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Abstract

Analysis and computations are presented for singularities in the
solution of the steady Boussinesq equations for two-dimensional, strat-
ified flow. The results show that for codimension 1 singularities, there
are two generic singularity types for general solutions, and only one
generic singularity type if there is a certain symmetry present. The
analysis depends on a special choice of coordinates, which greatly sim-
plifies the equations, showing that the type is exactly that of one di-
mensional Legendrian singularities, generalized so that the velocity
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can be infinite at the singularity. The solution is viewed as a surface
in an appropriate compactified jet space. Smoothness of the solution
surface is proved using the Cauchy-Kowalewski Theorem, which also
shows that these singularity types are realizable. Numerical results
from a special, highly accurate numerical method demonstrate the va-
lidity of this geometric analysis. An analysis of general Legendrian
singularities with blowup, i.e. at which the derivative may be infinite,
is also presented, using projective coordinates.



1 Introduction

The possibility of singularity formation from smooth initial data for the
solution of the Euler equations for inviscid, incompressible fluid flow in three
dimensions is one of the main unsolved problems of mathematical fluid me-
chanics. In spite of considerable effort on this problem from analytical, mu-
merical and physical approaches, there is still little convincing evidence either
for or against the possibility of singularity formation.

In this paper, singularities are analyzed for a related, but much simpler,
system, the steady Boussinesq equations:

u-Vp = 0

u -V( = -p,

Vxu = ( , (1.1)
V-u = 0.

This system describes steady, two-dimensional, stratified (i.e. variable den-
sity), incompressible flow in which p is density, u is two dimensional velocity
and ¢ is vorticity. The buoyancy term p, plays the role of the vortex stretch-
ing in the Euler equations. This system is derived in the “Boussinesq limit,”
in which the variation of density is important in the buoyancy terms but
insignificant in the inertial terms.

For the steady Boussinesq equations (1.1) we will derive the generic (i.e.
typical) form of singularities, under certain natural restrictions. Singularities
for complex solutions and at complex spatial positions are considered in this
study, but the results are also valid for real singularities of real solutions.
In addition, we present numerical computations which confirm these generic
gingularity types.

The problem of singularity formation from smooth initial data for the
(time-dependent) Euler or Boussinesq equations is the motivation for this
work. Our reasons for studying complez singularities for steady flows are
twofold:

First, this problem serves as a vehicle for development of methods that
may be applicable to the singularity formation problem. For example, the
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present analysis includes solutions with infinite values of the the velocity and
vorticity. Such infinite values in the dependent variables were excluded from
earlier approaches [5].

Second, we believe that the form of steady complex singularities may be
indicative of the form for dynamic real singularities or for nearly singular
flow. QOne reason for this belief is that the genericity results for steady singu-
larities can also be interpreted as genericity results for complex singularities
that move in the complex plane without change in their structure. This is
described in Appendix A. On the other hand, we have found that, for generic
steady singularities, the density p is infinite. Since, infinite values of p cannot
occur for singularity formation from smooth initial data, this would restrict
the set of steady singularities that are relevant to singularity formation.

Further discussion of these points is presented in Section 8.

The main result of this paper can be informally stated as follows:

Consider singularities for the steady Boussinesq system (1.1) which have
codimension 1 and for which the vorticity { is infinite. The generic form of
such o singularity is of two types:

(1) % =~ 23/% v = V2 ( oz

(8) b 21/ v~ 2 V% ( rva-.

If in addition the stream function ¢ is assumed to have an additional sym-
metry (P(x,0) = ¢p(—=x,0)), then the singularity type by

(3) = 223 v x=1/3 ( moz-if3.

In these formulas z and v denote some suitably chosen space and velocity
coordinates. A precise statement of this result will be presented in Section
3.

The principal ingredient in this study will be a geometric approach to
differential equations, which has been developed by two of the present authors
and their co-workers for simpler systems in [5], as well as by Bryant, Griffiths
and Hsu [17, 18]. In this approach the solution of a differential equation is
viewed as a surface in an appropriate jet space (described in Section 3 5),
and the PDE serves as a constraint on the possible form of this surface.

The main role of analysis in this approach is to show that such con-
strained surfaces are generically smooth, which is demonstrated using the
Cauchy-Kowalewski Theorem for analytic solutions of a PDE. Geometric
and algebraic methods, such as the singularity theory of Arnold [21], can
then be used to analyze the generic types of singularities for this surface.



The background for this study consists of several analytical results and a
numerical computation:

First, the mathematical significance of Euler or Boussinesq singularity
formation (for the time-dependent equations), should it occur, is that it
would limit the validity of mathematical existence theory. Beale, Kato and
Majda [2] showed that if the initial velocity u  is in Sobolev space H® for
some s > 3, but at time ¢ = #* > 0, u () is not in H*, then

*

fo llw ¢, 8)]loodt = 0o (1.2)

in which || || is the L* norm in space and w is the vorticity. Bardos and
Benachour [1] proved a related, earlier result in an analytic function class; E
and Shu [11] proved a similar result for the Boussinesq equations.

The physical significance of singularities is less clear and depends critically
on the robustness and type of the singularities. Singularities might serve as
an important means for transfer of energy from large to small scales. In
this way they could be responsible for the onset of turbulent flow or even
for the continuation of fully developed turbulence. A related analytic resuls,
first stated by Onsager [15] and refined in [6, 10, 12}, says that if a weak
Euler solution does not conserve energy and it has Holder exponent ¢ on a
set of co-dimension k, then ¢ + x/3 < 1/3. This is physically meaningful,
since there is clear evidence that the energy dissipation for the Navier Stokes
solution remains nonzero in the zero viscosity limit.

The time-dependent Boussinesq equations are

pitu Vp = 0

Ct+u 'VC = TPz
Vxu = (1.3)
V.-u = 0.

As pointed out by Childress et al. [9] and by Pumir and Siggia [16], these are
very similar to the Euler equations for axi-symmetric flow with swirl. The
latter equations also involve only two degrees of spatial variation (radius r
and axial length z) and are the simplest form of the Euler equations with
nontrivial vortex stretching. Pumir and Siggia [16] performed numerical
computations for (1.3), which seemed to indicate singularity formation, but
further computations by E and Shu [11] did not confirm their results.
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A clearcut numerical demonstration of singularities for the Euler equation
for axisymmetric flow with swirl, but for complex velocity, was performed by
Caflisch [3] using a special form of the solution for which the numerical error
is extremely small. The computed solutions had singularities of the simple
form w = z~1/3, which suggested that this singularity might be generic.

These computations can be understood in two ways:

(1) The computations were performed for the exact Euler equations with no
approximations but with complex initial data. In particular the initial data
consists of only nonnegative wavenumbers in the axial variable z; i.e. it is
upper analytic in z.

(2) These computations also correspond to Moore’s approximation for the
Euler equations with real initial data. In Moore’s approximation, the upper
and lower analytic components of the solution are decoupled. The upper
analytic part satisfies the Euler equations, but with complex initial data, as
in (1); the lower analytic part is its conjugate, The physical meaning of this
approximation is to retain the forward cascade of energy while omitting the
inverse cascade.

It has not yet been possible to relate the results of Moore’s approximation
back to the real Euler equations, but we conjecture that this approximation
is valid, at least qualitatively, as long as the singularities are away from the
real axis.

In this paper, these numerical singularity results are used instead to in-
dicate the generic form of singularities for the steady flow problem. The
singular solutions constructed in [3] were traveling waves (with imaginary
speed), but by Galilean transformation they become steady solutions. In
the present investigation, numerical solutions with complex singularities are
constructed for the steady Boussinesq equations by a similar procedure as in

[3].

' Finally the singularity analysis of this study was motivated by a similar
analysis of the generic singularity type for first order systems with at most
two speeds by Caflisch, Ercolani, Hou and Landis [5]. That analysis used
a generalization of the hodograph transformation to unfold the differential
equations. While that unfolding transformation has been generalized [4] to
a larger class of equations, including the Boussinesq equations or the Euler
equations for axisymmetric flow with swirl, the analysis in the present study
is effected through a simpler and more direct transformation of the equations.

The following is an outline of the remainder of the paper: In Section 2
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the Boussinesq equations are transformed and scaled. The main analytic
results on generic singularity type for steady Boussinesq are presented and
proved in Section 3. The proof partly relies on an application of the Cauchy-
Kowalewski theorem, presented in Section 4, to show that the solutions with
the singularity types (1), (2) and (3) are actually realizable for the Boussinesq
equations, and that the corresponding solution surfaces are smooth.

Although the genericty results are derived directly from the Boussinesq
equations, they are motivated by the theory of Legendrian singularities, and
they could be derived from that theory. Section 5 presents a self-contained
summary of the relevant aspects of the theory of Legendrian singularities (in
section 5.1) as well as an extension, of this theory to Legendrian blow-up {in
section 5.2) which is new.

The analytic results of this study are motivated and validated by a nu-
merical construction of singular solutions for the Boussinesq equations with
complex velocities, which are described in Section 6 (the numerical method)
and Section 7 {the numerical results).

Finally, some conclusions from this study, including a discussion of the
significance of singularities for the time-dependent equations, are presented
in Section 8.

While this presentation of the results is given in the simplest logical order
to help the reader, the actual process by which these results were obtained
was an interplay between analysis and numerical computation. Following the
numerical solution of the Fuler equations for axisymmetric flow with swirl,
the Boussinesq equations were solved by the same method, and a solution
of the form (3) was obtained. This motivated an analysis of the generic
form of singularities which produced singularity types (1) and (2). Since
the numerical results did not agree with (2) and since the analysis of the
type (2) required some new singularity results for Legendrian surfaces with
blowup of the derivative, we were at first skeptical of the validity of the form
(2). Further consideration showed, however, that there was a symmetry
(¥(z,0) = ¥(—=,0)) in the original numerical solutions of Euler and Boussi-
nesq that led to the form (3). Following this observation, we modified the
computations to remove this symmetry and then found the correct asym-
metric result (2). We also extended the analysis to show that the generic
singularity form with symmetry is (3).



2 Unfolding the Steady Boussinesq Equation

The Boussinesq equations for steady, 2D, stratified, incompressible fluid
flow are

u-Vp = 0 (2.1)
u V¢ = —p, (2.2)
Vxu = ( (2.3)
Vu =0 (2.4)

in which u = (u,v) is velocity, p is density, ¢ is vorticity. The incompress-
ibility condition (2.4) implies the existence of a stream function 4 so that

u =V X =~y By). (2.5)

It is illuminating to recast the system (2.1) - (2.4) into an exterior differ-
ential system using differential forms. Since dyp = ¥, de + 1, dy = vdz — udy,
.then equation (2.5), which is equivalent to (2.4), can be written as

dip = vdx — udy. (2.6)
Similarly equations (2.1) and (2.2) are equivalent to

dohdp = 0 (2.7)
dp ANd( = dyAdp. (2.8)
This simple reformulation of the equation is surprisingly potent: Equa-

tions (2.7) and (2.8) suggest that (y,) would be convenient variables, in
terms of which these equations become

py, = 0 (2.9)
Cy = —py (2.10)
which has solution
p o= p(¥) (2.11)
¢ = ) —ypy(¥) (2.12)
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in which p and ¢ are arbitrary functions.
Next, consider the solution as a surface in (z,y, 4, v, %) space Then equa-
tion (2.6) or the rescaled form

1
dz = —dip + Ldy (2.13)
[ U

provides a contact constraint on the solution; i.e. a differential form a =
dip — vdz 4 udy that vanishes everywhere on the solution surface. This
surface is a Legendrian surface due to the contact constraint, as discussed in
the Section 5.

Finally, equations (2.3) and (2.4) can be written in terms of the new
independent variables (y, ) as

0, - ()
(v +v?)y = 2u, -{y~ 2. (2.15)

Equation (2.14) is equivalent to the contact constraint (2.13), while (2.15)
provides a further constraint on the system.

Several further manipulations of the equations are worthwhile. If (u,v)
are finite we can write (2.14), (2.15) as a first order system

() (v z)(2),=(6) e

In this case the previous classification of [5] describes the generic singularities
for the system.

Second, suppose that (u,v) may become infinite. Following the Beale-
- Kato-Majda result [2], singularities with infinite vorticity are of most interest,
so we will assume that ¢ blows-up. According to the formula (2.12}, blow-
up of ¢ occurs along fixed values of ¢. Therefore we unfold the singularity
through unfolding only the 1/ variable by a mapping 1 = t(p). Then we look
for a solution which is single valued in y and p. Furthermore we scale the
velocity as

(2.17)



in which 8 = B(p) gives the rate of blow-up. As a consequence of (2.12) we
may write { as
¢=(n—ypky (2.18)

in which , = £.
Finally we assume that ¢ is of the same order as (u? + v2), in (2.15) by
scaling 7 and p as

n = B7%k(p) (2.19)
p = By(p)
The resulting pde’s for g and v are
1
(f‘-—) = B, (-) (2.20)
Vip v v

(B2(1? + v2 — 26 + 2y7)), = 287 1,1y (2.21)

Integrate these with respect to p to obtain

Eio,) = $0) + [ B, (), (222)

(12 + 2)(py) = 205 —y7) + B29(0) + 7 [ B Nbydp  (229)

in which f(y), 9(y), (p), 7(p), B(p) and v,(p) are arbitrary functions. In
Section 4, we shall show that these equations have a unique solution which

is analytic in y for any choice of f,g,%,7,5 and %, and that the solution
depends continuously on these functions.

3 Generic Singularities for Boussinesq

In this section, the generic singularity types for the steady Boussinesq
equations are analyzed under certain restrictions. The analysis here is per-
formed directly on the integral form of the Boussinesq equations (2.22),
(2.23), using the PDE results of Section 4. The genericity results are mo-
tivated by and could have been derived from Legendrian singularity theory,
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which is summarized in Section 5, but the direct derivation presented here is
simpler.
The singularities under consideration are restricted as follows:

(i) The singularity set has codimension equal to 1. These are the singularities
that are most likely to be observed.

(ii) As a function of (y,v) the solution depends smoothly on y. This is
expected since ( is a linear function of y for fixed 1 or p.

Under these restrictions, the generic singularity types for steady Boussi-
nesq are described by the next two theorems. By singularity type we mean
an equivalence class under analytic changes of variables. By generic we mean
that two conditions are satisfied. First the singularity type should be stable
with respect to perturbations. This is called the stability condition. Second,
any solution with a singularity type which is not stable may be perturbed into
one having only stable singularity types. This is called the density condition.
More details concering these concepts are presented in Section 5.

Theorem 3.1 (Generic singularities for Boussinesq).

Under the restrictions (i), (ii) above, the two generic (i.e. stable and
dense) singularity types for the steady Boussinesq equations are a curve of
cusps and a curve of blow-up folds. Representatives of these two classes are

(i) Cusp. x~1p? vmp, Pmp? (=mp?
(ii) Blow-up fold. z = 1p?, v=p-!, v =p, (=p=2

Theorem 3.2 (Generic singularities with symmetry for Boussinesg)
In addition to restrictions (i), (ii), suppose that v is symmetric with
repsect to reflection in x for some point on the singularity locus; i.c.

d)(mO + z, yO) = 1/)(3:0 - -'L',yg) (31)

for some point (zq,7y,) on the singularity locus. Then there is only one generic
singularity type, a curve of blow-up cusps,
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(i43) Blow-up Cusp. z =~ ip3, vmp™, hmp?, (=pt

These singularities can be written in terms of x dependence (omitting
constants), as follows:
Without symmetry

(i) $m a2, vall?, (o2
(i) §m a2, vaall?, (m o

With symmetry

(i) o ~ 223, vz /3, (a5

Proof of Theorem 3.1. We need to show that the singularity types (i)
and (ii) are stable with respect to perturbation and that any other solution
can be perturbed to one of these two types. The allowable perturbations are
those of the solution as a complex surface in C* with coordinates (z,y, 4, v, %).
This surface will in general not be closed. It may have the form of a sur-
face with complex codimension 1 {real codimension 2) sets removed. These
removed sets correspond to the loci where the Boussinesq solution has singu-
larities and are described below. The natural setting for perturbation theory
is not such surfaces per se but rather their simply connected universal covers.
However, since our perturbation results, related to stability, are local it will
suffice to consider surfaces in €°.

In Section 4 below, we show that the solution exists, as an analytic func-
tion for y in T and for p on a Riemann surface R, for any choice of the “data’
—i.e. the functions B(p), ¥,(p), ¥(p), f(y), g9(y) — except for a restriction on
the location of the zeroes of §. In addition, the solution depends smoothly on
this “data.” So it suffices to consider perturbations of these functions. Since
the stability results are local, only a neighborhood of (y,p) = (0,0) need be
considered.

The Riemann surface R has logarithmic branch points at each of the
zeroes of 8. For p near one of these branch points, say p; of order n;, and for
any fixed y, the solution g has the form

1(p) = po(p) + O((p — p;)*™ log(p — p;)) (3.2)
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in which g is analytic for p near p;. There is a similar form for ». Since the
logarithmic part of the solution is at such high order in p it does not affect
the singularity type.

The zeroes of B (as well as those of ,) are the places at which the
Boussinesq solution has singularities. In a given neighborhood of the variable
p, let the zeroes of 3 be py,. .., p,. For the analytic results of Section 4 there
there is a restriction that the spacing of the roots needs to be approximately
uniform; i.e. for some constant c,

max lp; — p;| < mgéi? lp; — p;. (3.3)

This class of functions 8 is dense with respect to the usual topology. It
is also large enough to consider a neighborhood of a k-th order zero py for 3,
and its generic perturbation to k simple zeroes py,...,p;. The Boussinesq
solution is shown to be smooth with respect to such perturbations in Theorem
4.2.

Furthermore, any analytic functions v¥,(p), ¥(p), f(y), gy(y) are allowed
(it would not change anything if 8, t,(p), v(p) were defined on R rather
than €). Actually for determination of the singularity type only the function
B{p) and ¢,(p) are significant. Generically, there are 3 cases:

(a) B(0) # 0, 1,(0) # 0. In this case there is no singularity.
(b) B(0) # 0; 1,(0) =0, ,,(0) # 0. Then
P = app® +a1p* + ... (3.4)

for some constants g and a,. In this case, we may set § =1 so that g = u
and » = v. Now generically f(0) # 0 and g(0) # 0. Thus ¥ is a unit and
- u? + 2, for generic &, is nonvanishing. It follows that

v=bo+bpt- (3.5)

for some non-vanishing constants b, and b, depending on y. Since v = 1,
then
2, = P,/v=cop+e1p* + ... (3.6)

in which
Cy = zao/bo, Cy = Sal/bo bl 2a0b1/bg (3-7)
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so that . .
z= ~2-c(,p2 + —3-c1p3 e, (3.8)

Under the transformation

Y = P —2ag/c)z
= 0(p°) (3.9)

and

V= v — by = byp e (3.10)

this is seen to be a singularity of type (i). In particular for generic # and p,

( = (n—yp)y
= (n—yp)p/tp
= dp~t +0(1)

for some constant d.

(c) B(0) =0, B,(0) # 0, 1,(0) # 0. Then we may set
B=p+...,v=p+.... (3.11)
Generically f(0) # 0 and 7(0) # 0, so that (%) is a unit and
p 2 = (3.12)

It follows that generically ¢ and v are O(1) and that u,v are O(;—J). Then

Yo _
4 'U_

z = O(p?)
( = (B UHe—y7), = 0O0F®).

This is a singularity of type (ii), which finishes the proof of Theorem 3.1.

Proof of Theorem 3.2. Assume that (z) = ¢(—2z) at y = 0. Then
1 is even in p at leading order, so that generically ¥, = O(p). Now, since u
and ¥ are generically nonvanishing as in the preceding proof,

x

O(p)
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1
f=0()= O(z,/1p)- (3.13)
If v blows up, ie., if 3(0) = 0, then generically z = p® + -, which is
singularity type (iii). If v does not blow up, then 3(0) = O(1) and = = p+- -,
which is nonsingular. This completes the proof of Theorem 3.2.

4 Existence

In this section we construct solutions of the steady Boussinesq equations
(2.20), (2.21) or the integral form (2.22), (2.23). The construction is within
the class of analytic functions and follows the proof of the abstract Cauchy-
Kowalewski Theorem [19]. The solution is unique for a given choice of the
functions B(p), ¥(p), f(¥), 9(y), and depends continuously on the choice of
this “data.”

The significance of the Cauchy-Kowalewski Theorem is that, within the
analytic function class, it effectively reduces the analysis of PDEs to alge-
braic conditions on the PDE and its data. Although for many problems the
restriction to analytic solutions is too severe, it is natural here since sin-
gular solutions may be ill-posed in Sobolev space, complex singularities are
of interest, and analytic solutions with singularities may serve as canonical
examples of more general singularities.

Because equation (2.21) is singular at each value p = p; at which 8 =0,
its general solution is not analytic in p. Nevertheless, the abstract Cauchy-
Kowalewski theorem is applicable, since it requires analyticity in the “space-
like” variable y, but not in the “time-like” variable p.

Furthermore, the solution that we construct is analytic for p on a non-
compact Riemann surface R = universal covering space of T — {py, ..., P}
The fundamental group of C — {py,...,Pn} is generated by m fundamental
closed loops. The 7 such loop starts at a base point py # p; for any j =
1,...,m and encircles p; without encircling any other p; and then returns
to p,. Denote this ith fundamental loop by e;. Every closed path on T —
{pys---,P,} which is based at p, is homotopic to a path of the form

= e e eln, (4.1)

w=¢et. e

1 iy
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for any finite n, where the product a-b denotes concatenation of loops; i.e., the
loop constructed by tracing the path a followed by the path b. e corresponds
to going k times around p; . Thus the fundamental group of € — {py, ..., j.
is isomorphic to the free group on the m generators ey, ..., ¢,,. Thereisa 1-1
correspondence between homotopy classes of paths and words w (4.1) which
represent elements of this free group. The length of such a word is the integer
ky 4+ .ot k.

A fundamental domain of R is homeomorphic to T cut along the rays pob;
emanating from p, and terminating at p;. (p, may be chosen so that these
rays do not meet one another except at their common origin py.) R is the
union of infinitely many copies of this fundamental domain (called sheets)
labelled by the words w in the free group on m generators. Let R, denote
the sheet labelled by w. The Cayley diagram of this free group is a tree in
which the vertices are the words and each edge has m branches emerging
from it which correspond to the m fundamental loops. The different sheets
correspond to these vertices and two sheets are identified along opposite sides
of their respective it* cuts if they correspond to two vertices connected by
an edge corresponding to e;. For further details on this type of construction
we refer to {20].

A point p on sheet R,, of the Riemann surface R can be written as

p= (B, w) (4.2)

. in which 7 is a point in € — {py,...,pn}. We choose a metric on R which is
in the conformality class of R {8]. For p = (p, w), let ||p|| denote the distance
from p® = (fio, 1), where 1 denotes the null word (the identity in the free
group), to p. On the other hand, let

lp| = 18], Ip —psl = |p — pil (4.3)

denote the usual modulus of the projection into the complex plane. Define
the neighborhood (2, of the origin in the Riemann surface R by

2 ={p : lIpll <e lp=p:l [log(p —p)|* < a}. (4.4)
Note that since |log(p — p;)[2 = (log |p— p;])? + (arg(p — p;))? and arg(p — p:)

grows like the length of the word w, 2, has only a small intersection with a
sheets for which the word w is long.
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Define the function norms

lul,, = sup |u(y)] (4.5)
|y|<y0 .
lullge = sup (6P, )o(wo-lizl)-
PESYy,

Note that if v = u(p} is independent of y, then

[ellgo0 = sup [u(p)]. (4.6)

pElly

Also define the function spaces

B, = {u:uisanalyticin |y| < yo, with Jul,, < oo} (4.7)
B,, = {u:u(p,") € By for p € Q,, with |luf, ., < 0o},
Denote
Fy = Fi(y) = (fy),9(¥)) (4.8)

F, = Fy(p) = (x(p),7(), ¥,(p), B(p))-

In the equations (2.22), (2.23) the functions £, F, can be prescribed arbi-
trarily. The analytic results depend on several assumptions:

(A1) Assume that
fo = f{0}#0 (4.9)
ko = &(0)#0.

(A2) Assume that
F, € By,

F,eB

g0,0

[Filys + 1 Fallg0 < €0

(4.10)

for some ¥, ¢y and ¢.
(A3) Assume that for |p| < go, B has zeroes p = py,...,pn of order
Thyys ooy Ty 1€

8= B 30 - n) (4.11)
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in which § is analytic and non-vanishing in |p| < go. In addition assume that
for some constant ¢;

max |p; — p;| < ey pin i — pyl- (4.12)

The restriction (4.12) is further discussed after the proof. The main
analytic results of this paper are the following:

Theorem 4.1 (Ezistence and Unigueness). Suppose that (F, F,) satisfy as-
sumptions (A.1), (A.2) and (A.8) for some constants yo, ¢o, o and c;. Then
for some o and ¢y, there is a unique solution (u,v) of (2.22), (2.23) in By,
with

(s )lgo 0 < €2- (4.13)

The constants o and ¢, depend only on Yy, gp, € and ¢;.

Theorem 4.2 (Continuous Dependence on Data). Suppose that (Fy, F)
and (F,, ;) both satisfy assumptions (A.1), (A.2), (A.3) and let (g, v) and
(ji, 7) be the corresponding solutions as in Theorem 4.1.

Then

(e — g v = F)llgo,0 < es(}Fy — Fllyo + | Fy = FZIqo,D)' (4.14)
The constant c; depends only on y,, gy, ¢o and ¢;.

Proof of Theorem 4.1 Simplify somewhat by setting py = 0, ¢, =1
and

p=30- (1.15

Assume that m > 2; otherwise the proof can be simplified considerably. For
other choices of py,, and 3, the proof is only slightly different. Denote
N =¥, n;. Also define

a« = £ (4.16)
v

so that



b \?
= g
v = (1) o @.17)

1+ a? :
7 :

Equations (2.22), (2.23) become the following equations for a, b:

p—1

1l

»
o« = f+ fu Br1),dp (4.18)
P
b= ht [ B ndp
in which
h =20k —yv)+ 59
First, the dominant terms at p = 0 are extracted. Denote
apg = f(y) (4.19)
P
b = htp [ B uoydp

in which

1

hoo\z

w = wih= () £ (4.20)

The square root is non-singular in a neighborhood of y = 0, since &g # 0.

Note that a, is analytic for p in € and that the logarithmic part of b, is of

size O((p — p;)?™ log(p — p;)). The remaining terms are of even higher order.
Next denote

a4 = a—ay
b, = b—1bp
a, = (E8) ey, (4.21)
by = (£28)7hy,
Az = Oy
by = by
Hr = H— Mo
£ = sup |log(p—pi)l
1<i<
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Also set

r= [ s (12)

in which the integration curve, which lies on the Riemann surface R, must go
around the zeroes p; of 8. Note that I', = A1, and that I can be constructed
explicitly using the partial fraction expansion for j.

The equations (4.18) for (a, b) become the following equations for a,, as,

a3, by, by, by
a; = fﬁ 1y

az = £ 2 —l)y
(13 - fo aldePZ.L £2ﬁa2ydp
r
b = B [ Btuiydp (4.23)

»
by = 23_2}6;:]0 B pydp + €72y
by = j:fzﬁbzydp.

The integration curve in each of these integrals lies on the Riemann surface
R, and goes around the zeroes p; of 3.

The main difficulty in this analysis is the singular integral on the right
side of the equations for b, and b,. It is rewritten using integration by parts
as

P P
f ﬁulﬂlydp:r‘#ly(p _f F.ulypdp (424)

using the fact that Iy, (p = 0) = 0, which will be shown below.

Differentiate gy and v—!, using (4 17), (4.19), (4.20), (4.21) and the fact
that ag and b, have no zeroes in the domain of interest. The result can be
summarized as

(v 1)y = mg+myaz—+ mybs
By = Np+nyag+ngbs (4.25)
P = Ko+ B (kjaz, + kabyy)
in which the coefficients mg, ™y, My, ng, Ny, Ng, ko, Ky, ky are analytic

functions of p on R, of y and of ay, ay, az, by, by, b, which are bounded in the
solution domain.
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The equations (4.23) then become the following:

P

a4 = jo B(mg + myaz + mabs)dp

ay = £73{(mg+myag+ mybs)

as = fop Bay,dp (4.26)

b, = BT (ng+ nyasz+ naby)

~24? fo " (ko + 2B (kyany + kaby))dp
b, = £72(28,F + 1){(ng + nyas + nybs)

9028, fo " D(ky + £8(kyaz, + kyby,))dp

by = ] ” 02b,,dp.
0
At p = p;, the factors # and £-! are zero and f3, is bounded or zero, but
£ and I are infinite. In Lemma lemma?.1 below, we will show that
26,1
reg (4.27)

=26, [ INldps

are uniformly bounded in the domain §2,, and go to zero as p goes to 0. Since
B2 < c|¢-28,| for some constant c, the same is true for

p*r
p? fo " IT|dp. (4.28)

In the bound on £-23,T, the factor £~ is needed because of logarithmic terms
" in I'."This is the reason for introducing this factor in the definition of ay, b;.
The system (4.26) can now be solved using the abstract Cauchy-Kowalewski
Theorem, the best form of which is that of Safonov {19]. This theorem is usu-
ally stated as an existence theorem for a first order system of pde’s, but the
proof applies equally well to systems of the form (4.26) in which there is an
integral over the “time” variable p. Denote ¢ = (a4, as, as, by, by, by). Then
(4.26) can be written as

$(y,p) = Goly,p, $) + /: Gy, 0.7, 6 ¢,) + Go(y,p o, d)dp' (4.29)
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in which the integration is over the Riemann surface R and

(1) Gy, Gy and G, are analytic in y, ¢, ¢, near 0 and in p on K.

(i) Gy, Gogs G1, G4 and Gy, are uniformly bounded, and Gy, Gog go to 0 as
p goes to 0.

(iii) J7|Gal + 1Gy4l + |Gy, ldp’ is uniformly bounded and goes to 0 as p goes
to 0.

In these three conditions, the bounds and the approach to 0 are uniform
for y, ¢, ¢, near 0, for p in ,, and for data Fy, F, satisfying assumptions
(A1)-(A3) with fixed vy, ¢o, o, €1

The Cauchy-Kowalewski proof for existence of a solution to (4.29) is based
on iteration and estimation of ¢, in Gy in terms of ¢ using the Cauchy
estimates. The Cauchy estimates involve a factor that is infinite at the
boundary of the existence domain. This large factor is bounded, however,
when integrated over p. For this reason, the function Gy and its derivatives
need to be bounded, while the function G, and its derivatives need only be
integrable.

Under these conditions, the proof of the abstract Cauchy-Kowalewski
Theorem can be applied to produce a solution ¢ that is analytic in y and p
(on R). For some o this solution is in By, ;. The corresponding function y, v
solve (2.22), (2.23) and satisfy the bound (4.13).

Thus the proof of Theorem 4.1 is finished once the following bounds are
established:

Lemma 4.1 Under assumption (A.3), there is a constant ¢4 so that in (I,

IFESﬁ[ < Cy
[£-118,| < ¢4 (4.30)
P
18l [ IDldp' < ey
Furthermore
rezg
£-2T8, (4.81)

P
g4~ [ Irldy

goes to 0 as p goes to 0.
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Proof of Lemma 4.1. Denote

A= min |pi—pl (4.32)

Recall that p; = 0 and that max|p; — p;] < cA. The estimates are split into
two cases: p = O(A) and |p| >> A.
Using partial fractions for 1, one finds that

m g

B1=3"% a;(p—pi)
i=1 5=1
T'=Y anloglp—p) + > (1—4) ay(p—pi)'~? (4.33)
=1 =2
in which
Ia,-jl S CA_N+j. (4.34)

These formulas are used for p = O(A). For p >> A, there are simpler
bounds

Bt =0(p~N)
I = 0(pt-N). (4.35)
Estimate
WI=lﬁ@—MM
min; AN=rilp — pif |p| = O(&)
s { ron [i] >> A

mm1 AN=nilp — pmi=1 |p| =O(A) ' (4.36)

18l lp| >> A

IA

max;(A-N+1|log(p ~ pi)| + A~V+ni|p — pi[t=)  |p| = O(A)

L
Pl < { ~N+1 bl >> A

max;(A-N+1|(p — p;) log(p — ;)|
+A-N4mi[p — p;[2-m) [Pl = O(A)
pN+2, lp] >> A

P
f ITldp <
0
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Then
1+ max; |log(p — p;)| |p| = O(8)

I'g, < { Ip| >> A

< ot (4.37)

max; [p — p;| |log(p — p)* |p| = O(A)

Les < {1pmogp13 lpl >> A
< (4.38)

P . max; [(p — p;)log(p — ;)] lp| = O(A)

ﬂp‘fo ICldp’ < {lpl o] >> A
< e (4.39)

This proves (4.30), and since £-1 goes to 0 as p goes to 0, (4.31) follows
immediately.

The proofs of Lemma 4.1 and of Theorem 4.1 are now finished.

Proof of Theorem 4.2 The proof of Theorem 4.2 exactly follows that
of Theorem 4.1. Let (Fy, F;} and (Fy, ;) both satisfy assumptions (A.1),
(A.2) and (A.3), and let (g, ») and (ji, #) denote the corresponding solutions
fromn Theorem 4.1. Define

po= D(u—f)
p = DY v-1p) (4.40)
in which _ _
D=|F - Fl]yo + £y ~ Fz[qe.o- (4-41)
In the same way, define
a; = DMa;— @)
b, = D-1(b;—b) (4.42)
G,' = Dul(G,' — éi)'

Then the functions G satisfy the bounds (i), (i) and (iii) above. It follows
that (g, v) and (#, #) satisfy the bound (4.14).

Note: (1) Validity of the abstract Cauchy-Kowalewski Theorem without
analyticity in the “time” variable (p here) was first observed by Nirenberg
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[14] although it has not been used in an essential way before, to the best of
our knowledge. Here p is analytic only on a nontrivial Reimann surface &,
so that the classical proofs using power series expansions would fail.

(2) Although it is not presented here, further analysis in a neighborhood
of p = p; which is a zero of order n for 4, shows that the solution is analytic
in the variables y, p and (p—p;)?" log(p—p;). On the other hand, we have not
succeeded in extending this representation to an neighborhood of p containing
several zeroes (py,...,p,,) of order (ny,...,n,,) respectively for 5.

(3) The restriction(4.12) on the relative locations of the zeroes p; for 8
was used to simplify the cancellation between 8 and I' in Lemma 4.1. This
suffices for the genericity results, but it should be possible to remove the
restriction.

5 Legendrian Singularities and Blowup

This section contains a detailed exposition of the key idea introduced
in the Section 2; namely, the notion of a contact structure for the Boussi-
nesq PDE system and the interpretation of the solution of this system as a
constrained Legendrian surface. In previous sections these ideas were intro-
duced as motivation for the transformation of the Boussinesq system into a
particularly convenient and elegant form, which reduces the construction and
analysis of singular solutions to the study of an integral equation. However,
this geometric approach is more than just a convenient device; it clarifies
the influence of incompressibility on the generic singularity type. This un-
derstanding enabled us to predict the generic singularity types, which could
then be analytically verified.

The first step in a geometric analysis of a PDE system is to consider the
graph of a solution as the fundamental object, rather than just the solution
function. For the Boussinesq system, (2.1)-(2.4), the graph of the solution is
naturally situated in the large space with coordinates (z,y,u,v,(, p). Here
x = (z,y) are the independent variables and the other variables are depen-
dent, so that the geometric solution is a (2-dimensional) surface, which is a
graph over  in this six-dimensional space, if the solution is “classical”, i.e.
smooth.
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Some of the equations in the Boussinesq system have a fundamental geo-
metric character which enables one to reduce the size of this ambient space.
In particular equation {2.4), which is the incompressibility condition, implies
the existence of a stream function 1 whose partial derivatives are u and v
as described in (2.5). Furthermore, equation (2.1) implies that p is a (arbi-
trary) function of 9 as noted in (2.11). Equation (2.3) defines ( as a second
derivative of ¥. This reduction shows that the graph of 1 contains all the
information needed for the solution of the Boussinesq system.

The notion of a Legendrian surface, which is fundamental to our singu-
larity classification, requires the introduction of a contact structure encoding
the differential relation between ¢ and (u,v). Thus, the correct ambient
space for our analysis is a space with local coordinates (z,y,u,v,1) and the
solution surface is the lifting of the graph of 1 to this space. This space is
classically known as the space of 1-jets associated to functions ¥ and will be
described further below. The lifting of the solution surface to this space is
called the 1-jet prolongation of the solution surface.

For solution surfaces that are graphs, there are no singularities. The
geometric setting just described, however, easily admits generalization of a
solution graph to a solution surface which is a smooth surface (not neces-
sarily a graph) in the 1-jet space satisfying the contact constraint. Such a
solution may be interpreted as a multivalued classical solution-classical in
the sense that the surface will be assumed to be smooth or even analytic.
The Legendrian singularities are the branch curves of these surfaces, under
projection to x .

In the first subsection below we will define all of this precisely and review
the standard definition of a Legendrian manifold and a Legendrian singular-
ity. In the second subsection we introduce a directional compactification of
the jet space, which extends the theory to singularities at which the veloci-
ties, (u,v), blow up. Although this uses standard methods of projectivization,
their application in the context of solving PDE’s is novel.

5.1 Singularities of Legendrian Mappings

In order to systematically define and analyze multivalued solutions of the
Boussinesq system, it is convenient to rewrite the incompressibility condition
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in the differential form
dp =u+ . de (5.1)

in which u + = (—v,u).

This representation of incompressibility has the following interpretation.
If T := (x ,%(x )) denotes the graph of 1 in €, then the surface I' must
satisfy a differential constraint on its tangent planes; namely, that the one-
form

a=dp—ut- -de (5.2
must annihilate the tangent planes to the graph I'; i.e.,
a|rr =0, (5.3)

where TT denotes the tangent bundle to T'.
The usefulness of this representation is that a multivalued analytic stream
function may be defined as an analytic surface

§={(=x a"nb)if(w ,¥) = 0} (5'4)
where f is an analytic function and, most importantly,
The sheets of this surface, under projection onto z

pi(z,¥)—w, (6.6)

then give the branches of the multi-valued stream function .
More intrinsically an odd dimensional complex manifold equipped with
an analytic 1-form « satisfying the conditions

1. do is closed, and
2. da is nondegenerate as a two-form

is called a contact manifold. The 1-form is usually called a- contact form.
Any two-form, such as do, which satisfies the above two conditions is called
a symplectic form. In our application the manifold is ® and the form « is

defined in (5.2).
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In geometric optics there is a concrete realization of a contact mani-
fold which provides some intuition about these structures and is now briefly
reviewed. It consists of an n-dimensional observation manifold, {1, parame-
terized by & = (21,...2,), on which the rays propagate. B = 0 is called
the source manifold, parameterized by s = (8y,...8,_3). The rays emerge
perpendicular to B pointing into 2. The wavefronts are the level sets of the
distance function where distance is measured from the boundary 5. More
precisely, let F'(s ,2 ) denote the distance between a point s on 55 and
on Q. Then the distance function is

b(@ ) = ming esF(s ,@ ). (5.7)

For small values of the distance, 1 will always be single-valued. On the
other hand, for sufficiently large distances ¥ will be multi-valued generically.
Moreover, the wavefronts, which are the level curves of 1, acquire “wavefront
singularities” along the caustics of the rays. We will now reinterpret these
familiar constructions from geometric optics in terms of a contact structure,
which provides a mathematical definition of wavefront singularity.

To this end we introduce a generating function, F(s ,z ) on B x {}. In
the geometric optics model, as mentioned above, F' is the distance function.
The contact manifold is M = © x €* x C with coordinates (z ,w ,%) and
the contact form is o = dip — w -dz . Since do = dz Adw , this two-form is
certainly symplectic. The manifold M in this case is often referred to as the
space of 1-jets, denoted J1(§). Two scalar-valued functions Fy and F; on )
are said to have kt* order contact at £ € Q if the Taylor expansions of F;
and F, at = agree up to order k. J*()(z s denotes the equivalence class
of functions F' with F(a ) = f under the equivalence relation of k*» order
contact. In this way J*(Q) is naturally a bundle over J°(2) ( = £ x T).
The bundle projection p : J1() — J°(§)) amounts to forgetting the first
derivative in the the first order Taylor polynomial. Thus p is just the map
P w ,$) = (2 ,B).

An n-dimensional submanifold £ of M is called Legendrian if a|r, = 0.
The generating function F(s ,z ) generates a Legendrian submanifold of the
form

L={(z,w,¥)eM|8F/0s =0;w =08F/dx ;¢ =F(s,z)}. (58)

In the geometric optics context, £ is the “manifold of phases” for the wave-
fronts; the first condition says that the rays are perpendicular to the bound-
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ary, B, while the phase vector w is normal to the wavefronts. In this optical
model o|r; = d —w -dx = dF — dF {0z -dx = 0 by the chain rule.
Hence £ is manifestly Legendrian.

A Legendrian projection P : M — N, where N is an (n+1)-dimensional
manifold, is a submersion ! whose fibers, P~1(5) for € N, are Legendrian
submanifolds of M. In the geometric optics model, the projection map p :
JUR) — JO(R) described above and defined by p(z ,w ,9) = (z ,¥) is
Legendrian because the fibers are defined by & = constant and 1 = constant
so that o vanishes identically.

A Legendrian mapping is the restriction of a Legendrian projection to
a Legendrian manifold £. In geometric optics, Legendrian mappings arise
as the projection of the manifold of phases onto the (possibly multi-valued)
graph, T, of the stream function + in & x €.

A Legendrian singularity of a Legendrian mapping occurs at places where
the mapping fails to be an immersion?; i.e., at the critical points of the
mapping. In geometric optics these are places where the graph of the stream
function acquires a “cuspidal” singularity. Since the level sets of this graph
are just the wavefronts, they inherit the singularities of the graph. Thus
the mathematical definition of Legendrian singularity precisely encodes and
generalizes the intuitive notion of a wavefront singularity.

We can now say what is meant by a Legendrian singularity “type” and
furthermore what it means for a type to be “generic”. First, define the
equivalence of two Legendrian mappings. This is effectively summarized in
the diagram of Figure 1 where M; and M, are two contact manifolds of the
same dimension.

We say that two Legendrian mappings, p; |z, and pylc,, are equivalent if
there exist diffeomorphisms H and h making the diagram of Figure Fig3.1
commute, with £, = H(L,), and preserving the respective contact structures
(i.e. the pullback H*(a;) = a;). This definition can be localized at a point
in the usual way by passing to germs of Legendrian mappings and germs of
diffeomorphisms [21].

A Legendrian singularity type is an equivalence class of germs of Legen-
drian mappings. The equivalence class of nonsingular germs is also a singu-
larity type by this definition; in what follows, however, we will only be inter-

1A submersion is a mapping whose derivative at each point is surjective.
2An immersion is a mapping whose derivative at each point is injective,
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Figure 1: Diagram for Equivalence of Legendrian Mappings

ested in singularity types whose representative germs are actually singular.
Since these equivalence classes are preserved under coordinate changes that
preserve the contact structure, a singularity type has an intrinsic geometric
significance.

There is a natural topology on the space of Legendrian mappings which
is induced from the C* topology on the space of smooth mappings [21].
With respect to this topology we say that a germ of a Legendrian mapping
p|c is stable if any Legendrian map germ in a neighborhood of this map is
equivalent to the germ of p|c. In other words the equivalence class of this
germ is an open set in the space of Legendrian map germs. If this open set
is dense as well, we say that the singularity type is generic.

Although it would appear that the clagsification problem for Legendrian
singularities is quite complicated because of all the structures involved, there
are ways to reduce it to a tractable singularity calculation. This is particu-
larly true for the following example:

Consider the classification for n = 1, which serves as an illustration and
is be used later. In this case, M is the jet space J1(= T°) with coordinates
(x,v,1), the contact form is & = dyp — vdz, and the Legendrian submanifolds
are curves,
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Figure 2: Generic Legendrian curve and its projection. The curves are labeled

C1 for £, C2 for P(L) and C3 for n(L).

This classification is tractable because a Legendrian curve, L, is com-
pletely determined by its projection onto the (z,v) plane.

As in Figure 2, let 7 : (z,v,%) — (z,v) denote the projection onto
the (z,v)-plane and let P : (z,v,%) — (z,%) be the Legendrian projection
from J! to JO introduced earlier. Along the projected curve, x(L), one
may implicitly solve for v = v(z). Since a = 0 along the curve £, then
dip = v(z)dz, i.e. v =1, and

d(e) = [ v(e)dt. (5.9)

Thus the curve £ is parameterized by z as (z, v(z), ¥ (z)).
Notice that if the mapping from 7(L) to the x-axis given by (z,v(z)) —
¢ is nonsingular at a point, then the map P : £ — JO is nonsingular at
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the corresponding point. This is a consequence of (5.9). Moreover, the
singularities of the Legendrian mapping P from L to the (x,v) plane are
in one-to-one correspondence with the singularities of the projection from
7(£) to the z-axis. But singularities of this latter projection are in 1:1
correspondence with critical points of the “inverse” function z(v). We know
from Morse theory [13] that the generic critical points of scalar functions are
just the simple critical points; i.e., dz/dv = 0 but d?z/dv? # 0. Any higher
order critical point breaks up into several simple points under an arbitrarily
small perturbation of z(v). Moreover, it is straightforward to show that
there is a local change of variables such that this function has the normal
form z(v) = v

Therefore generic singularities have the normal form v(z) = /2 and, by
(5.9), () = 223/2. Thus the image of a Legendrian curve in the (z, ) plane
in the vicinity of a generic singularity has the form of a simple isolated cusp.

5.2 Legendrian Blowup

The standard theory of Legendrian singularities is extended here to allow
infinite velocities. One says that a Legendrian manifold £ blows up if there is
a sequence of points (& ,,, W ,,¥,) € L such that w ,, — 0o as m — oc, but
such that the closure of P(L£) in  x € is a hypersurface, possibly singular,
with a vertical (i.e. parallel to the 1-axis) tangent plane over & = lim® ,,.
So the limit point exists in  x T although not in M. This is remedied by a
directional compactification of M in the direction of the fibers (coordinatized
by w ) so that the contact structure extends to this compactification. This
compactification is again illustrated in the case when § is one-dimensional
(n = 1). As described in Section 3.1, a Legendrian manifold for n = 1is a
curve £ with parameterization z — (z,v(z),¥(2)). A blowup is a point on
this curve whose v-coordinate becomes infinite. The projection of this curve
into JO (Figure 3a) has coordinates (z,), and may be interpreted as the
(possibly multi-valued) graph of 4 over the z-axis. The blowup corresponds
to a point on this image curve which has a vertical tangent (i.e. parallel to
the 1-axis).

The directional compactification is achieved by projectivizing the fibers
of the map P : J1 — JO, replacing the coordinates on J1 by (, [vy : v4],%), in
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Figure 3: Generic blowup for Legendrian curve: symmetric (a) and asym-
metric (b).

which [vg : v;] are projective coordinates. In this representation [vp : v,] and
[we : w,] denote the same point if there is a nonzero constant A such that
vy = Muy and v; = Aw,, and the contact form is written as o = vedy) — vydz.
The original J! consists of the points with vy # 00 that [vg : v1] = [L : vy /o).
The projectivized J1, which we denote by J! contains the additional points
(,[0: 1],4(Z)) for each fiber, which correspond to places where the original
velocity is infinite. This gives a one point compactification of each fiber and
thus a directional compactification of J1.

The contact structure remains nondegenerate under this extension. Set
w = vy/v; and & = dz — wdy. Then d& = —dw A dyp which is still non-
degenerate in a neighborhood of (,[0 : 1],%(Z)). Thus the curve remains
Legendrian in J1. Notice, however, that the roles of z and 1) have been in-
terchanged and it is natural to regard = as the “stream function” in these
coordinates.

The presence of a blowup point is generic since a small Legendrian per-
turbation of w(£) cannot remove a vertical tangent. One might first expect
that the generic blowup for n = 1 would correspond to the inverse function
of the cusp, i.e. to = ¥3/2, which is graphed in Figure 3a. This blowup
point coincides with a Legendrian singularity, however, which is not generic
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as shown next.

It is straightforward to check that the curve given by the parameterization
p— (¥ = £p?,w = p,z = p®) is Legendrian with both a cuspidal singularity
and a blowup at p = 0. Its normal form is v(z) = z~/2 (v = 1/w) and
(z) = 222/3. Figure 3a depicts the graph of this ¢ which is the projection
of the Legendrian curve under the extended P : J! — J9. Notice that in
this special example the location of the vertical tangent (Legendrian blowup)
coincides with the cuspidal point (Legendrian singularity) at p = = 0.

However, the perturbation p — ( = 3p?,w = p+ 2¢,z = p> + ¢p?) is
also Legendrian with a Legendrian singularity at p = z = 0. The blow-

up occurs where w = 0, i.e. at the point of vertical tangent, p = —%e or
T = 54'7763. The projection p — z is given by & = p* + ep? whose derivative is

p(3p+2¢). Thus w = p+ ¢ = 0 corresponds to a simple critical point of this
projection and thus the normal form for the blowup is ¢ = 21/2 which is not
a Legendrian singularity. The corresponding P-projection of the Legendrian
curve is depicted in Figure 3b.

So generically a blowup does not coincide with a singularity. However, if
there is an additional symmetry imposed on the system, a blowup may be
forced to coincide with a Legendrian singularity.

We summarize the results of this section in the following:

Proposition 5.1 The generic type of a codimension one Legendrian singu-
larity is

blx) ="
The generic type of a codimension one Legendrian blowup is
b ) ="

Proof: The normal form for generic codimension 1 Legendrian singularities
was explained at the end of section 3.1. The normal form for a generic
Legendrian blowup may be established along similar lines. First, suppose
that the blowup has the form ¢(z ) = :c%/ % or z; = 1?, which corresponds to
a curve £ in J! for which 7(£) has the form w; = 2t. In order to preserve
blow-up we only consider perturbations of this curve which continue to pass
through the origin w; = ¢ = 0. Under small perturbations of this type,
the curve continues to be locally linear to leading order; i.e. of the form
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w; = 2(1 + ¢)i. Thus, the corresponding curve in JO will be of the form
z, — ¢ = {1 4+ €)¥? (c is a constant of integration) which is of the same type
as the original curve with a vertical tangent located at #y = ¢. Thus, this
type of blow-up is stable. On the other hand, any more complicated normal
form corresponds to a coincidence of a vertical tangent with a Legendrian
singularity. By the first part of this proposition, we may assume that this
singularity is equivalent to one of the form ¥(z) = 22%/3, since otherwise
a perturbation will break it up into singularities of this type. However,
as was demonstrated in the paragraphs preceding the proposition, further
perturbation splits the singularity from the blowup, leaving a blowup point
with the stated normal form.

6 Numerical Method

This section presents a numerical method for construction of a particular
class of solutions to the system

1tbyp:r: - llwb:cpy =0 (61)
—(+Ap =0 (6.3)

with boundary conditions given by

Pz, +1) = 0 (6.4)
b(z,y)= Pz +2m,y) (6.5)
plz,y) = plz+2m,y). (6.6)

Condition (6.4) states that on the boundary y = 41 the normal component
of the velocity is 0 and that the total flow in the x direction is 0. After the
solution is computed, we then deduce singularity properties (i.e., type and
location) via analysis of the Fourier spectrum in z.
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6.1 Upper Analytic Solutions

We compute solutions to (6.1),(6.2) and (6.3) which are analytic for Im(z) =
0, and thus can be expanded in a Fourier series in z as

@) = 3 e (6.7)

k>0

The aim here is to numerically construct steady Boussinesq solutions having
singularities of the type derived above. As we argue below, such singularities
are observed in a wide range of numerical solutions, at least for the symmet-
ric case. Thus, the computational results provide numerical affirmation for
the genericity of these singularities, which has already been established ana-
lytically. They also show that there are no global constraints for Boussinesq
solutions that are missing from our local singularity analysis.

Upper analyticity may seem to be an overly restrictive assumption, espe-
cially in light of our goal to investigate generic singularities. Note, however,
that the upper analyticity of a function is a property of an infinite number of
its Taylor coeflicients. Singularity type, on the other hand, depends on only
a finite number of Taylor coefficients; i.e. it is a more local property than
is analyticity. Thus we expect that restriction to upper analyticity does not
alter the generic singularity type, although we have no proof of this. This
expectation has been partially verified since singularity types (ii) and (iii)
have been found numerically, as described below. Type (i) has not yet been
observed numerically.

Introducing upper analytic functions of the form (6.7) in (6.1),(6.2) and
(6.3) leads to the following equation for the Fourier coefficients:

. d s d
%kpka;%—ﬁk@bk@% = Ay (6.8)
e 2 d er d A
Zk(:k@'l,bo*"?rk'l!)k@(ﬂ—%kpk pua Bk (69)
N d2 . N
—Ck"f':i‘g‘;z“/%—kwk = 0 (6.10)
or equivalently
d? . 1 ' 2447
d—gﬁ¢k(y)+(gipa”k)¢k(y) = Gy (6.11)
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—Pk"“;if’kﬂf; = A (6.12)

- 2 n
G + P = B; (6.13)
in which
k=1 R d d -
A, = ik —1 i f — P 6.14
k E ( ) ['ﬁbk rdyﬂz Pk rdy?/)r] ( )
k-1 N d . o d o
B, = (k-1 ag—C == 6.15
k ;1( )[¢k 'dyC' Cr 'dyd)‘] (6.15)
1 1

Tt should be noted that the A, and B, depend on th,, and . only for
k' < k.

This system has several important features. First, the non-linear bound-
ary value problem (6.1),(6.2) and (6.3) has been reduced to a series of linear
two-point boundary value problems in y for the Fourier coeflicients. Second,
since the computation of mode k depends on only modes &' with k' < £, the
system is lower triangular. Therefore no truncation error is introduced by
the restriction to a finite set of wavenumbers. Finally, since the calculations
are performed entirely in wave space, no aliasing error occurs.

The computation is started by specification of the zero mode (pg, 1o, (o) of
the solution. Then the equation for the first mode {4, ¥, (1) is an eigenfunc-
tion problem. Once these two modes are determined, the remaining modes
can be computed by solution of equations (6.8), (6.9) and (6.10). These equa-
tions are nonsingular as long as no resonance occurs, and none was found in
any of the computations.

6.2 Determination of the Zero order Mode

In order to construct solutions to (6.8), (6.9) and (6.10) we need to specify
the zero order modes of the Fourier expansion. We select these coeflicients
in the form

po = poly) (6.17)
Yo = —ioy (6.18)
L= 0. ' (6.19)
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Equation (6.17) means that the density is stratified in y. Equation (6.18)
gives a constant velocity in the z direction.
The equation for ¢, is

B bt (gt — 1)y = 20
;l—y'ﬂ’;-i-(ggpo— Jbi = 0 (6.20)
Py (£1) = 0. (6.21)

We can solve (6.20) either by specifying po and solving the eigen-value prob-
lem or by specifying 4, and solving for py. The latter is in general much
simpler and is the approach that we took.

The specification of ¢1 is performed in several steps: First, we determine
a preliminary choice 1,b1 v,[)‘-’ for the extreme case in which the density Po
is a Heaviside function. Then this extreme mode, which is discontinuous, is
smoothed out to obtain the usable mode ;. The smoothing is performed
using a function ¢ defined below. Finally, the choice of ¢, and thus of Wy, is
made in two ways. The first, described in Section 6.2.1, is symmetric with
respect to y and the second, in Section 6.2.2, is asymmetric.

If the density po is a Heaviside function H(y), then equations (6.20) and
(6.21) for oy = ¢'° become

8y) _

¢1 (= g )¢1 =0 (6.22)
fo(a1) = 0
in which §(y) = 4L, Solutions to (6.22) are given by
" . sinh(y -1} 0<y <1
vily) = C{ —sinh(y+1) —-1<y <1 (6.23)
t
, = anh(l).
2

To obtain smooth data, we construct a smooth transition function ¢ = ¢(y)
such that

#(~1) ; -1 (6.24)



and smooth out 1/3? as

A +1, . -1, .
b = (C 3 Dsimbly - 1) + (25 )by + ). (6.25)
In terms of ¢, and thus of 1,51, we can then solve for pg from
d .J,n
—po = o2(1 - ZL). 6.26
Gr=r0-) (6.26)
The conditions
#(£1) = ¢"(£1) =0 (6.27)

must be satisfied in order that the limits at +1 in (6.26) make sense.

6.2.1 Symmetric

For the symmetric case, we specify a ¢ which maintains the symmetry of the
solutions (6.23). We shall use the choice

By) = ex tanh(3) + ey + coy” (6.28)
Choose the ¢; so that ¢ satisfies (6.24), (6.27); i.e.
3
a = 7 (6.29)
3
@ = 55(f"(1)- 2f(1)) (6.30)
-1
—_
G = o (1) (6.31)

in which f(y) = tanh(¥) and d = 3f(1) — 3f'(1) + f*(1).

The resulting solution has the symmetry

P(—e,—y) = ¥(z,y) (6.32)

which implies that 1¥(—z) = ¥(z) for y = 0. This is the symmetry condition
employed in Theorem 3.2.
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6.2.2 Asymmetric
The discontinuous solution (6.23) is symmetric in y. This symmetry may be
broken by choosing an asymmetric transition function ¢ of the form

3(0) = extann (612 + (%) = (co + a + o + o’ + car®), (6:33)

in which

o = 1+ef(—1)

¢ = Csf'("“l)
1
€ = ‘2"05)(”(_1)
e = —1+2[2f - d)1) - @F 43/ +2N(D] (634

1 1
o = ()= I=1))es = 7ea

s = 613U — )+ 1) - B+ )+ M0

in which f(y) = tanh(8(¥)? + (%)*). This choice of the ¢;’s insures that the
conditions (6.24), (6.27) on ¢ and its derivatives are satisfied. The param-
eters § and A control the amount of asymmetry and the sharpness of the
approximation to the Heaviside function, respectively.

6.3 Description of Numerical Method

The two-point boundary value problems are solved using a centered fourth-
order finite difference scheme. The boundary conditions are handled by using
an unbalanced fourth order scheme at the endpoints. The resulting system
was solved by direct Gaussian elimination at the ends; followed by application
of the banded solver DGBSL from SLATEC.

Round-off error grows with the wave number, and could eventually de-
stroy the calculation. Although the mechanism which causes this growth is
not fully understood, it is controlled by the use of high precision calculations.
We utilized MPFUN, a multi-precision package developed by David Bailey
at NASA. Precision levels of 128 and 200 digits were used in the calculations.
The computations were run on a Sun SparcServer 1000.
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6.4 Numerical Detection of Singularities

The presence and type of singularities was deduced through a numerical
analysis of the Fourier coefficients of the computed solution.

6.4.1 Analysis of Fourier Coefficients at Singularity

Consider a function f : € — € that can be represented in a neighborhood
of z, as

f(2) = oz — 2,)~1+0) 2 0 (z — 2,)P. (6.35)

The summation is assumed to represent a function that is analytic in some
neighborhood of z,. Under these assumptions, the Fourier coefficients of f
are asymptotic to

fk ~ bl gikztiE(148) o ko oo, (6.36)

Details of this result can be found in [7].
Writing out the real and imaginary parts of a, b and z, as

a = al + ?:az
b = b1 exp(ibz) (6.37)
T, = Tq -+ i?"l,
(6.36)becomes
i ~ bik#ekr exp(ikry + daglog k + iby) 5 k — oo (6.38)

In the procedure outlined in Section 6.2, 1,51 is chosen to be real, which
leads to

Pi(y) = #2Gu(v), (6.39)

in which the §;(y) are real. This form of the Fourier coefficients corresponds
to the following symmetry in z:

11;(% +z)= m@b*(g — *) (6.40)
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in which * denotes complex conjugation. This symmetry causes the singu-
larities to occur in pairs. The asymptotics of the Fourier coefficients of 4 are
then

Py ~ bik*rerrsin(kry + aylogk +8;) 3 k— oo. (6.41)

The Fourier coefficients for p and ¢ have a similar form.

6.4.2 Sliding Parameter Fit

To obtain the values of the parameters in (6.41) we perform a sliding six-
parameter fit of the Fourier coefficients. Each parameter fit is performed for
every fixed value of y as follows:

At each k, we exactly fit the form in (6.41) to the values of the data
at k,k+1,..,k + 5, using the SLATEC package DNSQE. A fit is deemed
successful if the values of the parameters are (approximately) independent

of k.

7 Computational Results

The computations were performed for 3200 and 6400 points in y. The
precision used was 128 and 200 digits respectively. The parameter A, which
controls the sharpness of the approximation to the Heaviside function, was
equal to 1 in both the symmetric and asymmetric cases.

7.1 Symmetric

The computational results and the singularity fit are very precise and
clean in the symmetric case. Figure 4 shows contour plots of the real parts
of the complex solutions on ¥, w and p for real values of = and y, and a
plot of the profile of py. For each value of y, there is a singularity at some
complex value of z. In this solution the closest singularities are at distance
1 from the real axis, and the real parts of the singularity positions z,y are
a,pproxmla,tely at the centers of the rolls shown in Figure 4. Note, however,
that the solution can be given an arbitrary shift in 2, so that this could also
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be a plot for z having imaginary part of 1 of a solution with singularities
located on the real axis.

Figure 5 shows plots of the parameter fits for the stream function with
discretizations of 3200 and 6400 points. The parameter a, is of main interest
because it determines singularity type. Figures (6),(7) show plots of the a,
parameter fits for the density and vorticity with discretizations of 3200 and
6400 points. The results are as follows:

Stream Function

ay = “%§ (x) ~ zé
Vorticity
4
a = %5 C(:E) ~ T3
Density
2
ay = -3 plx)~a7s.

This is a singularity of type (iii). Note that the vorticity (, the density
p and the velocity v = v, all blow up at the singularity, and that p = O(v?).

While these results were for A = 1/3, other values of A gave similar
results with the same values of ,, i.e. with the same singularity type. This is
numerical evidence for the genericity of singularity type (iii) in the symmetric
case.

7.2 Asymmetric

The numerical detection of singularity properties in the asymmetric case
~ is not as straightforward as in the symmetric case. Although the full rea-
sons for this difficulty are not very clear, we believe that it is partly because
singularities come in pairs that are very close together, for small asymmetry
parameter §, since they come from the perturbation of a symmetric singu-
larity, as in Figure 3. For such nearby singularities, it is difficult to separate
the different exponential rates of decay, due to slightly different imaginary
components r;. In addition, small differences in the real part r, may result
in “beating” of the oscillatory part of (6.38). Since we do not have direct
control over the location of the singularities, a number of computational tri-
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als were performed with different values of é in order to obtain one with a
clean fit to the singularity parameters. The results presented here are for
6 = —3.25.

Figure 8 shows contour plots of the real parts of the complex solutions
¥, w, p for real values of z,y, and a plot of the profile of p;. As in the sym-
metric case, the singularities are at distance 1 from the real axis. Figure 9
shows plots of the parameter fits for the stream function with discretizations
of 3200 and 6400 points. Figures 6 and 7) show plots of the a; parameter
fits for the density and vorticity with discretizations of 3200 and 6400 points.
The results can be outlined as follows:

Stream Function

Vorticity

Q
—
fl
b =
Sy
——
3]
——
2
5]
I
(X1

Density

This is a singularity of type (ii), and is evidence for the genericity of this
singularity type. We emphasize again, however, that good fits to the singu-
larity parameters were not obtained for general values of A and 4.

8 Conclusions

By a combination of analysis and numerical calculation, we have derived

“and verified the generic types of singularities of codimension 1 for the steady

Boussinesq equations of two-dimensional, stratified flow. The singularity
types are

() ¢ = 232, um 212, & z-1/2
(ii) ¥ = 212, ur o=1/2,( m 2~3/2,

If the solution has the symmetry ¢(—z,0) = (=, 0), the generic type is

(iii) ¢ = 223, u m z71/3,( s 2473,
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In the latter two cases, the velocity v blows up, and also the density p blows
up like v2. Extension of these results to the Euler equations for axi-symmetric
flow with swirl is straightforward.

The significance of these results is, first, that they demonstrate the ef-
fectiveness of the geometric approach for analyzing singularities of PDEs.
In particular, we have succeeded here in analyzing problems in which the
dependent variables have blowup.

Second, we expect that these results can be a guide in the search for
time dependent singularities for the Boussinesq and Euler equations. In
particular, we expect that such singularities may propagate in the complex
space plane ((z,y) € T?) and that a complex conjugate pair may hit the real
plane at some finite time. Moreover, the generic singularity types for the
steady Boussinesq system are also generic among traveling wave solutions,
as shown in Appendix A. Therefore, as long as the singularities remain away
from the real plane, we conjecture that the form of the singularity may be
the same (or very similar to) the generic steady singularities described here.
‘When the collision of singularities occurs on the real plane, the singularity
type will necessarily change, but still the generic types in the complex plane
will influence the possible types of singularities at the collision.

Finally, it is important to point out that the question of singularity for-
mation in finite time is somewhat artificial, in that nearly singular behavior
is indistinguishable physically and numerically from an actual singularity for
many applications. Therefore this theory will be equally effective if it can
be used in the description of singularities that are not real, but lie in the
complex plane close to the real plane,

9 Appendix A. - Traveling Waves

Consider solutions to the time dependent problem

Ct + /‘l)ygx - l!px(y + Pz = 0 .
C+Ap =0 (9.3)
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which are traveling waves in 2 with constant speed ¢o. This corresponds to
solutions in which information (i.e. a singularity) propagates in the complex
plane at speed o in the imaginary direction. It follows that any singularities
in the complex plane will reach the real axis in finite time. A second inter-
pretation of this ansatz is that the Fourier expansion in z consists of purely
growing modes.

Combining the traveling wave ansatz with upper analyticity gives solu-
tions of the following form.

oo
f(2,9,8) = foly) + Y frly)etr=rer. (9.4)
k>0
In this context, the zero order mode is a steady state, the k = 1 term is an
unstable linear mode added on to this steady state, and the remaining terms
are added to make the sum a nonlinear solution. Physically, we can take a
steady state in which the density varies smoothly in y and in which there is
no fluid motion. This type of steady state is described here by

po = paoly) (9.5)
Yo = 0 (9-6)
(G = 0. (9.7)

The steady solutions can be recovered from the traveling wave solutions
via Galilean invariance; i.e.

’?‘bsceady = ¢traue[ing - ZO’y (98)
Cstemdy = Chv'aueh'r:g' (99)
pstaady = ptraueling' (9‘]‘0)

The zero order modes will be adjusted accordingly to give the form (6.18).
Consideration of the traveling wave ansatz was the starting point of the
numerical investigation of this problem.

This shows that the class of traveling wave solutions is equivalent to the
class of steady solutions for the Boussinesq equations.
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