introduction

In this paper we shall describe numerical methods
which were devised for the purpose of computing small
scale behavior in fluid dynamics without either fully
resolving the whole solution or explicitly tracking cer-
tain singular parts of it. Techniques developed for this
purpose include: shock-capturing and front-capturing.

*Research supported by DARPA/ONR-N00014-92-1-1890,
ARO DAAL03-91-G0162, and NSF DMS-91-03104

These methods have recently proven useful in many of
fields of physics and engineering and even image pro-
cessing and computer vision.

Shock capturing methods were devised for the nu-
merical solution of nonlinear conservation laws. At the
1990 meeting of the International Congress of Mathe-
maticians, Ami Harten [10] gave an overview of recent
developments in that area, culminating in the construc-
tion of essentially nonoscillatory (ENO) schemes [11],
{12]. We shall describe some of the ideas and results
relating to this subject in section 3.

In 1987, together with J.A. Sethian [19] we devised
a new numerical procedure for capturing fronts and
applied it to curves and surfaces whose speeds depend
on local curvature. The method uses a fixed (Eulerian)
grid and finds the front as particular level set (moving
with time) of a scalar function. The method applies to
a very general class of problems.

The technique handles topological merging and
breaking, works in any number of space dimensions,
does not require that the moving surface be written
as a function, captures sharp gradients and cusps in
the front, and is relatively easy to program. Theo-
retical justification, involving the concept of viscosity
solutions, has been given in [6], [4].

Many applications and extensions have recently been
found. We shall describe the method and some appli-
cations in section 2. We also note that the motion of
multiple junctions using related ideas has been studied
n {17]. A particularly novel application and extension
(done with E. Harabetian) is to the numerical study of
unstable fronts — e.g. vortex sheets, in [9], [8]. This will



also be described in section 2. The level set formulation
allows for the capturing of the front with minimal reg-
ularization because the zero level set of a continuous
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function can become gquite complicated, even though

the function itself is easy to compute, There is also a
novel “topological regularization” inherent to the level
set approach as described in [9], [8].

2 The Level Set Method for Captur-
ing Moving Fronts

In a variety of physical phenomena, one wishes to fol-
low the motion of a front whose speed is a function of
the local geometry and an underlying flow field. Gener-
ally the location of the interface or front affects the flow
field. Typically there have been two types of numerical
algorithms employed in the solution of such problems.
The first parameterizes the moving front by some vari-
able and discretizes this parameterization into a set of
marker points. The positions of these marker points
are updated according to approximations of the equa-
tions of motion. For large complex motion, several
problems occur. First, marker particles come together
in regions where the curvature builds, causing numeri-
cal instability unless regridding is used. The regridding
mechanism often dominates the real effects. Moreover
the numerical methods tend to become quite stiff in
these regions — see e.g. [23]. Secondly, such meth-
ods suffer from topological problems: e.g. when two
regions merge or a single region splits, ad-hoc tech-
nologies are required.

Other algorithms commonly employed fall under the
category of “volume of fluid” techniques which track
the motion of the interior region e.g. [18}, [1]. These
are somewhat more adaptable to topological changes
than the tracking methods but still lack the ability to
easily compute geometrical quantities such as curva-
ture of the front.

Both methods are difficult to implement in three
space dimensional problems. Our idea, as first devel-
oped with J.A. Sethian in {19] is as follows. Given a
region Q in R? or R® (which could be multiply con-
nected), and whose boundary is moving with time, we
construct an auxiliary function @(&,t) which is Lips-

chitz continuous and has the property

e(E,1) >0 & T attimel (2.1)
e Ve & 5z 0% at time ? (2.2)
Wy S v ST B Lal SRt e
P(Z,t} =0 & z¢e 0 attimet (2.3)
On any level set of ¢ we have
o+ 8- Ve=10 (2.4)

where 4 = (2(t), #(1)), the motion of the front and the
set (p = 0 characterizes 9( at time .

Generally, if the normal velocity @ # is a given func-
tion, f, of the geometry, the level set motion is gov-
erned by

@i+ |Velf = 0. (2.5)

Typically (in 2 dimensions) f is a function of the
curvature of the front, f = f(k)=f (Vv (I%%I))‘ In
this case we can replace (2.4) by an equation invelving

@ only
s (o-(55)) =

Our algorithm is merely to extend (2.6) to be valid
throughout space and just pick out the zero level set
as the front at all later times. Equations of this type,
for f'(0) < 0, have been analyzed in [6], [4] using
the theory of viscosity solutions. In addition to well-
posedness, it was shown that modulo a few exceptions,
the level set method works. This means that the zero
level set agrees with the classical motion for smooth,
noninteracting curves. Moreover, the asymptotic be-
havior of certain fronts arising in reaction diffusion
equations leads to this motion as the small parame-
ter goes to zero [5].

In many applications involving multiphase flow in
fluid dynamics the interface between any two regions
can be represented by judiciously using delta functions
as source terms in the equations of motion. This is
true in particular for computing rising air bubbles in
water, falling water drops in air, and in numerous other
applications — see e.g. [30],[2], [29]. In fact surface
tension often plays a role and this quantity is just pro-
portional to curvature, here easy to compute. Thus
an Eulerian framework is easily set up, using the level
set approach, allowing phenomena such as merging of

(2.6)



water drops, resulting in surface tension driven oscil-
lations, and drops hitting the base and deforming [30],
[29].
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level set function ¢ stay well behaved, iie. 0 < ¢
Vel € C for fixed constants (except for isolated
points). In fact it would be desirable to set

V| =1

with the additional criteria (2.1, 2.2, 2.3). In other
words, we wish to replace (at least near dQ) ¢ by d,
signed distance to the boundary.

We can do this as described in [30}, [29], through
reinitialization after every discrete update of the sys-
tem, in a very fast way by obtaining the viscosity so-

lution of
d, +(IVd| - DH(g) = 0 (2.8)

for 7 > 0, in fact as 7 T oo, with d(&,0) = ¢(z,t).
Here H () is any smooth monotone function of ¢ with
H(0)=0.

ENO schemes for Hamilton-Jacobi equations, as de-
fined in [19],[20] may be used to solve this. By the
method of characteristics it is clear that, near 001,
which is the zero level set of ¢, the steady state is
achieved very quickly. We thus have a fast method of
computing signed distance to an arbitrary set of closed
curves in R? or surfaces in R°.

We present some results on air bubbles in water, wa-
ter drops in air, and an air, oil, water interface problem
in section 4.

Another example of the use of this method in fluid
dynamics involves area (or volume) preserving motion
by mean curvature. This represents the simplified mo-
tion of foam and can be modelled simply by finding the
zero level set of

et (5 (82)

where k is the average curvature of the interface. This
last can be easily computed

1 (V- (3%)) (o)l Vel
S I 6(e)| Ve '

The distance reinitialization is used and the method
easily yields merging and topological breaking, see [13].

IA &

(2.7)

(2.9)

K=

(2.10)

More realistic models involving volume preserving ac-
celeration by mean curvature are being developed and
analyzed with the same group of people. We present a

simple 3D example in section 4.

Another interesting example concerns Stefan prob-
lems. Farlier work was done using the level set formu-
lation {24]. Our formulation seems to be quite simple
and flexible, We solve for the temperature (in 2 or 3

dimensions)

T, = V-k&)VT {2.11)
K@) = k ifZeQ (2.12)
KZ) = kg fde 0 (2.13)

T = 0 forzedd (2.14)

and the boundary of £ moves with normal velocity

T
Tl = [8_] ¢y + 3k (2.15)

on
where k = curvature of the front.
We solve this using ¢, the level set function, with
reinitialization, by using

p+ V=20 (2.16)
for u defined semi-numerically as
i = ¢ [AzATATT, AyALAYT]  (2.17)

Ve Vi
+ o |v-(w5)] =
for A, A_ the usual undivided difference operators.
The first term on the right is O(Az, Ay) except at the
front.

We solve (2.11) by using the piecewise constant val-
ues ky or ko except when the discrete operators above
cross the level set ¢ = 0. At such points we merely
interpolate using the distance function to find the z
and/or y value at which T = 0. We thus can get a
one sided arbitrary high order approximation to AzT,,
and/or AyTy, there. This is also used in (2.17). The
results appear to be state of the art for this simple
method. This is joint work with S. Chen, B. Merri-
man, and P. Smereka [3].

We demonstrate this algorithm on a supercooled lig-
uid case in section 4.



Next, with E. Harabetian [9], [8] we consider an ex-
tension of the level set method where the normal ve-
locity need not be intrinsic (solely geometry or posi-

tirm hanndY and fan hi\'.',h tha nrahla

’ .
vi0Ti Oased) and 10T W written in La-

the problem written in La
grangian (moving) coordinates is Hadamard ill-posed.
The main observation is that our approach provides
an automatic regularization. There appear to be at
least two reasons for this. The first is topological: a
level set of a function cannot change its winding num-
ber — certain topological shapes based on the curve
crossing itself are impossible. The second is analytical:
the linearized problem is well-posed in the direction of
propagation normal to the level set in this formulation;
however it is ill-posed overall.

We shall describe the method in R%. The three di-
mensional extension is relatively straightforward. Our
two paradigms will be: (1) the initial value problem
for the Cauchy-Riemann equations and (2) the motion
of a vortex sheet in two dimensional, incompressible,
inviseid fluid flow.

QOur general problem is to move a curve Iy
(zo(z), yo(8)), where s need not be arclength, through
a system of partial differential equations

&, ™M _
= =Y T Y.
(2)=(2)-stemanmn

with initial conditions

z(s,0) \ _ [ zo(s)
(ﬂ%m)_(y&g)’OSSSL (2.19)

and periodic boundary conditions
z(0,t) = =z(L,t)
y(0,t) = y(L,t).

Here I'y(s) (which might be multiply connected) di-
vides R? into an inside £ and ouside £2°. Also, v could
depend on higher order derivatives (which it does in
the curvature dependent case) or it could be nonlocal
(as in the vortex sheet case).

In addition to the level set function ¢, we define a
conjugate function ¥(z,y,t) with

¥(z(0, 8),5(0,5),0) = s

(2.18)

(2.20)

(2.21)
and

V- (V¥) = o9, —@, 4, # 0 att = 0on Ty (2.22)

We require an additional important condition on the
conjugate function 1

Wiz(s,t),u(s,t),t)=s fort > 0. (2.23)

LN

Differentiating both equations {2.3) and (2.23) leads
us to two equations on I'(s, )

(2.24)
(2.25)

o, + ’ﬁ‘V(,DmO
b + T Vi=0.

It remains to define z,,y, in terms of Ve and Vi
within the arguments of v in (2.24), (2.25). We do this
by differentiating (2.23) and (2.3} with respect to s,
which leads us to

( " ) = [(Ve)- (V)] ( s ) L 220)

Ys

We replace (z,,y,) by this expression in the argu-
ments of v in (2.24), (2.25), extend this to all space,
and arrive at our formulation

" ~Py Pe
w t+ (m,y, (V- (Vi) (V- (V",b)*))
Vo0 (2.27)

., — Py Pa
P + ”(xay’(vw.(v¢)*)’ (V@-(V¢)*)>
Vip = 0. (2.28)

At every time step i is reinitialized to be signed dis-
tance. We also reinitialize 1 as follows. As described
in [2], we can construct ¥ initially so that V- V¢ =0
on and near [, i.e. we generate an orthonormal coor-
dinate system.

We reinitialize 9 to have this property by solving to
steady state near T

V- Vi
R AL 2,29
Vel (2:29)

where H is defined as in (2.8).
An interesting example is the Cauchy-Riemann sys-
tem

P+ H(p)

(2.30)



The level set formulation is to find the set ¢ = 0
where

o 4 Vel

i 1 (th) .\ (V'i,b)* - 0 {231)
(Vo) (Vo) _

%+'WW%WW—O (2.32)

with the reinitialization described above. This formu-
lation appears to stabilize the problem. Justification
is given in [9].

In special cases when the velocity v is purely nor-
mal to I' we have an alternative formulation of (2.27),
(2.28). The system (2.16) can be rewritten

(2.33)
(2.34)

Ty = 9y,
Y = —g%;

for g = g(z,9,%,,9,). I we set f = /a2 + 47 (the
arclength}, then I is moving normal to itself with ve-
locity fg. Differentiating f with respect to ¢ gives us
a system of two equations ¢ and f (rather than ¢ and
1) in which curvature of level sets appears in a trans-
parent way:

e + gf-|[Ve|=0 (2.35)
9 o o= gk
ot Ve Vi=esst (236)

(for the Cauchy Riemann equations, ¢ = 1).

The second equation is almost a Riccati equation for
the arclength f. Ilposedness is reflected in the blow
up of f or of f — 0, depending on the sign of the
curvature K.

An ill-posed problem of great physical interest is the
motion of a vortex sheet in the incompressible Euler
equations. We have a velocity vector field ¥ which is
incompressible

V.7=0 (2.37)

. and which satisfies

Vxd=w (2.38)

where the vorticity w{z,y,0) is a singular distribution
which can be written, using the level set function ¢

w(z,9,0) = R()8(p)| Vel = R(2(s,0),y(s,01)6(#}| Vel
(2.39)

where B(s) is the strength along the initial vortex sheet
(z(s,0), y(s,0)).

The vorticity moves according to the advection equa-

(2.40)

Rather than evolving the vortex sheet by the well-
known Birkhoff-Rott equation (see e.g. [14]), we shall
use a new desingularization technique [8] which simpli-
fies our procedure still farther.

If the vorticity can be written

w = P(p)

for some smooth level set function, then since ¢ advects
with ¥ we can easily solve this problem.
Simply set

w, + 7 Vw=0.

(2.41)

7 (2.42)

1l

(_FYy s Ve )T
with
Ay =

w = P{p). (2.43)

We may use off-the-shelf Poisson solvers to do this,
together with ENO schemes to solve

@+ 7V =0. (2.44)

ENOQ is needed because ¥ has a tangential discontinuity
on the sct {(z,)l¢(z,3) = 0}.

For vortex sheets we simply choose a level set func-
tion so that, at ¢ = 0, {{z, v)|¢(z,y) = 0},

dy

2 = Vel = (2.45)

The resulting smooth flow generates the vortex sheet
[9], where P(y) = (i) for later time. For results see
[9] and section 4. This method also works for vortex
patches, point vortices and sheets in 3D, [9].

For vortex sheets in 2D, we were able to compute the
roll-up of a vortex sheet past the time of singularity as
computed by Krasny in [14]. We do not do any explicit
filtering in the Fourier frequencies, nor do we use blobs
to smooth out the flow as in [14].

Finally we mention that complicated motion of mul-
tiple junctions can be rather simply implemented by
using as many level set functions as there are regions
— see [17]. Also, in the special case of mean curva-
ture motion, the simple heat equation together with a
projection may be used [17].



3 Shock Capturing Methods

There is a vast literature on this subjection, also see
[10] for a recent review article at the 1990 International
Congress of Mathematicians. The fundamental prob-
lem is that the solution to the initial value problem for
a system of hyperbolic conservation laws generally de-
velops discontinuities (shocks) in finite time, no matier
how smooth the initial data is. Weak solutions must
be computed. The goal is to develop numerical meth-
ods which “capture” shocks automatically. Reasonable

design principles are:

(1) Conservation form (defines shock capturing —
see [7], [16]).

(2) No spurious overshoots, wiggles near disconti-
nuities, yet sharp discrete shock profiles.

(3) High accuracy in smooth regions of the flow.

(4) Correct physical solution, i.e. satisfaction of
the entropy conditions in the convergent limit [15}.

Conventional methods had trouble with combining
(1) and (3). It should be noted that wiggles can pol-
lute the solution causing e.g. negative densities and
pressures and other instabilities.

We have developed with Harten, Engquist and
Chakravarthy [12], [11] and later simplified with Shu
[26], [27] a class of shock capturing algorithms designed
to satisfy (1-4).

These methods are called essentially nonoscillatory
(ENO) schemes. They resemble their predecessors —
total variation diminishing (TVD) schemes in that the
stencil is adaptive, however the total variation of the
solution of the approximation to a one space dimen-
sional scalar model might increase, but only at a rate
O((grid size)?), for p the order of the method, up to
discontinuities, and the order of accuracy can be made
arbitrary in regions of smoothness. TVD schemes tra-
ditionally degenerate to first order at isolated extrema
(see [22] for extensions up to second order).

The basic idea is to extend Godunov’s [7] ingenious
idea past first order accuracy. This was first done up
to second order accuracy by van Leer {31]. A key step,
and the only one we have space to describe here, is

the construction of a piecewise polynomial of degree
m, which interpolates discrete data w given at grid z;.

In each cell d; = {(z)z; < & < z;;;} we construct
a nolvnomizl of desree m which internolates wf(a) at
a polyncmial of degree m which interpolates w(z) at

m + 1 successive points {z;} including z; and z;,,.

The idea is to avoid creating oscillations by choosing
the points using the “smoothest” values of w. (This is
a highly nonlinear choice, as it must be}), One way of
doing this is to use the Newton interpolating polyno-
mials and the associated coefficients. We start with a
linear interpolant in each cell

@5+3 = wlz;] + (2 — z; )Wz, %5 41) (3.1)

using the Newton coefficients
wlz;] = w(z;) (3.2)
w[mia"-)mi-i-k] = (33)
= (Zipr — &) (W[Eip1s 00 2] — w2y, Erma])

We get two candidates for gy ;41; which interpolate
w at ¥,,2;4, and either z;_y, or ;4

Qoj+1 = Qs + (3.4)

+z — 25 )z = w0 wlzgo, 25, T4

or 'UJ[IDJ , :Bj-l-l? 3.7j+2]].

Since we are trying to minimize oscillations by taking
information from regions of smoothness, we pick the
coefficient which is smaller in magnitude. We store
this choice and proceed inductively up to degree m.
The result is a method which is exact for piecewise
polynomials of degree < m and which is nonoscillatory
(i.e. essentially monotone)} across jumps. See [11] for
further discussions.

Other choices are possible, in fact it seems advan-
tageous to minimize truncation error by biasing the
choice of stencil towards the center — see [25], (21]By
now, ENO schemes for compressible flows have proven
their worth — see e.g. [28]. We give an example involv-
ing compressible isotropic turbulence in section 4.

4 Results

Our first set of figures 1-7 concern the motion of air
bubhbles in water or water drops in air. The calculations



were performed by Mark Sussman, see tef [29], [30)].
The algorithm is based on the level set method and
is quite simple to implement It should be stressed
that no special work is needed at pinchoff, merging,
development of kinks, etc. and the algorithm is very
easy to implement on a fixed, uniform grid. All these
figures should be read left to right, top to bottom.

Figure 1 shows the evolution of a 2D rising bubble
with high Reynolds number and low surface tension,

Figure 2 shows the evolution of a large water drop
with no surface tension which deforms as it hits the
base.

Figure 3 shows the evolution with surface tension.
The drop remains circular as it hits the base.

Figure 4 shows the evolution of two water drops col-
liding with each other. The combined drop experiences
surface tension driven oscillations.

Figure 5 shows {essentially) conservation of mass for
the merging drop problem. A new idea of E. Fatemi
and Sussman (private communication) is used to pre-
serve mass in the distance reinitialization step.

Figure 6 demonstrates the rupture of a gas bubble
at an air water interface. The surface tension effects
cause a high speed jet of water to form.

Finally, in figure 7 we see an air bubble rising
through a water/oil interface. Surface tension effects
are ignored. Ideas developed in {17] for the motion of
multiple junctions, were used here.

Figures 8a,b,c,d,e from {13] show volume preserving
motion by mean curvature velocity. The topological
change presents no difficulty. See [13] for merging and
physically realistic acceleration cases.

Figure 9 from [3] shows a Stefan problem with super-
cooled liquid. The initial solutions are 2 square seeds
(temperature T' = 0) in a surrounding bath of under-
cooled liquid (T = —.8). No surface temperature or ki-
netic undercooling terms are incorporated (ie. T =0
on the boundary). Time levels shown are increasing in
intervals of t = 1.2 up to a time of ¢t = 24.6.

Figures 10(a-f) from [9] show the results of our sim-
ple vortex sheet evolution algorithm. This is done us-
ing a third order ENO scheme on the advection step
on a 1282 grid.

Figures 11(a-¢) show the roll-up using 1024? points.

(Figures 10 and 11 were computed by Professor Chi-
Wang Shu).

Figures 12 and 13 from [28] contrast spectral meth-
ods versus third order ENO for compressible isotrepic

turbulence. Figure 12 shows density and vorticity con-
trnra far cnnetral pur“'r'n 12 for F‘Nﬂ The ncmﬂnflr*mq
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in Figure 11 dlsappear with ENO. For details see [28].
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Figure 1: Evolution of rising bubble with high Reynolds number and low surface tension.
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Figure 2: Evolution of a large water drop (no surface tension). Drop deforms as it hits the
base.
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Figure 3: Evolution of a water drop with surface tension. Drop remains circular as it hits the
base,
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Figure 4: Evolution of two water drops eolliding with each other. The combined drops expe-
riences surface tension driven oscillation.
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Figure 5: Conservation of mass for the merging drop problem.
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Figure 6: Upon rupture of a gas bubble at an air/water interface, surface tension effects cause
a high speed jet of water to form.
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Figure 7: Air bubble rises through a water/“oil” interface. “Oil” is a less dense but more

viscous fluid. Surface tension effects are ignored.



Figure 8a: 3D volume preserving mean curvature velocity.




Figure 8b: 3D volume preserving mean curvature velocity.



Figure 8c: 3D volume preserving mean curvature velocity.



Figure 8d: 3D volume preserving mean curvature velocity.



Figure 8e: 3D volume preserving mean curvature velocity.
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Figure 10a: Roll up of a vortex sheet.
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Figure 10b: Roll up of a vortex sheet.
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Figure 10c: Roll up of a vortex sheet.
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Figure 10d: Roll up of a vortex sheet.
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Figure 10e: Roll up of a vortex sheet,
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Figure 10f: Roll up of a vortex sheet.
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Figure 11a: Roll up of vortex sheet.
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Figure 11b: Roll up of vortex sheet.
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Figure 11c: Roll up of vortex sheet.




t=35, ENQ3, 1024? 6 — width = 48Axz

(2D) 1i Printil B Feb 1B95 |i fort5.pht i

0.3

rry vy e

0.2

0.1

rrrr Y

0.1 L

-0.3

TYTJrTyrrvrrorry

_0.4 \ e o ] A 1 L J _l - L i Il J . ol i i ol

Figure 11d: Roll up of vortex sheet.
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Figure 1le: Roll up of vortex sheet.
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Figure 12: Density (left) and vorticity (right) contours for the spectral scheme with 64 (top)
and 1282 (bottom) points. :









