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Abstract

Two-dimensional unsteady separated flow past a flat plate is considered. The rolling-up of the
separated shear-layer is modelled by a pair of point vortices whose time-dependent circulation
is predicted by an unsteady Kuita condition. A power-law starling flow is assumed and the
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1 Introduction

The process of nondimensionalizing the appropriate equations of fluid dynamies is commonly used
to present the results of certain physical phenomenon in terms of the least number of parameters.
In the particular case of incompressible steady flow past a bluff body the dimensionless variables are
obtained by scaling the physical variables with an appropriate combination of characteristic length
and time. The characteristic length might be some linear dimension of the body and the character-
istic time is usually derived by taking the ratio of the characteristic length with the characteristic
velocity, i.e., with the undisturbed free-stream velocity. When this class of flows is described by
the Navier-Stokes equations, the secaling process produces only one dimensionless parameter: the
Reynolds number. Then all flows with the same Reynolds number and geometry are said dynami-
cally similar. The principle of dynamical similarity is commonly used to obtain information about
an unknown flow field from experiments carried out under more convenient physical conditions than
those of the unknown flow field.

A question rises if it is possible to apply this frame work to flow fields where the free-stream
velocity is time varying. The answer is positive only under certain conditions when, for example,
the free-stream velocity oscillates with fixed amplitude and frequency about a mean value. In this
case the scaling process which makes the incompressible flow past an oscillating body dimensionless
generates two parameters: the Reynolds and the Strouhal numbers. When, instead, the free-stream
velocity does not present any physically meaningful periodicity nor a mean value, a power of time
in the simplest case, it is not possible to achieve dynamical similarity by scaling the problem using
characteristic length and velocity.

In exceptional cases the scaling process produces a result even stronger than dynamical similarity:
Universality. The concept of universality, which recently became popular in connection with the idea
of gelf-organized criticality, simply states that certain physical phenomena present the same behavior
when scaled properly. The aim of this paper is to achieve dynamical similarity and furthermore,
universality, by scaling the power-law starting flow past a flat plate with characteristic quantities
which are function of time. In other words, we intend to show that all the results for a given flow
quantity may be collapsed on a unique curve, which is hence universal, when the mathematical
problem is scaled with an appropriate function of time.

The study of power-law starting flow past a flat plate at high Reynolds numbers might be
approached theoretically by using two different inviscid models. In the simpler case the rolling
up of the separated shear layer could be modelled by a point vortex with time varying circulation
(Brown and Michael 1954, Rott 1956, Cortelezzi and Leonard 1993) while in a more sophisticated
approach a continuous vortex sheet could be used {Rott1956, Pullin 1978). A comparison between
the two methods when used to model the unsteady separated flow past a semi-infinite plate has
been presented by Pullin and by Cortelezzi and Leonard. As shown by the author {Cortelezzi and
Leonard 1993) the two models lead to the same power-law solution with slightly different coefficients
when the free-stream velocity follows also a power-law. We assume similar general agreement for



the present study of power-law starting flow past a flat plate and therefore use the simpler point
vortex model.

In Section 2, following our previous work (Cortelezzi and Leonard 1993), we model the unsteady
geparation from the tips of a flat plate by means of a pair of point vortices whose time-dependent
circulation is predicted by an unsteady Kutta condition. The problem is further simplified by
imposing wake symmetry. The motion of the vortex pair is determined by a non-linear ordinary
differential equation first proposed by Brown and Michael in 1954, In Section 3, making the problem
dimensionless we find there does not exist a characteristic velocity for this class of flows yielding
dynamical similarity. Dimensional analysis, however, permits us o derive a characteristic time scale
from the power-law form of the free-stream velocity. Making the problem dimensionless using such
a characteristic quantity we achieve the dynamical similarity for a given power-law exponent. Then
the model is tested simulating the separated flow when the free-siream is a step, or a linear or a
parabolic function of time and finally the model is validated matching the results obtained both
numerically and experimentally for the first two cases.

In Section 4, analyzing the results obtained we observe that the vortices always move on the
nearly same trajectory and that the geometry of the fiow, i.e., critical points and separatrix, seems
also to develop in a similar fashion but, of course, the corresponding time differs depending on
the power-law of the free-stream velocity. All these facts suggest the existence of a further time-
dependent scaling which unveils the universality of the phenomenon, i.e., a scaling which collapses
all the results for a certain flow quantity onto a universal curve. We derive a time-dependent scaling
by synchronizing the motion of the plate for different time-laws. The resulting equation of motion
for the vortex pair is, for large times, independent of all the flow parameters and hence universal.
All the characteristic quantities of the flow are recomputed. These results, in addition to eapturing
the universality of the flow for large times, also point to & universality for early times of the wake
evolution, i.e., when the plate has traveled few plate lengths or less.

In Section 5, we first obtain the equation of motion for the starting vortex which models the
separation of a flow past a semi-infinite plate. We analytically solve this equation for a generic
free-stream velocity and then we deduce a time-dependent scaling which captures the universality
of this flow, Under this time scaling the exact solution for any free-stream velocity reduces to the
exact solution for the impulsively started case. Finally, the comparison between the scaling obtained
for the semi-infinite case, which holds at the very early times of the flow past a finite plate, and
the scaling derived for large times suggests a more complicated time-dependent scaling effective in
the early times of the power-law flow past a flat plate, All the results scaled in this fashion nearly
collapse onto the corresponding curve for the impulsively started case which is hence universal. We
conclude our study by discussing the possibility of scaling the corresponding viscous flow.

2 Mathematical formulation

In this section we introdunce a mathematical model able to represent the two dimensional unsteady
separation from the tips of a finite plate normal to an unsteady free-stream velocity. We restrict



our investigation to the cases where the regions of vorticity that separate from the boundary layer
and are convected away are thin enough to justify a description by mean of a vortex sheet. The
consequent stretching and rolling up of the vortex sheet suggests to replace the spirals with point
vortices. However, the vortex sheet is not completely lost, it is assumed of negligible circulation.
It connects the feeding point to a point vortex of variable strength which replaces the core of the
forming spiral and satisfies an unsteady Kutta condition. Mathematically the feeding vortex sheet
is just the branch cut due to the logarithmic singularity representing the vortex.

The mathematical formulation of the problem can be simplified by choosing a frame of reference
fixed to the plate so that the body can be identified with the segment. [—2ia, 2ia]. Then, the flow of
an incompressible irrotational fluid about such a body can be solved via conformal mapping. The
Joukowski transformation, which maps a finite plate of length L = 4a in the z-plane onto the circle
of radius a in the {-plane {see Figure la} and preserves the characteristic of the flow at infinity, has

the following form:

a2

There is experimental evidence {(Taneda and Honji 1971, Lisoski 1993) that the near wake is
nearly two dimensional and symmetric about the x-axis during the early times of the flow and
such a condition is enhanced when the plate moves with a non-zero acceleration. Under these
circumstances the problem can be further simplified imposing symmetry with respect to the real
axis, i.e., the vortices have equal and opposite circulation, I'y and —~T';, and are located in complex
conjugate positions, {1 and (;, respectively. Since the velocity field has to satisfy Laplace’s equation
and the boundary condition in the mapped plane can be treated using the circle theorem, we can
build the complex potential F superimposing basic flows. Thus, the complex velocity field w = 'fi‘z
has the form:
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Note that for convenience we are departing from the usual convention and taking the circulation

positive when in the clockwise sense. We impose the Kutta condition to regularize the potential
flow at the tips of the plate. In the {-plane the flow is non-singular since the singularity has been
absorbed by the mapping. To remove the singularity in the z-plane the complex velocity (2) in the
mapped plane has to be zero at the top and bottom of the circle, i.e., at { = kia. Solving for T'; we
obtain:

T, = —9xi (a®+ )+ ) U 3)
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Note that the circulation associated with the vortex pair depends on all the flow quantities, i.e.,
free-stream velocity U, circle radius a, and position of the vortex pair itself. To describe the motion
of the vortex pair in the physical plane we use the following ordinary differential equation:
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with the initial condition:
z;(O) = 2ia. (5)



The term containing % is known as “Brown and Michael’s correction”. The motion of the vortex of
variable strength described by this equation guarantees no net force on the vortex and its connecting
cut. The limit on the right hand side, which represents the complex velocity at the vortex location
without the selfinduced contribution, produces the so called “Routh’s correction” {e.g. Clements
1973) when it is evaluated in the mapped plane.

‘We solve the problem in the mapped plane. Once we have performed the change of variables,
substituted for the complex potential and, carried out the limit required in the equation (4), we
obtain:
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and the initial condition is
{1(0) = ta, (N
where Iy is given by (3). Because of the size and complexity of the problem we are not attempting
an analytical solution, instead, we are proceeding with a numerical integration. Since the equation
of motion is singular at time ¢ = 0 we derive an approximate solution valid for small times following
the same procedure presented in our work on the flow past a semi-infinite plate (see Cortelezzi and
Leonard 1993). With this solution available we integrate numerically the above equation using a
modified Runge-Kutta-Feldberg scheme.
The forces acting on the plate are of particular interest because they can be measured experi-
mentally and are the crucial quantities in any problem involving the interaction between fluids and

structures. The forces can be computed by means of the Blasius theorem:

L dFN® 0
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The evaluation of these integrals can be made relatively simple by a careful choice of the integration
path . Since by construction the vortices cannot sustain any force then the forces acting on the
plate are the same as the forces acting on the entire system constituted by plate plus vortices and
the contour C' can be taken around the full system, Because all the singularities are inside the
integration path the contour can be stretched to a circle of infinite radius by means of the Cauchy
theorem and the forces can be computed using the theorem of the residues.

The integration can be carried out successfully in the mapped plane and the drag has the following

form:

D = 4rpa® ﬂ-i- Ti(a® — GGG —~ 51)] )
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The component of the force along the imaginary axis is zero because of the imposed symmetry. The
above expression agrees with those obtained by Cheers (1978) and by Graham (1980). The first



term on the right hand side is the force due to added mass, i.e., is the inertia of the attached flow,
while the second term is the contribution due to the evolution of the wake. It is also possible to

write the drag as the time derivative of the total impulse, ie. D = 3-; where
2 Mri(a? = 666 — &)
I=47ran+z'p|. oc J (10)
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The last expression represents the impulse required to set up the irrotational flow instantaneously
from rest.

3 Nondimensionalization and validation of the model

To make the problem dimensionless we have to define a characteristic length and time. As a represen-
tative length we choose, for simplicity, the radius of the circle in the mapped plane. A characteristic
velocity, in general, cannot be recognized when the free-strearn velocity depends on time. Neverthe-
less, a characteristic time T" can be constructed using one or more parameters present in variation
of the free-stream velocity with time, Then all the quantities involved in the problem can be made
dimensionless as follows:
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zl—a: Cl"""’al a—la t'—Tl (11)
U* = -—1——1—q 't = —TI‘l I = TI
a: 1 ag: paa

Substituting the starred quantities into the equation of motion (6) and simplifying we obtain:
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and the initial condition is
G0 =1, (14)

When the free-stream velocity is a power-law, i.e., U(t) = Vi™, we choose the following characteristic
time: .
ay
7= (%)
v
Consequently, the dimensionless free-stream velocity and the ratio between acceleration and velocity

,  Yme(0,o0). (15)

reduce to U/* = ¢*™ and Ul. ‘fg, = m/t*, respectively. The problem is now parameterized only by m,



i.e., by the exponent of the free-stream velocity. In other words, for a given m, all the problems are
dynamically similar to the one where V and a are unit. Note we recover the usual dimensionless flow
quantities in the impulsively started case (m = 0) because, in this case, a characteristic free-stream
velocity exists.

An opportunity to validate this model is given by the experiment done by Taneda and Honji
in 1971. In this experiment they measured the length Lgy of the symmetric wake bubble behind a
flat plate impulsively started or constantly accelerated, i.e., when U(t) = V™ with m = 0, 1. They
showed that the growth of the bubble follows a power-law independently of the Reynolds number.
When the plate is impulsively started the time law is:

L ak

——E“ =0.89 [Zﬁ-] , (16)
while for the constantly accelerated case is:
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Using our vortex model we determine the growth of the recirculating bubble and also compute
the position of the stagnation points to obtain a complete characterization of the flow. At early
time the flow is characterized by two small recirculating bubbles close to the tips of the plate and
three stagnation points can be recognized on the back face of the body (see Figures 5a and b).
The stagnation point on the front face of the plate coincides with the origin. Later, as the two
recirculating bubbles grow the two stagnation points move away from the tips until they meet at
the origin. At this point the two bubbles begin to merge and a new stagnation point is created
and moves away from the origin along the positive x-axis (see Figures 5¢ and d). The merging
process is rather sudden and soon a large recirculating bubble dominates the flow (see Figures be
and f). The length of the bubble is defined as the stream-wise length of the recirculating domain.
We say, for convenience, that the merging process is completed at the time when the distance from
the stagnation point on the x-axis and the plate becomes the bubble length.

Let us start by computing the positions of the stagnation points on the back face of the plate.
They can be determined, in the mapped plane, by the points where the complex velocity w is
identically zero along the circle. One point is trivially determined by the intersection of the circle
with the x-axis, while the other two points are identified in terms of polar coordinates as follow:

* 2 1) sin §*
=1, §* = £ arcsin {—(ﬂ-—{_—*—lil—n—l] ; (18)
4
where (* = £* + in* = —ip*e’® | (see Figure 1a). The position of these points in the physical plane
g

can be determined using the mapping (1):

2 B
BEegp = 07, Yhigp = i;;\/pzz — (32 +1)2sin? 6. (19)
1

where 2* = &* + iy*.



Now we consider the stagnation points on the x-axis. They can be identified with the points
where the real part of the complex velocity field is zero. The non trivial point created by the merging
of the two bubbles has the following position in the mapped plane:

o w% 4 132 ein B% — %% 1 (%2 L 1) ain 7
g o VUL + 1 sin® 0 = pi2 + (" 4 sindd
21
As before, the position of this point in the physical plane can be determined using the mapping (D.
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Note that the evolution of the flow depends on the sign of the following expression:
(12 + 1) sin? 65 — 12, (22)

The above quantity is negative at the early stages of the flow when there are two small recircu-
lating bubbles and consequently the expressions (18) and (19) are well defined. Later, when the
bubbles meet at the origin the quantity {22) is zero and the stagnation points defined by (19) and
(21) coincide. Finally, as the merging process takes place the above quantity turns positive and
the expressions (20) and (21) become well defined. It is interesting to observe that all the above
expressions (18-22) are independent of the free-stream velocity U (Z) and the circulation I'1(t) and
the only important information is the position of the vortex pair. This fact suggests that the entire
geometry of the flow might evolve independently of the time-dependence of U(t) and T'1(2).

The length of the recirculating bubble can be mathematically identified with the real part of the
solution of the following two equations:

dF*

(I =0, R

=0, (23)

where ® and Q indicate the real and imaginary part, respectively. The solution of this set of
equations is a point which lies on the zero streamline, the one that separates the recirculating region
from the rest of the flow, where the complex velocity field is parallel to the plate. Note as the
merging process is completed this statement becomes trivial and this point becomes the stagnation
point 2},,, defined by the expression (21). At earlier time the solution of this problem is not trivial
but it can be obtained numerically,

The numerical simulation of the power-law starting flow past a flat plate in illustrated by Fig-
ures 2a~d. These plots permit the comparison of the cases where the plate is impulsively started,
constantly accelerated and linearly accelerated, i.e., when U(t) = VI™ with m == 0,1,2. A striking
feature is that each vortex moves on nearly the same trajectory in all three cases (see Figure 2a).
Figures 2b-d show the total circulation and rate of circulation production for the top vortex, and
the total impulse. The small window magnifies the trend at small times when it is comparable with
the results obtained for the semi-infinite plate (see Cortelezzi and Leonard 1993).

Figure 3 shows how the length of the recirculating bubble for the impulsively started case com-
pares with the best fit (16) presented by Taneda and Honji (1971) and with that computed by



Chua (1990). Note that Chua in his simulation uses a vortex method algorithm able to model the
boundary layer on the plate and represent the distributed vorticity in the wake. The agreement is
reasonably good but both numerical simulations show a similar departure from the best fit proposed
by Taneda and Honji. At small times, we are able to extend Taneda and Honji’s result down to
time Vt/L ~ O(10~7). We estimate that at very early times (10”7 < Vt/L < 10~%, not shown in
the figure) the bubble grows proportionally to (Vt/L)%¢8, which is in good agreement with time-
law of (Vt/L)% derived by Pullin for the semi-infinite plate case (see Pullin 1978). This time-law
slightly changes with time, as the coupling between top and bottom vortices becomes more impor-
tant. In fact, during the merging process (0.15 < Vit/L < 1.5) we estimate that the bubble grows
as (Vt/L)*77. Later, the departure from the quasi-linear trend, in the log-log plot, can be clearly
identified with the end of the merging process. See the solid diamond symbol. Finally, for large times
the deviation from the experiment is not anymore negligible but consistent with the other numerical
simulation. This departure could be consequence of the two-dimensionality and symmetry imposed
in our model and two-dimensionality in Chua’s calculation or finite Reynolds number effect in the
experiment,

The forces acting on the plate for the purely impulsively started case cannot be measured ex-
perimentally. However, a comparison can be made with the results obtained by Chua (1990) in his
numerical simulation (see Figure 4a), where the drag coefficient is defined as Cp = D/2pU%L. The
overall agreement is reasonably good. Figure 3 shows that the recirculating bubble grows faster
in Chua’s simulation than in our case and this explains the difference in drag at early times. At
later times our model tends to underestimate the drag probably because of the lack of distributed
vorticity and imposed symmetry.

When the plate is uniformly accelerated the forces can be measured experimentally. Results for
the drag are not available from Taneda and Honji’s (1971) experiment, but recently Lisoski (1993)
measured the forces acting on a uniformly accelerated flat plate. Figure 4b shows the comparison
with Lisoski and Chua (1990) results. The overall agreement is still reasonably good and the dis-
crepancics can be explained as for the impulsively started case. Note the drag coefficient, in this
case, is based on the final free-stream velocity.

4 Scaling at Large Times

In this section we derive a time-dependent scaling which will generate a family of similar curves for
each flow quantity, allowing one to compare results for different time laws. Clearly the geometrical
scaling (11) introdueed to make the problem dimensionless fails this purpose. However, if we analyze
the plots presented in the previous section we note some striking results. First, the vortex pair moves
on nearly the same trajectory independently of the time law for the free-stream velocity (see Figure
2a). Furthermore, from the comparison of the instantaneous streamlines taken at two different times
for two different free-stream conditions (see Figures ba-f), it follows that the geometry of the flow
goes through the same states but at different times. Finally, the scaling used by Taneda and Honji
(1971) seems to be appropriate for the analysis of this flow.



Based on the above observations it follows that the appropriale choice of a representative time
scale it would improve the quantitative and qualitative understanding of the phenomenon. If we
divide the equation of motion (12) for the power-law case by ¢*" we obtain terms containing pmt1)
or *™dt* which suggest that the time scaling should be ~ #*(™+1) or, in other words, the scaling
should involve the distance traveled by the plate. This distance, #p, can be easily computed by
integrating the free-stream velocity over time. Then, the number of radii traveled by the plate when
the free-stream velocity is a power-law is:

zp o VT (24)
a a(m+1)
Thus, if we choose the right hand side as the dimensionless time, then the motion of the plate is
synchronized in this new time frame. In other words, the plate travels an equal distance in time for
all possible free-stream conditions (i.e.¥Ym € [0, 00)).

Because of the considerations above, it is natural to introduce the following scaled quantities:

o C. - C* a® = a* 1 = gH(m+1)
T =~ 1 = 51 - 5 L"m+1a (25)
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where the subscript L stands for “large times”. A consequence of this time dependent scaling is that
the quantities which involve time derivatives have a non trivial and rather unusual expression. Let
g represent I'y or I, then the expression for the scaled rate of circulation production and drag can
be obtained from the following formula:

dg* 1 dg* mg"
de = (- ). 9

Note for m = 0 we recover the geometrical scaling (11). Rewriting the equation of motion (12} for
the power-law case in terms of these scaled quantities, we obtain:
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and the initial condition is
¢1(0) =1. (29)

Note that the scaling reduces the dependency from the free-stream velocity to the factor m/{m+1)
which appears in the last term of the equation of motion. In other words, the scaled equation is the
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dimensionless equation of motion for the impulsively started case plus a correction which dies out
at large time because of the factor t}‘_l. Consequently, the scaled equation becomes, for large times,
the universal equation of motion because it describes the evolution of the flow independently of all
flow parameters. Varying the power of time we produce a family of curves, bounded by the limiting
cases m = 0,00, which can be compared with the impulsively started case as is shown by Figures
6 and 7. Indication of universality is that at large times the curves collapse all together, as in the
case for the rate of circulation production and drag (see Figures 6b and d), or they become parallel

as in the case of total circulation and total impulse {see Figures 6a and c).

In this time frame, it becomes meaningful to compare the time evolution of the geometrical
quantities which characterize the flow (see Figure 7). The bubble length (i.e., the branch of solid
curve past the diamond symbol), at any given time, decreases as m increases. The merging process
of the two small recirculating bubbles is delayed also as m becomes larger. The diamond symbols
in Figure 7 show at which time the merging process is completed. Note that this happens always at
about the same bubble length and consequently this length is a universal quantity for this class of
flows.

5 Scaling at Early Times

In this section we derive a time dependent scaling which nearly collapses, during the early times
of the flow, all the curves for a given flow quantity on the corresponding curve produced by the
impulsively started case. As a first step in the derivation we analyze the corresponding separated
flow past a semi-infinite plate, We derive the equation of motion for the starting vortex and then
we solve the problem in closed form. Finally, we find a time dependent scaling which collapses all
the solutions on the solution for the impulsively started case which, consequently, is the universal
solution for the semi-infinite plate problem. In the last subsection we extend the scaling derived for
the semi-infinite plate to the flow past a finite plate. As before, we are able to nearly collapse all
the results onto the corresponding curves obtained for the impulsively started case but only up to
the time when the plate hag traveled few plate lengths.

5.1 Flow past a semi-infinite plate

5.1.1 Mathematical formulation

The unsteady separated flow past a semi-infinite plate has been studied in details by several authors:
Rott 1956, Pullin 1978, and Cortelezzi and Leonard 1993. Following our previous work we map the
plate lying on the negative imaginary axis onto the real axis of the mapped plate, see Figure 1b.

1



Then, the equation of motion for the starting vortex has the following form:

1 ke - ® * % T
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and the initial condition is
(1:(0) =0, (32)

where (7, is the position of the vortex in the mapped plane, I'f_ in the circulation of the vortex,
and U} is the free-stream velocity. All the quantities are stared because the problem is intrinsically
dimensionless. The subscript &, which stands for “small times”, differentiates these variables from
the one used for the finite plate problem.

5.1.2 Exact Solution

In this section we derive the exact solution of the equation of motion for the starting vortex (30-32)
when the free-stream velocity is positive semi-definite, i.e., U} > 0 V% > 0. This restriction does
not violate the generality of the solution because when the flow reverses the solution cannot be given
in terms of only one vortex, as we will prove later in this subsection.
For convenience we rewrite the equations (30) and (32) in polar form (see Figure 1) as follows:
dpt,  Ugsind], _ Pl dUG
dt% 12p32 30U diy’ (33)
dfi,  Ugcos20i,
dty, ~ 8pt3 costy’

with the initial conditions:

p{s (0) =0,
{ 1:(0) = 68, 0 € (-1, %) (34)

The initial condition for 6], will be derived below because we do not know a priori the initial
direction of the vortex.
We make the above system autonomous by introducing the following new variables:

o =Uspi3, B =sindl,, (35)
and

%
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Rewriting the above equations of motion in terms of these new variables we obtain:

da _f
{ gg_;*’_wz (37)
Udt ™ 8a

with the initial conditions:

e(0) =0,
{ B(0) = fo, fo € (-1,1). (38)

These equations describe the evolution of the system independently of all the flow parameters and
consequently they represent a universal set of equations for this class of flows within the Brown and
Michael’s model.

As final step toward the exact solution, we combine together the above equations obtaining a
second order equation for « only:

Pa? 1 )
dt? 16

The integration of this equation and the derivation of the solution for 8 are now trivial. Finally,
after imposing the initial condition the solution has the following form:

V2

a=zt_g, B =t (40)

[ N]
wle] ™1

where the sign has to be taken positive if the flow is from left to right and negative otherwise. Since
we assumed initially U} > 0 Vt% > 0, we choose the positive sign. The solution for pi_ and 07, is
recovered simply by inverting the relationships (35). We obtain:

% 3
i o T
o= | —— U (ehydt' = —. 41
e [Q%U;fo Py =g (1)
Note that 8}, = 7/4 identifies a universal trajectory, i.e., within this model the starting vortex leaves
the tip of the plate and moves on a trajectory always perpendicular to the plate for any free-stream
condition. This result substantiates the hypothesis that the vortices move on the same trajectory

even in the finite plate case. We derive the circulation associated with the vortex using the polar
form of expression (31). We obtain:

L
3

A“
P, f Sugeyar| (42)
s 5% Jo

Consequently, the rate of circulation production has the following form:

-2
E]

drt,  w (AU 1 UBTIUR (%
= * 25 | jzsn x t . 4
o 3Us dt;;fo UEH)dt + = 3 fo UL (td (43)

The last two results permit us to define the range of validity of the solution. The solution is
physically valid V&% > 0 only if the free-stream velocity is a monotonically increasing function of
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time. Otherwise, if the flow is allowed to decelerate then the rate of cireulation production might
. D . . dr?} )

change sign and hence the solution is valid only up to time ¢}, ; when —=% = 0. To analyze this

gituation we assume that the free-stream velocity is a monotonically increasing function of time

£ L]
(e, i,—?f > 0) up to #},,, where it reaches its maximum (i.e., %;f- = ) and then it becomes a

monotonically decreasing function of time (i.e., %é < 0) up to t},‘n o1 When it becomes zero. Then,
for such a free-stream velocity the above solution is mathematically, but not physically, well defined.
In fact, from the expression for T}, it follows that the sign of the circulation agrees with the sign
of the free-stream velocity and it goes to zero at 1}, Consequently, the strength of the vortex
increases at the beginning, then it reaches a maximum, then starts to decrease and finally the
circulation vanishes. This behavior is unphysical for ¢4 > #2,.4, i.e., when the vortex circulation is
decreasing. In other words, at time t¥,,,, when the rate of circulation production changes sign, the
simulation should be stopped and a new vortex introduced in the flow (see Cortelezzi and Leonard
1993) for an application of this shedding mechanism). It is interesting to predict when this happens.
The expression (43) shows that the sign of the rate of circulation production depends on the sign of

. dry_ , . . - aus .
the free-stream acceleration. Then, Tﬁl‘i is positive up to time t},,,, because & > (, and negative
5 5

at time t};,, 4, because I'f_ = 0, it follows that #7,,;, < £{3.4 < thinar- Hence, the rate of circulation
production changes sign always during the flow deceleration or, in other words, the system starts
to produce circulation of opposite sign before the flow is actually reversed. The time t},,, when
the rate of circulation production goes to zero depends on free-stream velocity and in principle can
always be computed by solving the following equation:

-1

* %3 (4 thhe
dLiS — _US (tshed) / hed U;E(tf)dtf ) (44)
dtS tg=t] 2 g

shed

The case where the free-stream velocity has more than one maximum is physically ambiguous because
we do not know how many vortices are actually created. The solution is mathematically well defined
but its physical meaning depends on the particular situation under investigation.

5.1.3 Scaling and Universality

The exact solution (40) is a universal solution for the unsteady separated flow past a semi-infinite
plate within this model. In other words, given the solution (40) we can derive the exact solution
for any given free-stream condition. The only drawback is that the quantities o and 3 do not have
a direct physical meaning. The possibility of a better scaling is suggested by the form of the above
_ solutions (41) and (42). Let us introduce the following scaled quantities:

1[5
Ae=ple B =00, 5= o [ UPE)a,
Ut &0 (45)
Ug = ——‘z =1, Is = ——l-f-
U3 Uz

14



Then, the rate of circulation production has the following form:

-1
dry, 1 [dry, Ti, dui 1 dU% .2
dty ~ U {dt* “uy Ay |V U dt*_/ UFEdr) (16)

Rewriting the exact solution {41-43) in terms of these scaled quantities we obtain:

*3
¢ tS s

¥i3
Pls = SF s =7 {47)

and the circulation and its rate of production become:

1% dry w1
+ S o
s =7 ( 5 ) ) ay 3@ (48)

This is, again, a universal solution, because does not depend on the free-stream velocity but has

a greater physical meaning because it coincides with the exact solution for the impulsively started
case when the free-stream velocity is unit. Consequently, within this model, the knowledge of the
behavior of the system for the impulsively started case is sufficient to produce complete information
about any other case.

5.2 Finite Plate Scaling

The analysis of the Figures 6a-d show that all the curves for a given flow quantity are similar and
consequently it might exist a global time scaling able to collapse all the curves onto one. In particular,
Figure 7 shows that the merging process is completed always at about the same bubble length,
independently of the power-law, hence an appropriate time scaling might be able to synchronize the
diamond symbols.

The time scaling derived in the previous subsection for the semi-infinite plate it must hold, at
very early times, for the starting flow past a finite plate. In particular when the free-stream velocity
has a power-law form the scaled time (45) reduces to:

*(m-{-l)

»
5= 2m +1° (49)

If we now compare the above time scale valid for small times with the time scale valid for large times
(25) we see that the difference is just a multiplicative factor. For small times is 1/(2m -+ 1) instead
for large times we have 1/(m+1). Based on these observations one might argue that a global scaling

could have the following form:

= 2m+ 1 —mf*(t*)’ (50)

where the dimensionless function f* has to satisfy the following constraint:

lim f*(#*) =0, im (%) =1, (51)

i*—o00
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or, in other words, ¢* ~ t% Vi* < 1 and t* ~ ¢} Vi* >» 1. Then the scaling of the equation of
motion (12} for the power-law case is carried out using the quantities defined in (25) where the
dimensionless time #* now replaces ¢}. We do not report the expression of the scaled equation of
- motion because its mathematical expression does not provide any insight about the universality -
achievable. As before the quantities which involve time derivatives have a non trivial and rather
unusual expression. Let g represent T'; or I, then the expression for the scaled rate of circulation
production and drag can be obtained from the following formula:
dg*  (2m+1-—mf*)? [f.lg: mg*
dty 4%2m di* 1*

.7 —1
][(m+1)(2m+1-—m_f")+mt*j‘; . (52)

Note for m = 0 we are, once again, recovering the geometrical scaling (11).

We were not able to derive a function f* such that satisfies the constraints (51) and that pro-
duces a global scaling probably because of the error which affects the simulation for large times.
Consequently, we concentrated on the scaling of the early times of the flow, i.e., up to the time when
the plate has traveled few plate lengths. In the attempt to extend the time scaling valid at small
times we assume that the function f* has the following polynomial form:

£ () = Crmt* 5 4 Comt* ™+, (53)

where, the coefficients Cy,1 and G,z are evaluated numerically and have the following values:

m Cim Com

1 125174 —.054214
2 0874566 --.025007
5 054764 —.009961
10 036116 —.005251

Clearly this function satisfies only the constraint at ¢* = 0, nevertheless, it produces the desired
collapse during the early times of the flow. Although not global the importance of this result is
emphasized by the fact that experimentally the symmetry of the wake is lost on the same time scale.

Figures 8 and 9 show the results of the scaled simulation up to time ¢* = 16, when the plate
has traveled about four diameters. The overall effect of the scaling is to nearly collapse all the
eurves obtained for different power-laws onto the corresponding curve for the impulsively started
case, i.e., m = 0. Figures 8b and 8d show that the scaling appears to break-down at * ~ 12 when
the curves for the rate of circulation production and the drag start to fan out. The phenomenon is
almost negligible for all the other quantities (see Figures 8a, 8¢, and 9). The drag and the rate of
circulation production are the first quantities which show the limit of the scaling probably because
their scaled form (52) is rather complex, involving both f* and its time derivative. The above
results show that, within this inviscid model and under this scaling, the power-law starting flow has
an universal behavior, i.e., all the case are nearly the same up to time {* ~ 12. In other words, it is
enough to study the evolution of the system for a given power-law to obtain information about the
evolution of the system for any other power-law,

The possibility of extending these results o the viscous case is an open and challenging question.
If this were the case it would suffice to perform a careful experiment for a given power-law to obtain
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information about any other case. Furthermore, it would open a way to better compare numerical
simulation and theoretical prediction with experimental result. For example, the theoretical pre-
diction for the impulsively started case could be compared with the experimental data obtained by
towing the plate at some convenient constant acceleration. The extension of the above results to the
viscous case is non trivial but indication that a sealing might exist is given by the results obtained
by Taneda and Honji®. In fact, the time-laws for the impulsively started (16) and for the constantly
accelerated (17) cases might be scaled in the following way:

L 2
—%—b—’ = .89 p% (54)
where
. 2V
tTﬂ—m, m_0,1. (55)

Note the multiplicative factor .48 in expression (17) is recovered exactly to its two digits precision.
An interesting point is that the time scaling (25) for the point vortex model and the experiment
differs by a multiplicative factor. Such a difference is anyway not surprising because in the real flow
the vorticity is distributed along the shear layer while, in the point vortex model, the circulation is
lumped in one point.

6 Conclusions

" An irrotational model has been used to model the power-law starting flow past a flat plate. Using
dimensional analysis the problem is made dimensionless recovering dynamical similarity for a given
power law. The model has been tested simulating the unsteady separated flow past a plate when the
free-stream velocity is a step, a ramp or a parabolic function of time and then has been successfully
validated by matching the results obtained both numerically and experimentally. The results of
these simulations suggested the existence of a further time scaling. A time-dependent scaling has
been obtained by synchronizing the motion of the plate for different time laws, Under this scaling
the equation of motion became asymptotically independent of all the flow parameters and hence
universal for large times. The recomputed simulations produced for each flow quantity a family
of curves which allows one to compare the results obtained for different power-laws. The analysis
of these families of curves showed sign of universality even at early times. We first analyzed the
behavior at small times by exactly solving and scaling the corresponding flow past a semi-infinite
plate. Then, we generalized this result to the finite plate case and derived a time-dependent scaling
valid at early times. The new time scaling collapsed all the results onto the corresponding curve
obtained for the impulsively started case. Under this scaling the power-law starting flow exhibited
a universal behavior up to the time when the plate has traveled about four diameters. Finally,
the existence of a global scaling and the possible extension of these results to the viscous case are

discussed.
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Figure 9: Loci of the stagnation points {m = 0, 1,2, 5, 10).
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