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1 Summary

The phenomenon of unphysical wave propagation speeds sometimes occurs in numerical
computations of detonation waves on coarse grids. The strong detonation wave splits
into two parts, a weak detonation which travels with the speed of one cell per time step
and an ordinary shock wave.

We analyze a simplified set of equations and look for traveling wave solutions. It is
shown that the solution depends on the dimensionless number Kr = .%,f?. Here i is the
viscosity, K is the rate of reaction, @ is the heat release available in the process and p,
is the density at the unburnt state. It is shown that the density peak of the traveling
wave depends on Kr and also, that if Kr is sufficiently large there is no traveling wave
solution. The erroneocus behavior above is explained as an effect of the artificial viscosity
necessarily inherent in the numerical methods when coarse grids are used. To prevent
this unphysical behavior we suggest the use of an “artificial rate of reaction” such that
the actual value of Kr used in the numerical method retains its correct physical value.

MOS subject classification: 65P05,76L05,80A32
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2 Introduction

The last decade has seen rapid progress in high-resolution medeling of compressible gas
dynamics. Using non-linear schemes developed in the last few years it is now possible
to compute for example the interaction of shocks with other flow phenomena, and even
strong embedded shocks can be treated without excessive numerical damping.

A particularly interesting phenomenon is the propagation of an exothermal chemical
reaction by the thermodynamics of a compressible fluid. There are several propagation
mechanisms, and that of primary interest here is a detonation wave, i.e. a compression
shock wave which raises the temperature to initiate the reaction. To focus on the fluid
mechanical part of the problem, one should select cases with simple and well established
chemistry models. Even so, there are a large number of parameters, and charting out
the whole space of reasonable parameter values is a formidable task. Here we will
concentrate on some aspects of the phenomena to reduce the dimensionality of the
parameter space.

The study of detonation waves has applications in for example modern air-breathing
propulsion systems such as ram- and scram-jets for hypersonic vehicles and ram ac-
celerators for projectiles, see [14, 7]. The pre-combustion compression necessary for a
thermodynamically efficient propulsion is effected by a series of slanted stationary shock
waves, and the ignition of the fuel-air mixture by a further shock. It is important to
understand the dynamics of the ignition shock, which is not perfectly understood at
present.

Such combustion phenomena are described by the Navier-Stokes equations for com-
pressible fluid flow, with additional equations for the mass fractions of the different
species. Many of the interesting phenomena observed in experiments can be obtained
as the solution of these equations,

A simple model is obtained by assuming that the reaction takes place in a single step
and that it can be modeled by only two or three species, unburnt (fuel+-oxidant), burnt
and possibly an inert diluant. We introduce the variable Y (z,1) for the mass fraction
of unburnt mixture under stoichiometric conditions. This leads to the following system

pu+ (pu), =0 (1)

(pu) + (pu® + Pl — ptys =0 (2)
plh+ )+ pulh + ) = pe= (ML), + pluess), (3)
(PY ) + (puY )o = (pDY:)e + wa (4)

Here j is 4/3 times the dynamic viscosity, and the bulk viscosity is assumed to be
zero. T is the temperature, p is the density, v is the mass average velocity, h is the
enthalpy per unit mass, p is the pressure, D is the binary diffusivity and A is the thermal
conductivity. The term w, is the mass rate of production of mixture a. For a derivation
of these equations see [14, 9].

To solve the extended Navier-5tokes system above we need:



1. A high-resclution numerical difference schemes for shock capturing, since the det-

onation waves are very steep.

2. A numerical solution procedure for the ordinary differential equations associated
with the source term. Since w, is usually large (the time scales of the reactions
are short) the method must be able to handle stiff ODE’s.

Tt is well known that these requirements alone do not guarantee a satisfactory method.
The coupling of the stiff ODE with the difference approximation sometimes leads to
unphysical waves propagating with incorrect velocities, an effect which becomes more
pronounced on coarse grids, see [13, 2]. This class of solution is commonly referred to
as spurious solutions. In [4), Engquist and Sjogreen have suggested some remedies for
this effect.

Here our approach is to analyze the underlying equations, not a specific numerical
method. In particular, we want to investigate how the character of the solution depends
on the physical parameters involved. It turns out that the occurrence of these spurious
solutions can be explained as a side effect of the artificial viscosity, which is necessarily
inherent in numerical methods when shock waves are present and the grid is coarse (or
realistic). It is also follows that these solutions are physical in the sense that they exist
when the product of the viscosity and the rate of reaction is large.

It is generally believed that in most cases a typical detonation consists of a very thin
shock wave followed by a much thicker region where almost all the chemical reactions
occur. This is the classical ZND theory, [14, 9]. This corresponds to the case when the
scale of the shock wave is much smaller than the scale corresponding to the reaction,
and can be considered as the limiting case when the viscosity tends to zero. In this
article the behavior of the solution with varying ratio of these two scales is studied.
This is a physical problem, but since it is difficult to find phenomena in nature where
the scale of the shock wave is not small compared to the scale of the reaction it has its
greatest importance in the context of numerical methods.

In [8] it is proposed that detonations cannot exist if the pressure is too large. This
observation was probably due to numerical difficulties, since for large values of the
ambient pressure the solution approaches the ZND detonation in such a way that the
width of the shock wave is constant whereas the width of the reaction zone tends to
infinity. The authors used a shooting method, starting in the vicinity of the burnt state.
For large values of the ambient pressure (corresponding to small K7, see notation below),
this method becomes extremely sensitive to the initial, shooting data (this follows from
an investigation of the behavior of the solution in the vicinity of the corresponding
critical point), and it is easy to “run out of accuracy”. This work is continued in [3],
where an assumption of ignition kinetics is made. Here it is numerically verified that
there exists a value of the rate of reaction above which no detonation is possible. This
value corresponds to Kr,, introduced below, For an investigation of the case when
Kr > Kr,, we refer to [12).

In {15] the problem of slow reactions is considered. It is shown that a solution exists
if the rate of reaction tends to zero. It is also shown that this solution approaches the



ZND detonation, in the sense that the width of the shock wave is constant and the width
of the reaction tends to infinity. Below it will he showed that the ZND detonation can
be obtained by letting the viscosity approach zero while keeping the rate of reaction
constant, in which case the thickness of the shock wave tends to zero and the thickness
of the following deflagration stays constant. Considered in the phase space these two
solutions are identical.
In [5] the existence of strong and weak detonation is proved under certain conditions
on the diffusivity parameters involved (i.e. the viscosity, the heat conduction, and the
species diffusion coefficient).
In [10] a chord condition is introduced, which if satisfied guarantees that no spurious
solutions can occur. For our set of equations this condition would be satisfied if the
ignition temperature is sufficiently high. This guarantees that a traveling wave solution
exists independent of the viscosity or the rate of reaction, but a large value on the
artificial viscosity will change the solution drastically, for instance the pressure peak
will be lost (so in that sense this solution might still be called spurious).

Previously we have studied a simplified problem, essentially Burgers equation with
a source term mimicking the chemistry, [11]

g + g(w)u, = —K f(u) + vig,. (5)

The stiffness of this problem can be varied by changing the factor K (corresponding to
the rate of reaction) in the source term. It was found that traveling wave solutions exist
which look physically reasonable but move with an incorrect propagation speed if an
artificial viscosity is used. This erroneous behavior becomes more and more pronounced
when the stiffness of the problem is increased. The speed of the wave depends on the
viscosity v and the rate of reaction K in the combination K. When this product is
large the speed of the wave is proportional to VvK. This agrees with the result of the
classical Thermal theory, see [14, 9]. On the other hand, for small values of this product
the speed of the wave is almost constant, independent of v K.

The result above suggests the investigation of the full 1-D Navier-Stokes equations
with a single reaction, Eqs.(1-4). It will be shown that the conclusions drawn from the
simpler model above can be verified if we make the simplifications A = D = 0 (i.e. we
neglect the heat conduction and the diffusion of the two mixtures) and use Heaviside

kinetics
w, = —KH(T - T;)pY. (6)

Here K is again the rate of reaction, H is the Heaviside function and 7} is the ignition
temperature. The assumption of Heaviside kinetics is made in order to avoid the cold
boundary difficulty, see {14, 9], Apart from these assumptions it is also assumed that
the specific heats at constant pressure of the two mixtures involved are constant and
equal. Further we assume that 4 is constant and that the molecular masses of the two
mixtures are equal.

We introduce the dimensionless number Kr = £X where @ is the difference in

Qr
heat of formation of the two mixtures and p, is the value of p on the cold side of the

4



detonation. If we assume that the initial and final states are chosen so that a strong
detonation wave ig nnqqz]ﬂp then we can show that there exists a, 'llTIlﬂ'l]? Kr = I(’T'.... such
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that if

¢ Kr < Kr,, a traveling wave solution exists between the initial and final state.
Here the speed is uniquely determined by these states. In this case a density peak
is possible, i.e. the maximum value of the density is higher than the value at the
final state. This solution is a strong detonation.

e Kr > Kr, no traveling wave solution exists between the given states.

If it is instead assumed that the states are given in such a way that a Chapman-Jouget
detonation wave is admissible, the existence of a unique Kr = Kr,, can be shown such
that if

o Kr < Kr,, a traveling wave solution exists between the given states, the speed is
uniquely determined by these states. In this case the density profile has to have
a density peak.

¢ Kr = Kr,, the situation is the same as above except that for this case the density
profile is monotone.

¢ Kr > Kr,, no traveling wave solution exists between the given states.

For a definition of strong and Chapman-Jouget detonations see [14, 9].

The conclusion here is that it is important to keep Kr at its correct physical value
when solving Egs.(1-4) numerically. This conclusion suggests the following general
way of modifying current numerical schemes: If an artificial viscosity, p + g, > g, is
inherent in the numerical method, use also an “artificial rate of reaction”, K,, such
that (4 + p,)K, = pK and Kr retains its correct value. By this action the shock will
wider, but the amount of reactions taking place over it will be correct. If it is further
assumed that p, = cAz < p it follows that the artificial rate of reaction is equal to
(1-2Az+ O(Az?))K, i.e. the method is first order accurate (even though it is slightly
dublous to talk about order of accuracy in this case since if p, = eAz < p the shock
wave is resolved and the artificial viscosity is superfluous). The solution corresponding
to the inviscid equations is a ZND detonation and in order to obtain it numerically
the reaction should be switched off entirely in the interior of the shock wave. For work
along these lines see [4].

One should not use an artificial p; since that would alter the initial state. For similar
reasons @ cannot be changed.

3 Analysis

In the appendix, based on the Navier-Stokes equations and certain assumptions, the
equations to be used here are derived. In short the following is assumed:



o the heat flux and the diffusion of species are neglected,

o the law of mass action holds,

¢ Heaviside kinetics is adequate,

o only two species are involved in the reaction (4 possibly an inert diluant),
¢ the specific heats are equal and constant,

e the molecular masses are the same,

o a traveling wave solution exists.

The equations are written in nondimensional form, and it turns out that in this
context the dimensionless number ‘5% is important. Here p is the dynamic viscosity,
@ is the difference in heat of formation of the two species involved in the reaction,
K is the rate of reaction and p, is the density at the unburnt state. Henceforth this
dimensionless number is denoted by Kr - the Kreiss number.

As a result of the assumptions above the following two differential equations

1
v'=—(y = 1)(p(v; ") - ), (7)
V' = KrH(T — T,)—Y, (8)
s
and the algebraic relation
T=7(q(v;s") - Y)+T; (9)

emerge. Here v is the specific volume, Y is the mass fraction of unburnt gas and 7" is
the temperature. Furthermore, s is the speed of the traveling wave, T; is the ignition
temperature and v = C,/C,. p(v;s?) and g(v; 8%} are quadratic expressions in v. The
Heaviside kinetics is described by the function H(T — T;). All the variables here are in
nondimensional form. For details see the appendix.

In what follows the subindex 7 is used to denote the variables at the point of ignition
and the subindex 1 specifies the variables at the initial state (v; = 1 since this variable
has been normalized with the value of the specific volume at the initial state).

The purpose in this section is to find a solution curve (or phase curve) which connects
the initial state with some possible final state. The solution will be sought for in the
phase space - in this case R?, with coordinates denoted by (v,Y} in accordance with
Eq.(7,8) above. The initial and final states have to be critical points (i.e. points in
the phase plane where ' = Y’ = 0). In section 3.1 below it is shown under which
conditions these critical points exist, and in section 3.2 the behavior of the solution
curves in their vicinity is described. In section 3.3 the question of existence of a solution
curve connecting the initial and the final states is addressed. The significance of K7 is
also discussed here. In section 3.4 it is shown that as the viscosity tends to zero the so
called ZND-detonation is obtained.



Denote by §(z) the solution of Eqgs.(7,8). Note that if §(#) is a solution then so is
S{z+ A), (A = constant). These solutions are considered identical. In order to get
rid of this ambiguity $(z) is fixed at some specific z, choose z; to be the z-value at the
point of ignition, Le., $(z) = (v(2), Y{(2)} and S(z) = (v, Y1)

It is obvious from Eqs.(7,8) that if $(z) = $1(2) is a solution for s = 5, > 0 then
8(#z) = S1(—2) is a solution for s = —s;. Therefore, in what follows, only non-negative

s will be considered (corresponding to a wave traveling to the left).

3.1 Critical Points

At the initial and the final state both o' and Y’ have to be zero. From Egs.(7,8) it is
seen that:

¢ v = 0 whenever ¥ = p(v; %), and

o V' =0when T < T; (and H(T —T;) = 0) or when Y = 0. From Eq.(9) it follows
that 7' < T; whenever ¥ > g{v; s%).

In a detonation the mixture is ignited by the rise in temperature due to a strong
compression. Hence, at the initial state T has to be less than T;, therefore ¥ has to
be larger than ¢(v;s) there. In general, for those domains in the phase plane where
Y > ¢(v;s?) the solution curves are straight lines parallel to the v-axis, and these
solution curves are parts of ordinary shock waves without any combustion. At the final
state on the other hand the reaction should be finished and it has to be required that
Y = 0. Hence, in order for a detonating wave to exist the following has to hold at the
critical points involved:

o Y > g(v;s?) and Y = p(v; s*) at the initial state, and
e Y =0and Y = p(v;s?) at the final state.

It will next be shown that for sufficiently large values on s, critical points exists
which satisfies these requirements.
The expression for p(v;r}, £q.(95), can be written

p(v;f)=%Ei(”“1;1)(”‘1)7‘_21(”_1”% a0

where r = % has been introduced (7} and Y; are the values of T and Y at the initial
state). From this equation it follows that:

e For all » > 0 the curve ¥ = p(v;r) is a parabola which has to pass through the
points

+1

(a1, b:) and (1,Y) where a; = :’; and b, = T, +Y,. (11)

¥v+1
Here it is noted that a; > 0 and that b; > Y}, see Fig. 1.
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Figure 1: qualitative picture for relevant values on s and 7;

o Ifr = 0the curve Y = p(v;r}is a straight line intersecting the v-axisat v = 1 +f}-§~}.
o If v € (a;,1) then p(v;r) can be made arbitrarily small by increasing r.

Hence, for sufficiently large r the parabola Y = p(v;r) has two zeroes which both belong
to the interval (a,,1). For a qualitative picture of the curve Y = p(v; s} see Fig. 1.

As stated above, a detonation is characterized by a strong compression and since
v = 1 at the initial state it has to be required that v < 1 at the final state. Therefore,
a detonation is only possible for large r. It can be shown that r > r, where

n=(Grov+ T (G DY+ 20+ %) (- D) (12)

is the condition which has to be satisfied. Henceforth only 7 > r; is considered. With
this choice of r it is obvious that a; > 0. Here @, is the value of » < 1 at the intersection
between Y = Y; and Y = p(v;s?). This guarantees that the minimum value of v is
always larger than zero (v > ay > 0).

If » > r; then two possible final states exist. These are denoted by (v,,0) and
(vy,0), see Fig. 1. The detonation is called strong if it ends up at (v,,0) and weak if
it ends up at (v,,0). If on the other hand r = r, only one possible final state exists,
and in this case the solution ending up at this critical point is called a Chapman-Jouget
detonation.

The critical point specifying the initial state is given by (1,Y)). The point of ignition,
denoted by (v;,Y;) are defined by the intersection of the line ¥ = Y; and the curve
Y = g(v; %) (to the left of » = 1). The following is required:

e The critical point specifying the initial state has to lie above the curve Y = ¢(v; s%)
(this is follows since Y’ should be zero at that point). This implies that »; < 1.

e v; > v,, this is required since it is more adequate from physical considerations,
and since the behavior of the solution is quite different if this is not satisfied. It
turns out that if this is not fulfilled the weak detonation solution is ruled out, and
also that a traveling wave solution exists independently of Ar,

Eq.(96) shows that ¥ = g{v;7) is a convex parabola passing through the point (1,5,),
where b, = %(Tl — T;) +Y; for all values on r. It also holds that the minimum of this

8



curve occurs for v > 1 independent of r, It follows that it is always possible to choose

77 in such a way that the requirements ahove are fulfilled.
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With the above assumption on r and T}, which will be kept throughout the paper,
the situation is qualitatively as depicted in Fig. 1.

3.2 Final States

From section 3.1 it is clear that the possible values of v at the final states are given by
p(v;s) = 0. (13)

This yields

_sta (- n s+ (- DRP =220+ Dy - DG4 T Y
T ) $(v+1)

(14)
If s2 > r, these two roots are distinct and satisfy a¢; < v, < v, < 1. If this is the
case the solution of the complete, non-linear equations behave in the same way in a
sufficiently small neighborhood around the critical points. If on the other hand 52 =7y
only one critical point exists. In this case the linearized equations can not be used to
determine the behavior of the solution of the non-linear equations. Therefore only the
case s > 7, is considered in the linear analysis below,

For future reference p(v, s%} is rewritten as

p(v;s%) = észz—i—%(v —v,)(v — v,). (15)

With the choice of s being positive, the unburnt state is approached as z — —oo
and the burnt state is approached as z — oo. Therefore, when considering the solution
curves approaching the final states, only the stable manifolds are of interest (the set of
solutions curves approaching the final states with increasing z).

Below it is demonstrated that the character of the solution corresponding to the
linearized equations are completely different for the strong and the weak detonation.
It is also shown that the character of the solution is greatly dependent of K7 in the
vicinity of (v,,0).

3.2.1 Linearization Around v,

Make the ansatz

v=v, + (16)
Y:0+$2. (17)




It has already been assumed that T > 7} in a neighborhood of (v,,0}, and consequently
H(T ~T,) = 1 there (otherwise no detonation is possible). If quadratic and higher order

T L walUEn | waciol WV aot anns ST SRALIISLIN AL L2 (L) RS L

terms are negiected substltutlon of this in Eq. (7) and Eq (8) yield

() =+(2)

di —K
A:( 0 d, ) (19)

1 Kr
— 4 . g2 = — v — e i
Dp'(v,;s%), & =y (y—1) and d, o, (20)

where

with

d, and d, are the eigenvalues of the matrix A. Since only positive s are considered
it follows that d; and d; are both negative. The general solution of Eq.(18) with
2y = €,{%) and z, = z,(z) at z = z, (since the system is autonomous z, is arbitrary)
are

mlzwl(za)ed;{z—zo) _ M(e@(;—zu) _ edl(z—zn)) (21)
dy — dy

2y = 2y 29 )2 F70) (22)

when d; # d; or, (23)

3 Zml(zo)edl(z_%) - ﬁ%(zo)ed’(zwzu)(z — %) (24)

Ty =(20)e™ ) (25)

if dy = dy. (26)

Ie. improper, stable nodes in both cases, see [1] (this means that every solution curve
tends to the origin as z — oo, and that every solution curve, except one when d, #
dy, has the same limiting direction there)., Only z3(2) > 0 is considered here since
24(25) = 0 would imply @, = Y = 0 corresponding to an ordinary shock wave without
any combustion.

Since z,(2,) # 0 the quotient 2, /z, = (v—v,)/Y can be used to explain the behavior
of the solution as the critical point is approached. If d; # d; then

x1(2o) (dy—da)(z—20) _ __ 1
— et e . 27
Ty (3’2(30) - dl) dy — dy ( )
Otherwise

2r_ @) L, (28)

Ty zr1'2("‘*"0)
These formulas imply that the behavior as z — oo depends on the relationship between
d, and d,. One can distinguish between the following three cases:

10
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Figure 2: the linearized solution around the weak and strong detonation states

o Ifd, —d, < 0,i.e. Kr “small” then

fim 2= S = 71 <
s by dy —dy (v — Dp'(v,; %) + Kr

0, (29)

see Fig. 2. It follows that there has to be a density peak (since p = 1/v).

* If d1 = d2 then .
lim — = lim (—k2) = oo (30)

z—0oe Ty Z— 00

and there is a density peak in this case also, but the character is different from
the case above, see Fig. 2.

o If dy — d, > 0,1.e. Kr “large” then

lim =L = %00 (31)

22— 00 $2

FilZa

for all solution curves except when Z22% = %o, see Fig. 2. Hence the linearized
analysis does not gunarantee the existence of a density peak as it did in the two
previous cases.

11



The complete equations in the new variables become
Ty ’ Ty fi

= A 32

(5)=(2)+(%) o

v~ 1 {(p"(v,; s¥), — 2p'(v,; szt + 22,2, Kr 2,24
and f = ————"—.
8 2u,(v, + ;) s v,(v, + z1)

where

fi= (33)
The fact A have no eigenvalues with zero real part, together with the fact that both f;
and f, tend to zero as O{z? + z3) (as the origin is approached) and have continuous
derivatives show that the solution of the complete equations behave in the same way as
the solution of the linearized equations near the origin, see [1].

3.2.2 Linearization Around v,
Linearization around (v, 0) yields the same equations as above, but in this case

1 1 Kr
dy = E(q’ — D' (vy; 8%, 6= 3-1-);-(7 —~1)and dy = ~n (34)
dy is positive. Hence, the eigenvalues of A are of different sign and (v,,0) is a saddle
point. In order for the solution to stay bounded as z — oo, Eq.(21) shows that it has

to be required that

371(2-'0) - K . (35)
372(20) dy — dy
Therefore, only for those values on z,(2) and 4(z,) which satisfy the above equation
will the solution of the linearized equation stay bounded. Eq.(35) also specifies the
direction of the stable manifold at the saddle point (w,,0) - which in this case consists
of just one solution curve, see Fig. 2.
In the same way as above it can shown that the solution of the complete equations
behave in the same way as the solution of the linearized equations.

3.3 Existence of a Solution

As stated earlier it is assumed that s > /r, and that T} is chosen such that v; > v,,. The
case when s > /1y, the strong and the weak detonation, is treated in detail in section
3.3.1, and in section 3.3.2 the result concerning the Chapman-Jouget detonation is
presented.

12



Figure 3: the slopes of the solution curves

3.3.1 Strong and Weak Detonations

For further reference the following can be noted about the solution curves:
e v’ < 0 above the curve Y = p(v; s*) and o' > 0 below it.
o V' < 0 between the curves Y = g(v;s*) and ¥ = 0.

For the slope of the solution curves below the curve Y = g{v;s%) (i.e. when T > T})
Eqs.(7,8) yield:

Z—: = KT—W—M(U?{Y; ) (36)
where
M(v,Y;5%) = (y = D)(Y - plv; s%)). (37)

From Eq.(8) it follows that every point of the v-axis is part of a solution curve never
leaving the same axis. Eq.(7) indicates that every solution curve crossing the curve
Y = p(v;s?), below Y = g(v; s?), is parallel to the Y-axis at the point of intersection.
From these two equations it also follows that every solution curve above the curve
Y = p(v;s?) is directed to the left, whereas those below are directed to the right. In
Fig. 3 these facts are schematically demonstrated.

The Heaviside function in Eq.(8) suggests that S(z) is split in two parts. The first
part is the straight line Y = Y; connecting the initial state (1,Y1) with (v;,Y)). The
second part of the solution connects (v;,Y:) with one of the two possible final states,
(v,,0) or (vy,0).

With the assumption on 7} above the following theorem can be proved:

Theorem 1 If s > /T, there ezists ¢ unique Kr = Kr, such that

e For Kr < Kr,, there exists a unique solution connecting the initial state with the
final state (v,,0). This is a strong detonation.

o For Kr = Kr,, there exists a unique, monotonic solution connecting the initial
state with the final state (v,,0). This is a weak detonation.

13



Figure 4: arrows indicate directions of solution curves for increasing z

o For Kr > Kr,, no solution exists connecting the initial state with either of the two
possible final states.

Lemmas 1-4 below are used to prove this theorem.

Lemma 1 If Kr is sufficiently small then there exists a unique solution, connecting the
initial state with the final state {v,,0).

Proof: Eq.(36)shows that by choosing Kr sufficiently small the solution curve emerging
from (v;,Y;) has to enter the region B bounded by the curves v = a5, ¥ =0, v = v,
and Y =Y, see Fig. 4.

B can be considered as a closed subset of D, where D is a bounded open subset of
the (v,Y) plane which contains only a finite number of critical points {(only one). It also
holds that on the boundary of B no solution curves are directed out of B. Specifically
the v-axis is a solution curve, and uniqueness considerations prevents any solution curve
containing points with Y > 0 to cross that axis. From a theorem concerning autonomous
systems it follows that the only possibility for solution curves which has entered B is to
approach (0,v,) as z — 00, see [1].

Lemma 2 No solution ezists between the initial state and any of the two possible final
states for Kr sufficiently large.

Proof: In the same way as for the lemma above it can be shown that for sufficiently
large Kr the solution curves leaving the point of ignition has to cross Y = p(w; s%) with
v € (vy,7;). Further, below Y = p(v; s?) the velocity field is directed to the right and
there is no possibility for any solution curve to reach either (v,,0) or (v,,0) as z — oo.
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Lemma 3 Solution curves emerging from (v;,Y}) for different Kr can only intersect
cach other below the curve Y = p or af the point (v,,0).

Proof: Consider the second part of the solution, i.e. the part where T > T;. For this
solution ¥’ < 0 as long as Y > 0 (as noted before Y = 0 can only be attained at the
critical points (v,,0) or (v,,0)). Hence the inverse of Y(z) exists, denote it by & (i.e.
z = h(Y)). I ¢ is defined by ¢(Y) = v(h(Y) it satisfies the equation

dp _y—-1Y —ply) |
i W——-m—y—(—-l with o(Y;) = v;. (38)

Let ¢, and ¢, denote the solutions with Kr = Kry and Kr = K7y respectively. Without
loss of generality it can be assumed that Kr; < Kr,. Define ¥ by ¥ = ¢, — 5. Hence

v y-1 Y — p(es) Y —P(%))
dY = Tr K ( 1y KTy ' (39)

Since 222) < ¢ it follows that there exists a 7 such that ¥(Y) > 0 for 7 <Y < Y7,
The following assumptions are now made:

e ¢, and ¢, intersect each other above or on the curve Y = p(v; 5%} with a value of
Y >0

s ¢, and , end up at the saddle point (v,,0}.

For both cases it is shown that these assumptions lead to contradictions.
For the first case, let p = infr. From continuity ¥(p) = 0. Eq.(15) is used to
rewrite the expression for p(yp,)

1 +1
Pla) = o1} + @ (U201 — (v, +v,)) + ¥¥) where o = "2'521 -5 @
and hence
v y-=1 Y — p{e1) U(2¢; = (v, + vy,)) + ¥*
= T ((I(rl — Kry) % — Kra % . (4D

If the two solution curves intersect above the curve Y = p(v;s?) it immediately follows
that %ﬂ < 0 and therefore ¥(u + €) < 0 for small e. This is a contradiction to the
fact that U(Y) > 0 for p <Y < Y,. If on the other hand the solution curves intersect
on the curve Y = p(v; s%) a constant k can be found such that the following holds

d¥
o7 S kY (42)

where either 1 )
Y LUy — Vs _ Y — Uy — Vs
Ty B or k< e e (43)
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T

Figure 5: arrows indicate directions of solution for decreasing z

Therefore ¥ is identically zero in a neighborhood of Y = y which is again a contradic-
tion.

For the second case the linearized analysis and the result above show that a contra-
diction is reached. In a neighborhood of the saddle point

Kr, — Kr
¥Y) = ((7 N 1)((7 — Dp'(vy; 82) + Kr )((7 — 1)p'(ve; 8%) + Kr3)

and therefore ¥(Y) < 0 for sufficiently small Y.

)Y +0(r?) ()

Lemma 4 There exists a unigue Kr = Kr,, which gives a unique, monotonic solution
between the initial state and the final state (v,,,0), see Fig. 5.

Proof: Let A be the region bounded by the curves Y = g(v;8%), v = v, and ¥ =
p(v; 6%), see Fig. 5. From lemma 1 and 2 it follows that Kr,y and Kr; exist such that
0 < Krpy < Kry < oo and such that $(z; Kr,,) leaves A somewhere on v = v, and
S(z; Kryy) leaves Aon Y = p(v; s?). Denote these points of intersections by P, and @,
respectively, and let d; be the minimum value of Y of these two points.

Next, let P, and (), be points on v = v, and ¥ = p(v; s>} with a value of ¥ equal
to dy, where d, = d; /2. Consider solution curves from these two points with decreasing
z, and denote them by L(z; Py, Kr) and L{z; @4, Kr).

Any solution curve in A can only leave the region through the curve Y = q(v; s*) as
z decreases. On the other two boundaries all solution curves are directed towards the
interior (for decreasing z). Further, except for points with a distance less than & away
from the curve Y = p(v, s?) the slopes of the solution curves in A can be bounded by

f

Y
Krk, < pr < KrK,, where 0 < K; < K, < co. (45)
For points within a distance ¢ from the curve Y = p(v; s%)

[

y
Ik, < — (46)
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Figure 6: solution curves for different values on Kr

holds for the slope of the solution curves. Since T} has been chosen such that v, < v; <1,
and since £ above is arbitrary it follows that by choosing Kr large enough L(z; Py, KT)
will eventually reach Y = g(v; %) to the left of the point (v;, ¥1) as z decreases. Similarly,
by choosing Kr small enough L(z; Py, Kr) will eventually leave A to the right of the
point of ignition. The same is true for L(z; @3, Kr). From continuity considerations,
and from lemma 3 it then follows that unique Kr,, and Kr,y can be found such that
Kry < Krpy < Krgy < Kry; and that both L(z; Py, Kryy) and L(z;Q,, Kry,) passes
through the ignition point (v;,Y)).

This process can be continued indefinitely toward (v,,0) and therefore a Kr,, exists
such that a §(z; Kr,,) exists which tends to (v,,0) as z — oc.

Uniqueness of Kr,, is guaranteed by lemma 3. Non uniqueness would be a contra-
diction of that lemma. From the linearization it is further known that S(z; Kr,, ) is
unique.

3.3.2 Chapman-Jouget Detonation

In this case s2 = r, and only one critical point is possible, (v,;,0), see Fig. 6. For this
situation the following can be proved

Theorem 2 If s = /1y there exists a unique Kr = Kr.,. such that

o For Kr < Kr,, there exists ¢ unique solution connecting the initial state with the
final state (v,;,0), and approaching the critical point below the curve Y = p(v; s%),
curve a in Fig. 6.

o For Kr = Kr,, there exists a unique, monotonic solution connecting the initial
state with the final state (v ;,0), curve b in Fig. 6.

o For Kr > Kr,, no solution ezists connecting the initial state with the final state
(v, 0), curve ¢ in Fig. 6.

Except for obvious modifications in notations lemma 1 and 2 are still valid. Lemma
4 can still be used to prove the existence of a Kr, for which a monotonic solution

17



P S LT

1.0

£

Figure 7: the solution curves must stay in A,

exists. In order to show uniqueness of Kr.,. lemma 3 can be used but the proof has to
be modified since in this case the linearized analysis can not be used in the vicinity of
the critical point. For the same reason the uniqueness of the solution has to be proved
in a different way. These extensions will be carried out in the appendix.

3.4 The ZND detonation

A ZND detonation is a detonation which consists of a shock wave with no combustion
followed by a much thicker region where the chemical reaction occurs, a deflagration,
see [14, 8]. In this section the following is proved

Theorem 3 As pp — 0 the solution of Fgs.(7,8) tends to @ ZND-detonation.

Proof: Consider the closed subset A, in Fig. 7. The coordinates of the corners of A,
are: a = (v;,Y1), b= (a,—&, V1), ¢ = (v, ~£,0), d = (v,0), e = (e +£,Y.) and
f=(ax+eY + %E) Here ¢ > 0, k = 5%3—21 and Y, is the the value of Y at the
intersection between the vertical line through f and Y = p(v, s?). It will be shown that
on the boundaries of A, no solution curves are directed out of A, for sufficiently small
Kr and the solution has to be contained in A,. Therefore if the solution enters this
closed subset it has to approach the critical point (v,,0) as z — oo, see [1].

e On the line between a and b it holds that ¥ < 0 for all Kr > 0 and hence all
solution curves are directed into A,.

e On the curve between b and ¢ Eq.(36) shows that for sufficiently small Kr all
solution curves are directed inwards (the curve between b and ¢ is constructed so
that its slope everywhere is less than 0).

o The line between ¢ and d is a solution curve and it is impossible for an other
solution curve to cross this line by uniqueness.

¢ On the curve between d and e it holds that ' = 0 and Y’ < 0 and it is again
impossible for a solution curve to leave A, through this part of the boundary.
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e On the line between e and f it is noted that ' < 0 and no integral curve can
Tanwn A thwrnioh thic line

1CAVE A, ATCUED Wals

« Finally, Eq.(36) again shows that all integral curves on the line between f and
a are directed to the interior of A, for sufficiently small Kr. In the same way
it holds that for sufficiently small K7 the integral curve emerging from (v;,Y;) is
directed into A, (this point is not a critical point).

From the scaling in Eq.(56) it follows that the thickness of the shock is O(u).

4 Conclusion

For a simplified set of equations we have been able to explain the difficulties encountered
when detonations are treated numerically. It has been shown that an important physical
parameter in this context is the product between the viscosity and the rate of reaction.
The traveling wave solution of this set of equations is gradually changed as this product
is increased from a small value — typically the peak value of the density is lowered —
and for sufficiently large values the traveling wave solution ceases to exist. Therefore,
in numerical treatment of detonation problems, it is suggested that the reaction rate
is modified in such a way that the product of itself and the artificial viscosity used in
the numerical method is identical to its correct physical value (if the fluid flow problem
under consideration is inviscid it is suggested that the reactions are totally switched off
in the interior of the shock wave).

5 Acknowledgment

This work represents one part of my Ph.D. thesis, and I would like to thank Heinz-Otto
Kreiss for providing excellent guidance, and for his support and encouragement.

References

[1] Coddington, E. A. and Levinson, N., Theory of Ordinary Differential Equations,
Robert E. Krieger Publishing Company, Malabar, Fl., 1955.

[2] Colella, P., Majda, A. and Roytburd, V., ‘Theoretical and Numerical Structure for
Reacting Shock Waves’, SIAM J. Sci. Stat. Comput., 7, 1059-1080, (1986).

[3] Curtiss, C. F., Hirschfelder, J. O. and Barnett, M. P., ‘Theory of Detonations. HL
Ignition Temperature Approximation’, The Journal of Chemical Physics, vol. 30,
nr. 2, (1959).

19




[4] Engquist, B. and Sjégreen B., ‘Robust, Difference Approximations of Stiff Inviscid
Detonation Waves', CAM n + a1.07 TICT. A Lag Ana‘r—ﬂpq_} {19,01);

2 1) )Y
UILFIL YYOUY LD g WAdBE TURPURe a7 Uvoy W asddday 000 Jadingsaiess

[5] Gardner, R. A., ‘On the Detonation of a Combustible Gas’, Transactions of the
American Mathematical Society, vol. 277, nr. 2, (1983).

[6] Gilbarg, D., ‘The Existence and Limit Behavior of the One Dimensional Shock
Layer’, Amer. J. Math., 73, 256-274, (1951).

[7] Hertzberg, A., Bruckner, A. P. and Bogdanoff, D. W., ‘Ram Accelerator: A New
Chemical Method for Accelerating Projectiles to Ultrahigh Velocities’, ATAA Jour-
nal, vol. 26, nr. 2, (1988).

[8] Hirschfelder J. O. and Caurtiss C. F., ‘Theory of Detonations. I. Irreversible Uni-
molecular Reaction’, The Journal of Chemical Physics, vol. 28, nr. 6, (1958).

[9] Kuo, Kenneth K., Principles of Combustion, John Wiley and Sons. Inc., 1986.

[10] Pember, R. B., ‘Numerical Methods for Hyperbolic Conservation Laws with Stiff
Relaxation 1. Spurious Solutions’, STAM Journal on Applied Mathematics, vol. 53,
ar. 5, (1993).

[11] Tegnér, J. K., ‘Properties of Simple Model Problems for Reacting Gas Flows’,
Mathematical Methods in the Applied Sciences, 17, 577-796, (1994).

[12] Tegnér, J. K., ‘Properties of Detonation Waves’, TRITA-NA-9216, Royal Institute
of Technology, Stockholm (1992).

[13] LeVeque R. J. and Yee H. C., ‘A Study of Numerical Methods for Hyperbolic
Conservation Laws with Stiff Source Terms’, NASA Ames Technical Memorandum
100075, (1988).

[14] Williams, F. A., Combustion Theory, The Benjamin/Cummings Publishing Com-
pany, Menlo Park, Ca., 1985.

[15] Wood, W. W., ‘Existence of Detonations for Small Values of the Rate Parameter’,
The Physics of Fluids, vol. 4, nr. 1, (1961).

A Derivation of Equations

It is assumed that the combustion process can be represented by a single one step
reaction involving only two or three species, unburnt with index a (fuel+oxidant) and
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burnt gas with index b (product) and possibly an inert diluant. The standard equations

tala the fallawine form
take the lollowing rorm
pi + (pu):=0, (47)
(pu)e + (pu® + p)s — Pt =0, (48)
u2 uz
p(h + "'"é"')t + Pu(h + "2—)4: =0t nu’(uuz)a:a (49)
(pY )i + (puY ) =(pDY, )z + wa. (50)

As usual, p, u and h represents the density (p = p, + ), mass-average velocity (u=
(patia+pyuy)/p) and the enthalpy per unit mass (h = h,Y +72). Y is the mass fraction
of unburnt gas (Y = p,/p) and Z is the mass fraction of burnt gas. p is the pressure
(p = p, + ps) and g is the heat flux. The constant y represents viscosity (p = 4/3 times
the dynamic viscosity, and here the bulk viscosity has been assumed to be zero). D is
the binary diffusivity. The term w, is the mass rate of production of mixture a (the
unburnt mixture). For the derivation of these equations see [14, 9].

In this section a traveling wave ansatz will be made. The equations will also be
simplified in order to get them in a form suitable for the analysis in the subsequent
sections.

It is assumed that

w,=—Kk(T)pY (51)

and that ¢, = (pDY,), = 0, i.e. the heat flux and the diffusion of species are neglected.
To describe w, the law of mass action has been used, here K is the rate of reaction.
For k(T it is common to use either Arrhenius kinetics or Heaviside kinetics:

1 ¥T>21T;
k(T) - { 0 otherwise, (52)

Henceforth Heaviside kinetics is used. It is also assumed that the specific heats at
constant pressure of the two mixtures satisfies

Cpﬂ = Cpb = Cp (53)
where C, is constant. This assumption yields
h=h,Y +hZ = (kY- h})Y + Ry + C,T. (54)

Here h° and A? are the heat of formation of mixture a and b respectively, let Q = hi—h).
Furthermore it is assumed that the molecular masses of the two mixtures are the same
(i.e. W, = W,). Hence, the equation of state for a perfect gas becomes

Y Z
p= RHTP(WG =+ -V[Tb) = RTp. (55)
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Lo £A11 o mandim 4 H ¢
The following nondimensional variables are introdu

. P . A@Qp ; Up . u
R A L L e
P= o p p V&
and o L
T =T h=2, §=——, E(T) = KT).
g b= 7= gy FD =KD

Here p, is the density at the unburnt side. Fgs.(47,48) become
(P + (pi)s = 0

and
(p); + (pi° + )y — se = 0

respectively. The nondimensionalizing of the energy equation yields

,a‘.z

2
wr? P U ‘ PN
plh+ )i+ pilh + 50)s — Pr = (Gis )3
The equation of state becomes
. Y= 1.
= T
P ~ P
where

The enthalpy gets the form

Finally, Eq.(50) becomes
. an Koo
(BY )i + (PAY )i = ~ E—R(P)pY.
@p
If the hats over the variables are neglected the system becomes

Pt (Pu)a::(}'}
(pu)t + (Pu2 + p)a: — Upy :0,
u? u?
P(h' + "2“)3 + Pu(h‘ + ?)x — P :(uuw)m
(PY )i + (puY ), = —Erk(T)pY

and )
h;Y+hﬂ+Tmmp=17—ﬂt
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(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)
(66)

(67)
(68)

(69)



Here the dimensionless number Kr, the Kreiss number

K
Kr = 2o 70
(p1 (70)
has been introduced. Henceforth only the nondimensional variables will be considered.
In Eqgs.(65-68) all variables are functions of z and t, the one space coordinate and time.

Introducing a moving coordinate system, z = « + st, s constant, yields

P+ sp, + (pu)z =0, (71)

(pu)t + S(p‘tb)z + (pu2 + p)z — Uy mﬂ, (72)

ol + )i+ po(h o+ ) + pulh+ 5)s = po = sp= (s, (73)
(PY )i + (oY ); + (puY ), = —Krk(T)pY. (74)

After it has been assumed that the variables are independent of time in this moving
coordinate system the equations can {after some algebra) be rewritten in the form

(p(s +u)).=0, (75)
(p(s + u)’ +p); — .. =0, (76)
(ol + w)(+ CE) = (s 4 ), )
(p(s + u)Y),=—Krk(T)pY. (78)
Eq.(75-77) can be integrated,
pls +u)=e¢p, (79)
o5+ W) +p— v =es, (80)
(s + wih+ EEL) (s w'=e,, (1)

where ! = 8/8z. In the same way as in [6] the new variable v = 1/p (the specific volume)
is introduced into Eq.{79), yielding

s+ U

- (32)
and
o = ¢y, (83)
Use of this give
2L =1T e
I G- ) ()
0 L, 2 v—1
O=¢[Y +hy +T ~ §c1(v—a) —c— TT], (85)
1
Y = MI(rk(T);;Y, (86)
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where
a=cyfefand e = — — ;5 {87}
¢,  2¢
and Fq.(69) has been used for the pressure and the enthalpy. The next step is to use
the conditions at the low temperature side, before the detonation, to determine the
constants of integration from Eq.(79)-(81). It will be assumed that w = 0, T = T} and
Y =Y; (from Eq.(56) v = 1) there. This give

€1=8, (88)
-1
=8+ L, (89)
v
52
63=S(Y1 +hg+T1 + E). (90)
Hence T
. Lt
a"’cf_(l'? ¥ 32) (91)
and 1 1 11 1
_t 16 o, X 11 2
e=< 2§MK+ha+7T1 232( p )" (92)
Use of these constants give
Lo o 2 1 2
Tz—2—s yv° — (s +7T1—T1)v+§'ys + 4Ty +9(Y; - Y) (93)

and
v = %[‘;‘sz('r 4+ 1) — (v8* + (v - D)o+ (7 - 1)(%*32 +h+(h =Y))l.  (94)

Or by introducing

P03 = o £+ 10" = (387 4 (y = DT+ (= (5" + Ty + 1), (95)

v-—1
1 T 1 1
q(v; 8%)= 5321}2 - ($*4+ Ty~ 71)1) + §s2 +1 +Y - ;T; (96)

the system of equations becomes finally

V= = (a0 %) - ¥), (97)
Y'=—KrH(T - T) Y, (98)

and
T = 4(g(v35) - Y) + T (99)
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B Extension of Proofs for the Chapman-Jouget Detonation

The critical point (v,, 0) is not hyperbolic, and therefore the linearized analysis can not
be used to derive the slope of the monotonic solution at that point, instead the following
method is used. Egs.(7,8) become

v'=(y-1)(a(v - ) - Y) (100)

Y =—Kr Ly (101)
SY

on and below the curve Y = g(v;s*). Eq.(15) shows that

_1_827‘1‘1
27 y=1'

(102)

Now & = v—v, is introduced. Y is a monotonic function of z, hence 2 can be considered
as a function of Y satisfying the equation

dr y—-1Y — az?

v R Y (103}
Since Y > 0 and « > 0 the following must hold
Y —az? <Y (104)
which implies
Y—_}ﬁfi <1 (105)

From lemma 4 it is known that the solution under consideration approaches the critical

point from the interior of the parabola Y = p(v; s}, and hence ¥ — az? > 0. Eq.(103)

then provides the following bound on the derivative

de _~v-1

<— <",

0S¥ = I

These inequalities, which are valid even at the critical point for the solution under

consideration, gives the following bound

(106)

-1
< ——VY.
0<z(Y)< T Y. (107)
(Or more precisely, integration from é to ¥ give

v—1 v—1
z(8) < 2(Y) < 2(6) - N 6+ T Y

0 <(6) < \/g (109)
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and since § is arbitrary the inequality in Eq.(107) i
t o

The right incquality can be used to ge er nate for the slope, and as ahove
one gets
Y - az? -1,
>1—af e ) (110)
which together with Eq.(106) leads to
1=l 2 r—1
Kr a )Y) - dY 5 Kr (111)
from which it is realized that d )
. de oy~
i (112)
The inequality above also yields
2(Y) = (113)

Next it is shown that this monotonic solution is unique. Assume that there are
two solutions for the same K7,,, let them be denoted by 9,(Y) and #,(Y). Introduce

P = 1 — 9y, hence

d@b =1 Y —ap? Y — ayi
Pl S i T (114)
or ”
e
Yy = T Kr Y(q’b1 ¥i) (115)
” 4 __ght 1
oy 1 2 P
v = — B> where J = « T (116}
From Fq.(113) it follows that for small values of ¥ this can be written
dy
ay - K (117)

which contradicts the fact that ¢(Y) - 0 as ¥ — 0.
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