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ABSTRACT

The denoising problem can be solved by posing it as a constrained minimization problem. The
objective function is the TV norm of the denoised image whereas the constraint is the requirement
that the denoised image does not deviate too much from the observed image. The Euler-Lagrangian
equation corresponding to the minimization problem is a nonlinear equation. The Newton method for
such equation is known to have a very small domain of convergence. In this paper, we propose to couple
the Newton method with the continuation method. Using the Newton-Kantorovich theorem, we give a
bound on the domain of convergence. Numerical results are given to illustrate the convergence.
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1 Introduction
Noises are introduced in images in the formation, transmission or recording process. In this paper,
we concern with the removal of noises in an image. Consider the model equation

ug(x,y) = u(z,y) +n(z,y) 4y

where n(z, ¢} is a Gaussian white noise, (%, y) is the observed intensity function of the image and u(z,y)
is the original image. Our objective is to get a reasonable approximation of u{z,y).

There are many different methods proposed to obtain an estimate of u{z,y). In Rudin, Osher and
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Fatemi,! they considered the constrained minimization preblem

min f |Vu|de, (2)
U v}
subject to
[lu = wolf* = . {3)
Here {2 is a bounded convex region in the d-dimensional space, | - | denotes the Eucliean norm in RY {|-|

denotes the norm in L2(Q)} and & is the standard derivation of the noise n{z, ).

Applying the Lagrange multiplier method to (2) and (3), we transform the problem to the following
TV-penalized minimization problem:

min {f |V |dx + %—HH - '11«(1“2} , (4)
U ﬂ 4

where A/2 is the Lagrange multiplier. We note that 2/X is the regularization parameter that controls the
trade-off between the goodness of fit {3) and the variation or smoothness of the solution as required by
(2). The BEuler-Lagrange equation of (4) is given by:

Vu
v ('N—ul) - /\(’lb - ’U.Q) =0 (5)
with boundary condition 5
5% =0, xedn (6)

Here 81 is the boundary of  and = is the normal vector of 8.

In actual computation, because of the singularity at Vu = 0, a small positive parameter § is added
to the denominator of first term in (5). More precisely, we solve

=0 [ )~ A=) =
E(?L)mV(W) )\( 0) 0 (7)

with boundary condition (6). The least square functional (4) to be minimized is changed accordingly to

Flu) s= ‘/Q V| Vul? + fdz + -;—Hu — gl |%. (8)

To solve (7), Rudin et. al.! used astificial time marching technique. In particular, w{z,y) is given as

the steady-state solution to the {ollowing parabolic equation:

du

— = L(u

3 = L)
with boundary condition {6). The initial condition at time ¢ = 0 is given by u = ug, the observed image.
In contrast, Vogel and Omen? used a relaxed fixed-point iteration to solve (7). More precisely, with the
kth iterant u, given, we compute the (k -+ 1)th iterant by solving:

Vg
v (Wﬁ;‘:}*‘:’:@') - )\’U'[\;+1 = ——)\’Mu. {9)




We note that this fixed-point iteration can be viewed as the semi-implicit time-marching scheme with
infinite time step.

In Vogel and Omen,® the Newton method approach for the Euler-Lagrange equation (7) has also been
considered. Let us denote 7 (u) to be the Jacobian of £{u). Then for any smooth function p, it is easy

to show that
TJp=V (l_) -V ( Vp_ Vu Vu) - Ap. {10)

JIVuE + B (VI + B)°

The Newton method for (7) is
Wt = WUp —J—l{uk)ﬁ(’ttk), E=0,1,.... {11}

Thus in each iteration, we have to compute 7 (u)L(ux). Although we have no close-form formula for
T (ug), we can still compute 7 (uy)L(uy) by using iterative methods such as the conjugate gradient
(CG) method. This just requires the action of J(u,) onto arbitrary smooth function p, which can be
computed by (10).

We note that in {10} if we drop the higher order texm (i.e. the middle term in the right hand side),
and approximate the Jacobian by the first and third terms, then the resulting quasi-Newton method is
the same as the relaxed fixed point method (9).

The numerical results in Vogel and Omen® suggests that the full Newion method (11) is divergent
for  small. In this paper, we will see that the Newton method fails because it has a very small domain
of convergence when 3 is small, Heuce the initial gness should be closed to the true solution in order
that the method converges. In order to acheive that, we employ the continuation method. In essence, we
start the method with a large 3, then we obtain the solution corresponding to this large 8. For large j,
the domain of convergence is large. Therefore the Newton method converges guadratically for reasonable
initial guess such as the observed image. We use the solution for large § as the initial guess for the
method with smaller 5. We will see that this method can give convergence for arbitrarily small 8. Using
Newton-Kantorovich theorem, we will establish sufficient conditions that guarantee the convergence.

The outline of the paper is as follows. In §2, we give our Newton continuation algorithm. In §3,
we analyze the dependence of the domain of convergence of the method on the parameters A and 3.
Numerical results are given in §4.

2 The Method

Let us motivate our method by considering the following 1-dimensional problem: finding the zeros for
T

RGET ]

when f is small, ¢f. (7). Figure 1 shows the graphs of v for different values of @ when A = 0.5 and
zp = 0.4, We see that for § small, the domain of convergence of the Newton method will be very small.
Thus if we start the Newton method for a small 8, the methed is divergent. However, we can easily find

+ Ma — @), (12)
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Tigure 1. Graphs of function (12} with 8 = 10,1,0.1 and 0.01.

the root for any small 3 by using the continuation method. More precisely, we start the Newton method
with 8 = 10 say. The method is convergent even when we are very far away from its solution. The
solution to this problem should be a good initial guess for the Newton method for 8 = 1. The solution
of the Newton method for 8 =1 in turn will be a good initial guess for the problem with # = 0.1 and so
011,

Our method for solving the modified Euler-Lagrange equation (7) is based on the same idea. Let *
and A* be given positive numnbers at which we want to solve (7). Our approach is to choose suitable
large A; and B, then fix one of them, say f; and decrease the other i.e. A, towards the given value A™.
Once we get the solution corresponding to 1 and X*, then we fix A* and decrease 3 from 3, towards 8*.
For each given A and f, we solve the solution by the Newton method {(11). The update J “Hau)l(u) is
obtained by the conjugate gradient method, This only requives the computation of J (u*)p which can be
evaluated by (10). To be more specific, we write down the algorithm below:

The Algorithm

(i) Set k=1 and choose suitable large A1 and f;. Use 1g, the observed image as the initial guess 11,1
(1) While Ay > A%, do

{(a) Use ug,1 as the initial guess.

(b) Use Newton method to find the solution of

Vu
VI — | — Ap{u—1ug) = O
( /!V'tt.|2 +—51) el — ug)




Denote the solution as wprq,1.
(c) Choose Apt1 < A
(d) Set k= k4 1.
(iii) Let the final solution of Step (i) be denoted by w.,. Set I =1.
{iv) While 8, > g*, do

(a) Use u., as the initial guess,

(b) Use Newton method to find the solution of

v _V—u_ — X (u -~ up) =0.
ViV + 8
Denote the solution as 1, 141.

(¢} Choose i1 < 81
(d) Set I=1+1.

{(v) The final solution of Step (iv), denoted by . . will be the solution to the Euler-Lagrange equation
(7) with the prescribed parameters A* and .

Clearly one can construct another similar method: fixed A first and varies 8. Our numerical results
indicate that it is not as good as fixing £ first.

3 Convergence Results

Before we begin, let us introduce some notations. Let R™™™ denote the set of all n-by-n matrices.
For all v, w € R™*"™, we define the discrete L? inner product of v and w as

k23
1
(v, w), = o) E Vi Wig.
ij=1

We will use ¥V, and V5 to denote the central difference operators in two different directions. More
precisely,
DG4y — V1)

1<i<n—1,
h

vl’l).gj =

and o ,
Hi+1) J :(;,-—1), 1<j<n~—1.
L
Here h = 1/n. We set Viv1; = Vyuny = 0for all 1 € § <nand Vyvn = Vo, =0 foralll <i < n.
We define the gradient of the matrix v at the (4, j}th entry to be

Vot =

Vo = (Vivg, Vavig), 1<4,7<n.



In our proof, we also require the discrete Sobolev H! norm of v, which is defined as

o1l = [lellf -+ 1V10][3 + [ V22l

In this matrix setting, the discretized Euler-Lagrange equation (7) becomes a matrix equation L{u) =
0, where the (4, 7)th entry of the matrix L(u) is given by

Vitis
[L(u)}ij =V (mﬁ) - )\(u - ’H.(])!'j = (), {13)

We note that L{u) can be viewed as a functional L, from R"™" into R. In fact, given any matrix
p € R™™, by the summation by part formula,

n
Vg - Vpis
Lu(p) = {L(n), ply > { e B _A(“““D)"Pi},
.,]2 i 1V'u,3|2+ 13 Hg

where
Vg - Vpy = Viwg Vapsy + Vou; Vaps;, 15 1,7 < n.

Now we discretize the Jacobian operator 7 (u) in (10). Given the matrices u,p € R™*", the discrete
Jacobian operator J(u) acting on p is a matrix defined by

RSV Y WY R I
”(“”’]"‘V(\/W) v((m)v> v e

Similar to above, we can view J(u) as a bilinear form on R™*"™ x R™*™ into R. More precisely, for all
p,qg € R"", J.(p, q) is defined as

Vpi; Vi Vi Vi ) (Vg -V
Julpeq) = (J(u)p, @), Z { Dij vV Qi +{ i Vpis) (Vs Vaij) _ I\PijQij}-

=1 \/lvuijP + IV’!LHP + ﬁs

We note that the operator norms of L, and J, are defined by:

p Eul2)]
lIpllx

I Zal] = su
;&

and

J b
Wl = sup 2B
r0az0 |IPil:[lalh

Clearly, L, and J, are bounded operators. In the following, for simplicity, we write
Cuyy = 4/ |Vui |2 + B,

The Newton method for the discrete Euler-Lagrange equation (13) is

Upp1 = Up — J(tr,;,,)*lL(frr.k), k=1,2,... (15)



where J{u)~? is the inverse of the operator J(u) as defined in {14). We note that we do not have a
formula for J(u,)"!. However, the action of J(x,} onto any matrix p € R"*" can easily be evaluated
by (14). In our numesical tests, J{(u) ' L{w) is computed by the conjugate gradient (CG) method. We
now claim that the operator J(u) is negative definite, hence the CG method is applicable.

LEMMA 1. The Jacobian operator J, is symmetric and negative definite with

1
Ju—l S -
<
where P
= i R 16
p lgnz%l;_-n { 0?1-1'_7'3 ! /\} ( )
Proof: For all p € R™™™, we have
= Vpii - Vpy | (Vpy - V) 2
ulPh = - — Alpi;
J (p p) n2 Z { Ouij + O’!Lijs |pJ|
ig=1
~\Vpi;]*(|Vus 2+ﬁ}-§- Vi -V .
— 2 Z { ! ul | J|<> ( ¥ J) )\lPijlz
ij=1 iy’
BIVps —(1Vpi;[* Ve B) + (Vi Vi )?
T ond Z { Sugg 3~ Ml + Ol :
=1 K
= Al +A2.

Obviously, 4y, A2 < 0. Hence

1 ,BVJ1 .
o) 2~ = Z { Vsl +A|pm|2} > ullplf.

Therelore 1
< -,
[l Tll} < u 1

We will use the following Newton-Kantorovich theorem to determine the domain of convergence for
our methed.

"THEOREM 1. (Newton-Kantorovich?) Given o mapping f : R™ — R™ and o convex set C € R™,
let Dy be the Jacobian of f and solisfy the conditions:
(a) {|Ds(x) = Dy)il £ vllz —yll for allz,y € C,
) D (wo)f (zolll < a,

(c) ID7 (o)l <,



for some zy € C. Consider the quantilies

6 = ayn,
and
1—+v1-24
p =

If 6 < 1/2 and the ball S,{xy) centered at o with radius p is o subset of C, then the sequence {zx}
defined by the Newton method:

e, n.-lf’l"
dr FAA

A S,
J /7 S

3
‘R Wit

Fel

Th-ri = Th 2[},1,2,...,

remains in S,(wo) and converges to the unique zero of f(2) in Sy(ze) N C.

In view of Lemma 1, we already have the bounds for the second and third conditions in Theorem 1.
We now establisk a bound for the first condition in Theorem 1.

LEMMA 2. Let u,v € R"™®, then
Ty = Julll < 2nv)bu — ol

where

! + m L + max ! (17
vy = nax ———— max e H s f
1<€1,5<n O’lf»ijO'Uij 1<ii<n Qru.{jz 1<€4,7<n O’U{jz

Proof: For all p,g € R™™™,

(Ju — ) q)
1 & 1 1 Vi Vpi; Vg Vi Vo Ve Vg Vi
- F Z {—vpijvqw(O’H.ij h O'Uij) + [ O‘U,,‘j"j N O’Ui:ja ]

ij=1

n

_ A oy Vi 4 )y V(e - v)i
= : Z {(VPU vq”){Ou,;jOvij(Ou.,-j T Ovig)

n2 52
+{(V“ij'vqij){vuij‘Vpij} B (Vvij-tij)(\?vaj'VPij)]
<>11.ij3 O’U{js

n

5 D (Bt By)

hLiwh

]

We first note that |V{u + v)ij| < [Ouy + Cvyy| forall 1 <4,7 < n and

— ) <  — )
iélll_‘i})S{“V(’u 1)y < njju —v|h

Therefore it is straightforward to show that

1 ¢ 1
= Bl < max {————0o - .
oy > 1Byl < 1§1§‘,§,"§.n{<>1,.i,-<>vij}“||” [Pl [glh

i,J=1




For B3, we note that

_ (VuyVpy) o (V- Vag)
By = Sui (Vg V(u—v)iy) + o

1 1

(Vpi;-V{u —v)i5)

+(Vas; Vi) (Vi Vs ) (o = W)’
where the last term is equal to
¢ (XT e 3 ad . T oaad. Ny var. . b ar. 2 L oy 2Y Y
(T Vais) § (Fager T Y NE T Vg r VAR 7 BJij NV T M TV )L
(Vi Vas;) {( i3 Vpis)( (OO0 (Cuij + Ovig)

Thus we have
|(Ju = B Yp )] < 20vife = ollullplhliall:.

Combining Lemmas 1, 2 and Theorem 1, we obtain our main theorem.

THEOREM 2. Let L{u) be defined as in (13). For fived X and B, let uy be the initial guess and {ux}
be the corresponding Newton sequence for soluing L{u) = 0. Let ljuy — u1l)1 = & end p, v be given by

(16) and (17) respectively. If
any 1
6= — <=,
7 2
then uy € S,(u1) for all k and converges to the unique solution of L(u) = 0 in S,(uy), where the radius

of the ball S,(uy) is given by
1—1-26

p= b

4 Numerical Examples

In this section we present results of our denoising algorithms on two test images. The noisy image ug
is obtained by adding random noise of level o to the true image u. More precisely, we add random error
to each pixel of the true image such that ||u — wuo|le/||%|jo = ¢. In the examples, we choose o = 0.3.

Our first test example is a 32-by-32 pixel image. The original image and the noisy image are shown
in Figure 2. In Table 1, the first two columas indicate the path we took in getting to the final prescribed
X and 8. The initial guess for the first set of A and 7 is chosen to be the observed image up. The initial
guess u; at the other sets of A and § is given by the optimal solution of its previous set of Aand #. In
the table, we also give the numbers of Newton iterations (N) and the average numbers of the inner CG
iterations (C) for different set of parameters A and 3. We note that the cost per one inner CG loop is
of O(n?) operations, where n == 32 here. The tolerance for the Newton and CG methods are 1077 and
10710 pespectively. In Table 1, we also give the residual }|L(wg)|jo, where uy is the optimal solution for
the given set of A and 8. The last column gives the difference between the initial guess uy at the current
set of A and 3 and the second iterant 4y obtained after one Newton iteration (cf. Theorem 2).
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Figure 2. Original image (left) and noisy image with noise level o = 0.3 (right).

A B | N C | residual ||us — uallo
1000 20 | 4 9 2.0e-9 0.0468
400 201 5 13 | 1.0e-12 0.0412
150 201 5 23 | 2.1e-10 0.0446

75 201 4 29 | 4.0e-10 0.0367

75 1014 32 | LGe-12 0.0078

75 2 5 B4 | 2le-1l 0.0189

75 05| 8 77 1.6e-9 0.0132

5 01| 6 1i9) 2.0e9 0.0121

Table . Nuwmber of iterations for Example 1,

In Figure 3, we show the denoised image with § = 0.1 and A =75. To emphasize that our method
always converges for arbitarily small positive 8 and A, we also show in Figure 3 the denoised image for
8= 10" and ) = 75. We observe that the denoised image is often quite good visually even for reasonably
large B and A. However, it will still be good to have a quadratically convergent method which allows us
to get fast convergence for arbitrarily small 8 and A

In Figure 4, we show the original image and the noisy image of our second example, which is a
64-by-64-pixel image. The convergence results are listed in Table 2. The denoised image is in Figure 5.

We finally remark that the linear solves in the inner loops are done with CG with no preconditioning,
However, our continuation method can be used with any linear solvers or with any preconditioners. The
use of specific preconditioners to speed up the inner loop CG method will be discussed in our {uture work.
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Figure 3. Restored image with A = 75 and g = 0.1 (left} and 8 = 1078 (right).
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Figure 4. Original image (left) and noisy image with noise level o = 0.3 (xight).
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Figure 5. Restored image with A =100 and 8 =0.1.

A B 1N € |residual |lu; —uallo
1200 20 { 7 16 | 1.0e-12 0.0929
600 20| 6 2 2.3e-10 0.0554
400 20| 6 22 | 1.0e-12 0.0261
250 20| 5 37 6.2e-8 0.0231
150 201 5 43 | 3.0e-12 0.0259
100 207 4 59 1.3e-0 0.0269
100 10| 4 66 | 1.Ge-10 0.0081
100 2 6 110 6.le10 0.0184
100 05} 6 157 | B.7e9 0.0121
160 0.1} 12 289 | 1.3e-11 0.0113

Table 2. Number of iterations for Example 2,
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