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Abstract

Godunov type schemes, based on exact or approximate solutions to
the Riemann problem, have proven to be an excellent tool to compute ap-
proximate solutions to hyperbolic systems of conservation laws. However,
there are many instances in which a particular scheme produces inap-
propriate results. In this paper we consider several situations in which
Roe’s scheme gives incorrect results (or blows up all together} and pro-
pose an alternative flux formula which produces more accurate numerical
approximations.
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turing schemes, Shock Reflections.

AMS-MOS Classification: Primary 65M05, Secondary 65M10

1 Introduction

Shock capturing techniques for the computation of discontinuous solutions to
hyperbolic conservation laws are based on an old (by now) theorem of Lax and
‘WendrofT establishing that the limit solutions of a consistent scheme in conser-
vation form are in fact weak solutions to the PDE and, thus, their discontinuities
will propagate at the right speeds.

Over the years, it has become clear that one of the most successful strategies
for designing a shock capturing scheme is to follow Godunov’s lead and use the
solution to the Riemann problem (the only initial-value problem easy enough
to be solved explicitly) as an essential building block of the scheme.
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Godunov assumed that a flow solution could be represented by a series of
piecewise constant states with discontinuities at the cell interfaces. A piece-
wise constant function is a reasonable numerical representation of the sclution
in regions of smooth flow and it is spocially well suited near discontinuities.
The discretized flow solution is evolved by considering the nonlinear interaction
between its component states. Viewed in isolation, each pair of neighboring
states constitutes a Riemann problem, which can be solved exactly. If there
is no interaction between neighboring Riemann problems, the global solution
is easily found by piecing together these Riemann solutions. The approximate
solution at the next time level is then obtained averaging over each cell this
global solution.

The method can be written in conservation form since it uses solutions to
Riemann problems which are themselves exact solutions of the conservation laws
and, because it mimics much of the relevant physics, Godunov’s scheme results
in an accurate and well-behaved treatment of shock waves.

For Gas Dynamics simulations, Godunov’s method computes the exact solu-
tion to a Riemann problem at each cell interface. However, most of the siructure
of the exact solution is lost in the averaging process used to update each cell
value. This observation suggests that it may not be worthwhile calculating the
Riemann solution exactly. In fact, one may be able to obtain equally good nu-
merical results with an approximate Riemann solution obtained by some less
expensive means.

Roe’s scheme is based on a local linearization that makes the solution of
the Riemann problem a trivial task. The solution to Roe’s linearized Riemann
problem coincides with the solution to the exact problem whenever this involves
merely a single shock or contact discontinuity. On the other hand since rarefac-
tion waves do not appear in linear systems, the scheme can (and does) produce
non-physical expansion shocks in the computed flows.

Other approximate Riemann solvers, based on Roe’s simplification, have
emerged over the years. Their basic design principle is (as in Roe’s scheme)
that it might be sufficient to find only an approximate solution to a Riemann
problem, provided that this approximate solution still describes important non-
linear behavior ([9, 3]).

Godunov type schemes are indeed very robust in most situations. However,
they can, on occasions, fail quite spectacularly, For example when computing
shock reflection problems in one dimension, most shock capturing schemes pro-
duce an unphysical ‘overheating’ near the reflecting wall [13]. In two dimensions,
Roe’s method can sometimes admit solutions with an inexplicably kinked Mach
stem.

Reports on approximate Riemann solver failures and their respective correc-
tions are abundant in the literature (see e.g. [15] and references therein). It
should be noted that the failures of a specific Riemann solver may usually be re-
paired by the judicious use of a small amount of artificial dissipation. However,
this technique often implies the tuning and re-tuning of various parameters,



which degrades the automatic character of Godunov type schemes. Moreover,
the type and amount of viscosity to be added in each particular deficiency is,
usually, not the same, further aggravating the user.

A different strategy, described by Quirk [15], is to combine two or more
solvers. With this approach, it is possible to control certain instabilities by
changing the flavour of the dissipation mechanism rather than increasing the
absolute level of dissipation.

Quirk’s approach is very attractive, although still has a user-problem depen-
dent parameter left; when and where to use one Riemann solver in preference
to another.

Our approach is similar to that of Quirk’s. We do combine Roe’s solver
with a Lax Friedrichs type of scheme to produce an entropy satisfying, shock
capturing scheme, but the two solvers are intertwined in a more intrinsic way
so that there are no adjustable parameters in the scheme.

In the present paper we address various instances in which there is a recog-
pized failure of Roe’s solver and propose an improved flux formula that seems
to alleviate or cure the problem.

The paper is organized as follows: In section 2 we describe Marquina’s flux
formula for systems of hyperbolic conservation laws. In the scalar case, it cor-
responds to a flux formula used by Shu and Osher [20]. In Section 3 we apply
it to Burger’s equation and compare the numerical results with those obtained
with the flux-splitting schemne of Steger and Warming. Section 4 is devoted to
the analysis of the overheating phenomenon that appears in shock reflection ex-
periments, and to several somewhat related questions, In Section 5, Marquina’s
scheme is used to approximate a slowly moving shock wave. We measure the
Jevel of noise generated by the scheme in the downstream region of the shock
wave and compare it to that of Roe’s scheme. Section 6 shows the performance
of the proposed flux formula in 2D flows, analyzing the classical Mach 3 step
flow. Some conclusions are drawn in Section 7.

2 Roe’s Flux formula, Flux-splitting schemes
and an improved flux formula

Disregarding entropy considerations, Roe’s solver applied to a system of conser-
vation laws in one dimension

ug + (f(u))s =0 (1)

yields a conservative method whose numerical flux function is computed as
follows:

FR(uy,u,) = (f(u; +f(u,) — Zp\ ja,,r”) (2)



where
ap =17 - (u; —u,)

and Ap, x? and I” are the eigenvalues, right and left eigenvectors respectively of
A = A(®) = A(aj,u,), the Jacobian matrix (0f(u)/0u) at @, the ‘Roe mean’
of the left and right states (see e.g. [10]).

Van Leer [23] considers the upwind-differencing first order schemes of Go-
dunov and Roe for the inviscid Burgers equation and observes that the difference
between these two schemes lies only in the treatment of a transonic expansion.
‘Where the exact Riemann solution, used in Godunov’s method, would include
an expansion fan, Roe’s method puts in a so called expansion shock.

The inability of Roe’s solver to account for rarefaction waves leads to en-
tropy violating discontinuities. To prevent these expansion shocks; one has to
modify the flux function in Roe’s scheme. Harten and Hyman {7} introduce an
intermediate state that simulates the diffusion introduced to a Godunov-type
scheme by a continuous transition between the left and right states. Roe [18]
describes another modification that breaks down expansion shocks and it also
eliminates the ’glitches’ (dogleg phenomenon) that appear in most first order
schemes.

In the scalar case, Marquina’s flux formula is a combination of Roe’s flux
and a Local-Lax-Friedrichs (LLF from now on) flux utilized by Shu and Osher
in [20] and labeled F&F :

Flw) if f'>0 in [u,ur]
FRF (g, u.) = Fluy) if /<0 in [u,u] (3)
$(f(u) + fur) — a(uy — w)) else
. LA @

In this section, [u, u,] should be understood as the range of u-values that
lie between u; and u,. ‘

For a convex conservation law, Roe’s scheme is equivalent to Godunov’s
except at transonic rarefactions. Thus, we use Roe’s scheme except when we
suspect the occurrence of a transonic rarefaction, in which case we switch to the
more viscous, entropy satisfying Lax-Friedrichs scheme,

It can be verified ( see [20]) that the LLF flux

FEEF (g ug) = 3 (Fa) + fe) = (e — )

is monotone, hence FEF ig an ‘entropy fix’ for Roe’s flux.

In the convex case, we only need to switch to LLF when f'{u;} < 0 < f'(u,}
but the experiments reported in {20] and our own experimentation confirms that
conservative schemes whose numerical flux function is F¥ always approximates
the physically relevant solution even for non convex f. Moreover, local patholo-
gies, like the dogleg effect, either do not show up in numerical approximations,



or are reduced to O(Az) glitches in the first order version of the scheme. Higher
order versions cormpletely eliminate the pathology.

The extension to systems of conservation laws differs from that of {20] and
follows two basic directions, On one hand, Roe’s linearization (or any lineariza-
tion, as pointed out in [4]) may not always be appropriate, specially when dealing
with systems of conservation laws other than the Euler equations for which the
"Roe mean’ might not be easily computed (or even known). Along this line, and
still in the upstream-differencing spirit, we shall make use of two sets of eigen-
values and eigenvectors, one coming from the left state and the other coming
from the right state, to compute the flux at a given interface.

On the other hand, the combination of Roe’s solver with the LLF scheme
is done locally. The choice of scheme is done in each "local’ characteristic field,
thus the scheme for systems of conservation laws mimics the properties of the
schemne for the scalar conservation law.

The algorithmic description of Marquina’s improved flux formula is as fol-
lows:

Given the left and right states, we compute the ’sided’ local characteristic
variables and fluxes:

Plw) -w ¢} 1P () - £(wi)
1P(a,) - u, ¢h IP(u,) - £(ur)

for p=1,2...,m. Here I?(w;), 1°(u,}, are the left eigenvectors of the Jacobian
matrices A{u;),A(u,).
Let Ai(w), ..., Am{w) and A (u,), ..., Am{u,) be their corresponding eigen-
values. We proceed as follows:
Fork=1...,m
If Ax(u) does not change sign in [uy, u,],then

wi
wh

If )\k(‘li) > 0 then

85 = ¢f
¢t =0
else
¢5 =0
¢* =gt
- r
endif
else
b A
op ue%?ﬁfu,)i r(w)]
¢k = 5(¢f + apwf)
¢% = .5(¢r 4 anwy)
endif



T'(w,u,) is a curve in phase space connecting w; and u,. For the Euler
equations of gas dynamics, the fields are either genuinely nonlinear or linearly
degenerate, hence we can test the possible sign changes of Az(u) by checking
the sign of Ax(u;) - Ax(u,). Also, ay can be determined as

o, = max{| Az ()], [Ae(u)i}-

Marquina’s flux formula is then:

m

FM(u,u,) = Y (50 (w) + 6227 (uy)) (5)

p=1

where rP(w;), r*(u,), are the right eigenvectors of the Jacobian matrices A(w),A(ur).
The first order scheme is thus,

Az
“?-H =uj + E(FM(U«?1 ufy,) - F¥(uf_;,uf))

Marquina’s numerical flux is consistent, i.e.
FM (u,u) = f(u),

and it is easy to see that, when applied to a constant coefficient scalar system,
Marquina’s scheme is equivalent to Roe’s and would yield the exact solution to
the Riemann problem.
Notice also that when all signal speeds associated to the numerical flux
FM(u,v) are > 0 then
FM(u,v) = f(u)

and when all signal speeds are < 0,
FM(u,v) =£(v).
Marquina’s numerical flux (5) resembles a flux-splitting formula, with
FM(u,v) = F¥(u) + - (v)

where
Fr(u) = ¢hr(n), F(u) =) _¢2+"(u) (6)

but the characteristic numerical fluxes ¢+ = ¢z (u, v), i.e. they depend (in a
nonlinear way) on the left and right states. Formulas (6) are, in fact, a bit
misleading. Technically, {5) is not a flux splitting formula as described in [9].

Higher accuracy is obtained by a nonlinear interpolation procedure of ei-
ther the fluxes {20] or the dependent variables {10, 1] and a Runge-Kutta time
stepping procedure [20].

There are a variety of reconstruction procedures available to increase the for-
mal order of spatial accuracy of the method. In our experiments, we have chosen



the ENO (Essentially Non Oscillatory) polynomials of Harten et al. {10, Van
Leer’s piecewise linear reconstruction [22], and Marquina’s piecewise hyperbolic
method (PHM) [11].

~ ENO techniques (including the PHM) use a local adaptive stencil to obtain
information automatically from regions of smoothness when the solution devel-
ops discontinuities. As a result, approximations using these methods can obtain
uniformly high-order accuracy right up to the discontinuities, while keeping a
sharp, essentially non-oscillatory shock transition (see [11, 10] and references
therein).

If R(:,u") is a reconstruction procedure that computes an O(h?) approxi-
mation to u(e,t,) from the cell values {u"}, then the p** order version of the
scheme based on such reconstruction procedure is obtained following a semi-
discrete formulation, i.e.

d 1 - =
1O Ry wel UFSVE R AR VE )

where .
fi1172 = F (R(zj 4172 = 0,u(®)), R{zj41/2 + 03 u(t)))
and F(u1,uy) is the exact or approximate Riemann solver flux to be used.

Considering (7) to be a system of ordinary differential equations in ¢ for the
vector u(t) = {u;(t)}, we solve the problem using a numerical ODE solver. In
particular, in our experiments we use Shu and Osher [20] TVD Runge-Kutta
solvers of second and third order.

We recall (see [10, 11]) that these scalar reconstructions are non-oscillatory
only if the discontinuities are separated by at least » + 1 points of smooth-
ness, where r is the order of accuracy of the reconstruction. Consequently,
a component-by-component reconstruction procedure may cease to be non-
oscillatory around the discrete set of points where discontinuities of the solution
interact, and can produce ’noise’ around this set of points. One can largely
avoid the noise derived from this fact by applying the reconstruction procedure
to the “local characteristic variables” (see [10]).

In [20], Sha and Osher use the moving-stencil idea directly on numerical
fluxes to get ENO schemes without using cell-averages, For systems the recon-
struction procedure is applied in each 'local characteristic field’, and the starting
point in the choice of stencil process has to be done in an ’upwind’ way, We
refer to [20] for further details.

We have implemented the higher order versions of the method following both
approaches obtaining very similar results.

3 The scalar conservation law

For illustrative purposes, we include an experiment with Burgers’ equation to
compare Marquina’s solver, Roe’s solver and the flux-splitting scheme of Steger
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Figure 1: First Order Schemes

and Warming [21].
Steger and Warming’s flux function for the scalar conservation law

ug + (f(u))s = 0
is as follows:
1
P (w,uy) = 5 (F(w) + £ur) = (1 (o)l - wp — |f ()] )
Its lack of smoothness at sonic points has been reported by various authors

[9, 24].
Let us consider the following IVP:

wH(§)s = 0

u(z,0) = 1 if —-5<a<.b
-1 if 2> .5

Its solution consists of a centered rarefaction wave that contains a sonie
point at @ = ~0.5 and a shock wave moving to the right. Figure 1 shows the
approximate solutions obtained with first order schemes based on FEF ( which
is the scalar version of Marquina’s flux formula) and F5%. Roe’s scheme (not
shown) substitutes the rarefaction wave by an unphysical expansion shock.

Notice that the shock transition in the numerical approximation obtained
with FRF is as good as Roe’s ( which is consistent with its design principle )
The rarefaction wave is well represented, although we observe an O(Az) glitch
at the sonic point This is to be expected, since only the sonic flux ( the flux
at the interface across which the characteristic speed changes sign ) is modified
(see Roe [18]). : '
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On the other hand, the lack of smoothness of F5W af the sonic point results
in a much larger glitch. Also, the smearing of the shock is considerably larger.

Figure 2 shows a third order version of both schemes. The sonic region is
now very smooth and accurate when using FEF | while Steger and Warming’s
formulation produces rarefaction wave which is much too steep.

In all figures, the solid line is the true solution.

4 Shock Reflections, overheating and related
matters

We study now the problem of a strong shock reflecting from a rigid wall. Con-
ventional schemes applied to this problem give numerical approximations with
a consistent O(1) error in the density and internal energy next to the wall.

W.F. Noh [13] investigated the “excess heating error” in the context of the
artificial viscosity approach. Noh defines this error as the excess wall (or piston)
heating, due to the artificial viscosity terms which occurs on shock formation
(e.g. at arigid wall where a gas is brought to rest and a shock propagated away,
or at the sudden start up of a piston). '

This type of error occurs in the first few zones near the wall and shows up as
a peak in the specific internal energy (overheating) or, equivalently, a dip in the
density. His analysis and experimentation leads him to conclude that the error is
inevitable because it is built into the exact solution to the differential equations
defining the artificial viscosity method. In fact he goes one step further and
argues that such an error will necessarily oceur for any shock-smearing method
(in the absence of heat conduction) whether the viscosity occurs explicitly in
the method or not.

In real fluids, heat conduction is present and this excess wall heating would



not occur (since any hot spot would be quickly dissipated). Thus, Noh con-
cludes that any method which introduces a heat conducting mechanism will, in
principle, be able to reduce or even eliminate the overheating. Noh gives one
such method in the artificial viscosity context.

Similar conclusions are attained by Menikoff in [12], where a detailed analysis
of the wall heating error (again for artificial viscosity methods in Lagrangian
and Eulerian formulations) is performed. Menikoff’s arguments also lead him to
conjecture that all shock capturing schemes without significant heat conduction
will have the same type of qualitative entropy error.

Problems of this type have also been investigated by Glaister for more gen-
eral equations of state [6]. The same phenomenon can be observed in his exper-
iments.

Let us consider the one dimensional Euler equations of gas dynamics for a
polytropic gas, i.e. (1) with

u=(p M EY, f(w)=qu+(0,PqP) (9)

where p,q,M,E and P are the density, velocity, moment, energy and pressure
respectively, with the following initial conditions at ¢ = 0.

(p(z), 9(=), P()) = (po, 90, Po), 0<z <1 (10)

This represents a gas of constant density and pressure moving towards ¢ = 1
(provided go > 0). The boundary at = 1 is a rigid wall and the exact solution
describes the shock reflection from the wall. The gas is brought torest at z = 1
and, denoting the pre-shock values by (—) and the post-shock values by (+) we
can postulate an exact solution of the form

p=p* g=¢t=0 P=pP* for zft > 5

p=p =p q=¢ =@ P=P"=h forzft < 8

where S is the speed at which the shock moves out of the wall, given by the
Rankine-Hugoniot jump relations, i.e.

o ol _[Ppu?) _ [ule+P)]

o] [pu] [e]

In our numerical experiments we take

Po=10"%  po=1; qo=1

and the ideal gas equation of state with v = 5/3. Our results with Roe and
Marquina’s schemes are shown in figures 3 and 4. Here, At/Az = 0.2

Figure 4 shows a close-up look at the wall. We observe, on the same scale,
the difference in magnitude between the overheating obtained with Roe’s scheme

10
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and its higher order versions and Marquina’s scheme and its corresponding
higher order extensions. We should remark that the error at the bottom of
the spike in the numerical approximation obtained with Marquina’s solver (first
order) is less than 1% . This should be compared with the 10% error at the
bottom of the spike obtained with Roe’s scheme (or even with the 100% error
obtained with the standard artificial viscosity method {13}).

It is worth noticing that the numerical approximation obtained with Mar-
quina’s flux formula and the PHM provides the best resolution.

In the first few steps, Roe’s scheme estimates erroneously the shock speed,
which is essentially wrong by O(1), this in turn gives O(1) errors for the density.
Roe’s scheme never recovers frorn these first steps errors because the error ap-
pears in the contact wave but, since the flow velocity is everywhere zero behind
the shock wave, no dissipation is added via the contact wave to damp out the

11
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local error at the wall.
Marquina’s scheme introduces an effective coupling between the equations

(via the &) that acts as a dissipative mechanism, reducing the length of the
spike to computationally acceptable levels.

Based on Noh’s observations, we could interpret the behavior of the numer-
ical solution obtained with Marquina’s flux formula by saying that there may
be an artificial heat conduction mechanism built into Marquina’s solver which
is responsible for the curbing of the spike.

It is well known (eg. [9]) that flux-splitting schemes cannot exactly resolve
stationary discontinuities. Contact discontinuities keep on spreading with the
use of any split flux scheme.

As we mentioned before, Marquina’s scheme is not a flux-splitting scheme,
but it seems clear that it does have a built-in heat conduction mechanism. To
test the influence Marquina’s flux formula has on stationary discontinuities we
consider the Riemann problem with left and right states given by

(r=La=0p=1) (or =2,0r=0,pr = 1) (11)

whose solution is just a stationary (contact) discontinuity. Of course, Roe’s
scheme resolves perfectly this discontinuity (by design). Marquina’s flux formula
gives non-zero values when the velocity vanishes and the left and right pressures
are equal. The artificial heat conduction mechanism tends to smooth out the
density.

The result of Marquina’s first order accurate scheme is shown in figure 5. As
we can see, the density is smoothed with the number of time steps. However,
the smoothing is less severe when we increase the order of the scheme.

This is an undesirable property when solving the Navier-Stokes equations
in a boundary layer, thus one should be careful in using the scheme in that
situation. However, higher order versions of the scheme might still be suitable.

12
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Roe’s solver not only presents a local spike in the shock reflection case, this
behavior can also be observed when an initial discontinuity breaks into two
rarefaction waves moving in opposite directions, although in this case the use
of any linearization (such as Roe’s) might lead to the blow up of the scheme.

Einfeldt et al, show in [4] that certain choices of initial data will inevitably
give rise to instabilities with any attempt to substitute linearized solutions be-
cause for these data, any linearization will yield a negative density or pressure.
They express this fact by saying that certain Riemann problems are not lin-

earizable.

Following [4] we consider the following class of initial data:

(o(z), 4(=), P(a)) = {

13

(po, g0, Po),
(po, —q0, Po), ifz > 0.5,

if ¢ < 0.5; (12)



If go > 0, two shock waves are formed from the original jump in velocity. They
propagate from the center of the interval with constant velocities in opposite
directions and the gas remains at rest in between. This is a linearizable prob-
lem computationally equivalent to the shock reflection test problem already
analyzed.

Numerically, we observe the same type of behavior for both schemes (Roe
and Marquina’s) as in the previous test, (see figures 6,7). In our numerical
experiments we have chosen (po, go, Po) = (1,4,1) and At/Az = .1,

As before, the error at the bottom of the spike in Marquina’s solver is less
than 1%, while the third order (PHM) scheme has only a .3% error there. In this
case, the hyperbolic reconstruction gives the best results, probably due to its
more local character. ENO reconstructions (not shown) give slight oscillations
of the order of the local truncation error,

If ¢ < 0, the problem might not be linearizable, even though it has a solution
with positive density and internal energy. The reason for the failure of the
linearization is the occurrence of two rarefaction waves in the exact solution
to the Riemann problem. Einfeldt et al. consider the particular case where
po = 1,q0 = ~2, ey = 3. This Riemann problem is not linearizable and Roe’s
scheme blows up after a few steps, (but Roe’s scheme with Harten’s entropy fix
does not, see [4]). Marquina’s scheme behaves like the HLLE scheme described
by Einfeldt {3, 4] (see figure 8).

Figure 9 displays the numerical approximation obtained with an ENO lin-
ear reconstruction. This particular reconstruction is also TVD (see [10] and
references therein), a property which is not shared by higher order ENO recon-
structions or Marquina’s PHM. For this experiment, our third order methods
have failed, probably due to the almost vacuum conditions of the solution near
z=.b.

On the other hand, taking py = 1, gp = —1, eg = 5 as initial data leads to a
linearizable problem for which the density exhibits non-smooth behavior similar
to the shock reflection problem. As observed, the problem is alleviated by using
Marquina’s solver, Although the behaviour of the numerical approximations
obtained with the higher order extensions of Marquina’s scheme is not as good
as in the shock collision case, the density profiles are still smoother than those
obtained with Roe’s scheme (see figures 10 11, and 12}.

5 Slowly moving Shocks

Another ’deficiency’ of Roe’s scheme, and in fact of most Godunov-type schemes,
is the generation of numerical errors which occurs behind a nearly stationary
shock.

The phenomenon is inherent to nonlinear systems of equations (solutions
of scalar conservation laws are perfectly well behaved) and typically shows up
as a long wavelength noise in the downstream running wave family that is not

14
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Figure 9: Density profiles: Second order scheme ENO-2

effectively damped by the dissipation of the scheme.

Woodward and Colella [1, 26] were among the first to point out this deficiency
for the first order method of Godunov and MUSCL, one of its second order
extensions.

In [1] the authors give a heuristic explanation for the noise generation phe-
pomenon and propose a ‘cure’: the addition of a small amount of artificial
dissipation to the underlying scherne.

Roberts [17] performs a deeper analysis of the phenomenon and shows that
the cause of the noise generation is linked to the nature of the discrete shock
structure produced by each particular scheme. Roberts shows that Osher’s
scheme [14] does not produce low frequency noise for slowly moving shocks. on
the other hand, any scheme that attempts to ‘recognize’ a shock wave, such
as Roe and Godunov’s schemes which allow for a perfect representation of a
stationary discontinuity, will generate this low frequency perturbation.
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Roberts further observes that the noise cannot be eliminated by appealing
to TVD concepts, In fact, higher order versions of Godunov or Roe’s scheme
accentuate the problem: the noise is preserved for an even longer distance than
in the first order solution.

He concludes by suggesting that numerical flux formulas that recognize the
analytical shock jump conditions (such as Godunov or Roe’s) might be less
appropriate for shock capturing than other formulas that do not explicitly rec-
ognize those jumps.

Quirk [15] reports similar low frequency, post-shock oscillations in slowly
moving shock waves computed with Einfeld’s HLLE scheme [3].

We shall consider the Riemann problem for the Euler equations for an ideal
gas with left and right states given by (Quirk [15}):

(pi=lq=-34,;=1) (pr = 3.86,¢, = —0.81,p, = 10.33)  (13)

Qur numerical solutions are shown after 4000 iterations, after which the
shock has crossed about 42 cells.

We can observe in figures 13 and 14 that the noise generation and transport
phenomenon is less acute in Marquina’s scheme. It is sensible to think that the
heat conduction mechanism is responsible for the additional dissipation that
damps out the downstream noise to computationally acceptable levels.

As observed by Roberts [17], the noise is amplified and preserved further
downstream in higher order extensions of Roe’s scheme. On the other hand, the
PHM in Marquina’s scheme leads to a higher order method with, essentially,
the same properties, with respect to the noise phenomenon, as the first order
approximation (see figure 15).
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6 A Two Dimensional Test

In this section we consider a two dimensional test problem introduced by Emery
[5] almost thirty years ago but that has proven to be a useful test for a large
number of methods over the years.

The problem begins with a uniform Mach 3 flow in a tunnel containing a
step. The tunnel is 3 units long and 1 unit wide. The step is 0.2 units high and
is located 0.6 units from the left-hand end of the tunnel. An inflow boundary
condition is applied at the left end of the computational domain and outflow
boundary conditions are applied at the right end. Along the walls of the tunnel
we apply reflecting boundary conditions.

Initially, the wind tunnel is filled with a gamma-law gas, with v =1.4, which
everywhere has density 1.4, pressure 1.0 and velocity 3. Gas with this density,
pressure and velocity is continually fed in from the left-hand boundary.

This test problem receives detailed attention in [26], where the authors ana-
1yze the behavior of various shock capturing schemes applied to it. We refer the
interested reader to this paper (and references therein) for further details and
comparisons.

The density distribution is the hardest to compute due, on one hand, to the
Mach stem at the upper wall and the contact discontinuity it generates and, on
the other hand, to the corner of the step, which is a singularity of the boundary
of the domain and the center of a rarefaction fan, i.e. a singular point of the
flow.

Woodward and Colella [26) realize that numerical errors generated in the
neighborhood of this singular point can seriously affect the global flow. As
pointed out in [26], when an approximate Riemann solver is used, the entropy
tends to grow near the corner and along the sonic line starting at the corner.
If nothing is done, a numerical boundary layer in density, of about one to two
zones, builds up and the magnitude of the two components of the velocity de-
creases along the top of the step, hence changing the guality of the flow.

In an attempt to minimize numerical errors generated at the corner of the
step, Woodward and Colella propose an additional boundary condition to be
applied near the corner of the step, in order to maintain a steady flow around this
singalar point. Our experimentation confirms Woodward and Colella’s remarks.
1t is necessary to correct the entropy near the corner, but we have found that to
maintain a steady flow it is also necessary to update the enthalpy. A detailed
treatment of the corner correction is given in the appendix.

Our numerical tests are run on an equally spaced grid with h; = hy, =1/40.
and we show numerical approximations to the density profile at time ¢ =4, when
the flow has a rich and interesting structure. The extension to two dimensions
is done by the usual operator splitting technique.

In Figure 16 we display the density profiles obtained with Marquina’s scheme.
Figure 17 shows the results of similar runs obtained with Roe’s scheme.

The Mach stem in Roe’s approximation appears severely distorted by a “dou-
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ble kink”. This phenomenon is not dissimilar to the “carbuncle”, a recognized
deficiency of Roe’s scheme observed in steady-state blunt body calculations [16].

By time t =4, nearly all shocks in this problem are moving very slowly. In
particular, the bow shock is nearly aligned with the grid near the bottom wall,
leading to a scenario like the one described in section 5. The post-shock oscil-
lations are more visible when using Van Leer’s piecewise linear reconstruction
[22).

To eliminate the ‘carbuncle’ produced in Roe’s scheme one has to artificially
add dissipation to the scheme. Peery and Imlay [16] do so by an appropriate
smoothing of the eigenvalues o the Roe matrix. Quirk [15] reports that applying
Harten’s entropy fix to the contact and shear waves also fixes the problem.
Both alternatives become a convenient way to introduce a small (but sufficient)
amount of artificial dissipation into the scheme.

As in our one-dimensional tests, Marquina’s scheme seems to introduce the
right amount of dissipation to eliminate the undesired pathologies, while keep-
ing, at the same time, sharp shock structures.

7 Conclusions

We extend to systems a numerical flux formula proposed by Shu and Osher [20]
for scalar equations. The extension is made in each local characteristic field and
does not need of a mean state { such as Roe’s average or the arithmetic mean)
which turns out to be useful in certain situations, where even an approximate
solution to the Riemann problem is difficult to compute.

Marquina’s flux formula seems to introduce a dissipative mechanism into
the numerical scheme which, in turn, produces numerical approximations with
a smoother behavior than those obtained with Roe’s scheme, while keeping, es-
sentially, the sharp shock resolution of this method. In particular, the overheat-
ing phenomenon observed near the piston wall in shock reflection experiments
is greatly reduced, as well as the long wavelength noise behind slowly moving
shock waves,

Preliminary experimentation in two dimensions seems to confirm that the
dissipation of the scheme is sufficient to eliminate undesired pathologies like the
carbuncle phenomenon.
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Appendix: Discussion of the Corner Treatment

In order to go further into the discussion of the influence of the corner
treatment in Emery’s test, we shall explain in detail the process introduced in
[26] and outlined in [19] (where we have observed various typographycal errors).

We shall perform two successive corrections on certain cells, which we call
"}, above the step, using the values of the variables at the cell located just to
the left and below the corner, we call this cell *a” (as in [19]). The "b” cells
are the first four cells of the first row above the step starting just to the right
of the corner, and the first two cells of the second row above, also starting from
the right.

The corrections should be as follows:

o Eniropy Correction In each *b” cell, we reset the density in order for
the adiabatic constant in cell ?b”, to be the same as in cell "a”.
P\ %
b= (——) 14
P = pal (14)
e Enthalpy Correction Using the reset density value, we correct the

enthalpy in ”b” cells, by changing the magnitudes of the velocities (not
their directions!) as follows:

There is always a non negative constant e such that
H, = H} (15)
where H, is the enthalpy in cell ”a”, and

2
o cb
W=

with ¢ being the sum of the squares of the original components of the
velocity in cell ”b”, and ¢, the sound velocity computed from the new
value of the density also in cell ”b”. The equation (15) is just Bernouilli’s
law for steady flow, (see [2]), and it always has a nonnegative solution for
a, because the value of the density in "b” cells is never larger than the
value in cell ”a”.

1
+ '2“39:? (16)

Indeed, if A = -f% is the adiabatic constant in cell ”a”, then, because of the
P

entropy correction performed before, we have that A = ;l,ﬂ,a.nd, therefore,
b
o is nonnegative and defined by
- -1
A )

1.2
qu

o=

(17)
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We then reset the vector u in each "b” cell to
1 1
(Pb, Vo (g)e, Va(as)y, _y'___"l'Pb + EPWQE) (18)

If these two successive corrections are not applied the adiabatic constant,
(and a fortiori the entropy), is violated along the streamlines just above the
step. : s

In Figure 18 we display two contour plots of the adiabatic constant at ¢ =
4.. 'They correspond to numerical approximations obtained with Marquina’s
scheme and the PHM as the reconstruction procedure. 18 (a) corresponds to
the application of the corner treatment and 18 (b) without this treatment.

We have observed that, when no treatment is applied, the value of the en-
thalpy above and near the corner is slightly smaller than the value at the left of
the corner. Thus the fluid there is almost steady, however, the entropy is clearly
violated and we get analogous pictures to the ones presented in [25].

The reason we need to apply the two corrections is that if only the entropy
is corrected, then, the flow near the corner becomes far from steady, and the
enthalpy is abruptly going down at the right of the sonic line, (see Figure 19).
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The section y = 0.2 of the adiabatic constant is shown in Figure 19 for both
cases. We observe a strong entropy violation at z = .6, the abscissa of the
corner. This section can be considered nearly a streamline of the flow.

We consider this a fair numerical test in order to evaluate the reliability of
the numerical approximation. We have computed numerical approximations to
the solution of this problem using our solver with a finer grid, (e.g., 240x80),
and the profiles obtained are consistent with the features presented with the
120x40 grid and the order of accuracy used.
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