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Abstract

Image reconstruction is a mathematically ill-posed problem and regular-
ization methods must often be used in order to obtain a reasonable solution.
Recently, the total variation (T'V) regularization, as proposed by Rudin, Osher
and Fatemi (1992), has become very popular for this purpose. In a typical iter-
ative solution of the nonlinear regularization problem, such as the fixed point
iteration of Vogel or Newton’s method, one has to invert linear operators con-
sisting of the sum of two distinct parts. One part corresponds to the blurring
operator and is often a convolution; the other part corresponds to the TV reg-
ularization and resembles an elliptic operator with highly variable coeflicients.
In this paper, we present a preconditioner for operators of this kind which can
be used in conjunction with the conjugate gradient method. It is derived from
combining fast transform (e.g. circulant) preconditioners which the authors had
earlier proposed for Toeplitz matrices and elliptic operators separately. Some
numerical results will be presented.

Key words. total variation, image processing, denoising, deblurring, precondi-
tioned conjugate gradient method.

1 Introduction

In this paper, we apply conjugate gradient preconditioners for the iterative solution
of some large-scale image processing problems. The quality of the recorded image

*Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong. Re-
search supported in part by HKRGC grant no. CUHK 178/93E and CUHK DAG grant no.
220600280.

iDepartment of Mathematics, University of California, Los Angeles, 405 Hilgard Avenue, Los
Angeles, CA 90095-1555. Supported by grants NSF ASC-92-01266 and ONR-N00014-92-1-1890.
Part of this work was performed during a visit to the Department of Mathematics at the CUHK.

'Department of Mathematics, University of California, Los Anpgeles, 405 Hilgard Avenue, Los
Angeles, CA 90095-1555.



312 RayMmonp H. CHAN, Tony F. CHaN, CHIU-KwWONG WONG

is usually degraded by blurring and noise. Given the recorded image, the blurring
function and the noise distribution, the image restoration problem is to find an ap-
proximation to the true image. If we denote K to be the blurring operator and 7 the
noise function, then the image restoration problem can be expressed as

z=Ku+mn, (1)

where z and u denote the functions containing the information of the recorded and
original images. Note that when K = Z, the identity operator, the image restoration
problem means to extract image from a noisy image. This problem is usually referred
to as the denoising problem. If X is a convolution operator,

Ku(z) = [ ko= vu)dy @

we need to simultaneously deconvolve and denoise the recorded image during the
reconstruction process. We refer to this as the denotsing and deblurring problem.

One of the successful approaches to estimate u from z is the Total Variation (TV)
method of Rudin, Osher and Fatemi [26, 25]. They consider solving the following
constrained minimization problem:

mumfn |Vuldz  subject to ||[Ku-— z|? = o® (3)

where ||-|| denotes the norm on L*(£2) and o is the noise level. The quantity [ |Vuldz
is called the total variational norm of w., This method is extremely effective for
recovering blocky, discontinuous, function from noisy data.

Vogel considered the following closely-related regularization problem:

1 = ] Zi., — 2
min f(u) = min 2||)‘0u, 2| —;»-a/n Vul|dz, (4)

see [1, 29]. Here « is a positive parameter which measures the trade off between a
good fit and an oscillatory solution. At a stationary point of (4), the gradient of f
vanishes, giving:

— * — _ N Vu .
g(u) = K*(Ku — z) — aV (-————lvul) =0, z € £, (5)
ou

The second term in g is obtained by taking the gradient of « [, [Vuldz and then
applying integration by parts from which Neumann boundary condition results. We
remark that the Euler Lagrange equation for (3) also has a form similar to (5).

Due to the term 1/|Vul|, (5) is a degenerate nonlinear second order diffusion
equation. The degeneracy can be removed by modifying the diffusion coefficient; see
[29]. More precisely, if we let

1
f>0,

S S S
Y, |Vul? + (6)

Lolupp = -V - (xg(u)Vv)
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and _
Ag(uv = (KK + alg(u))v,

then (5) becomes the following non-degenerate system

Ag(u)v = K*z, z € £, with g—% = (, z € 951. (7)

A recent survey of related PDE approach to image analysis can be found in [2].
Many numerical schemes have been devised to obtain minimizer of the functional
(4) by solving the gradient equation (7) directly. For example in [25, 26], an explicit
time marching scheme for u; = —g(u) is used to solve (5). However, the time step is
bounded above by a CFL condition. In [29], Vogel introduced the “lagged diffusivity
fixed point iteration”, which we denote by FP, to solve the system (7). If Ag(u*), K
and Ly denote respectively the discretization matrices of Ag(u*), K and Lg, then the
FP iteration will produce a sequence of approximations {uf} to the solution u and

can be expressed as
Ap(uF)ut = (KK + aLg(u®)) ' = K*2, k=0,1,.. (8)

In the denoising case (K = I), numerical experiment in [29] showed that the FP
iteration gave a faster convergence rate than the time marching method. Note that
in (8), obtaining u**! from u* requires to solve a linear system with coefficient matrix
K*K + aLg(uf). For the denoising problem, the coefficient matrix is a sum of an
identity matrix and a sparse symmetric positive definite matrix that arises in the
discretization of the elliptic operator Lg(u*). To solve such systems, one can use
multigrid methods or ILU methods; see [29, 24, 28]. On the other hand, for the de-
noising and deblurring problem, K corresponds to a discretization of the convolution
operator {2), and often K will be a Toeplitz matrix. Thus, the coeflicient matrix in
(8) will correspond to a sum of a convolution operator and an elliptic operator. We
emphasize that it is not easy to devise fast iterative algorithms to solve this linear
system. For example, the technique of applying multigrid method to solve such linear.
system is not yet well developed. Vogel and Oman [30] has recently proposed using
a “product” preconditioner for (8) which allows the deblurring part K*K and the
PDE part Lg to be preconditioned separately. An alternative approach to solving the
gradient equation (8) is to directly solve the minimization problem (4) by non-smooth
optimization techniques; see for example [21, 22]. ,
In this work, we apply the preconditioned conjugate gradient (PCG) method to
solve (8) and we concentrate on finding a good preconditioner for (8). Given a ma-
trix A, there are two criteria for choosing a preconditioner for A; see [18). First, a
preconditioner should be a “good” approximation to A. Secondly, it must be easily
invertible. Recall that Ag(u*) corresponds to sum of a convolution operator and an
elliptic operator. There are many “good” preconditioners for the individual parts.
For example, for the elliptic part, we have the MINV preconditioner [15], the MILU
preconditioner [16], the circulant and trigonometric type preconditioners [6, 7], multi-
grid and domain decomposition preconditioners {28]. For the convolution part, we
have circulant type preconditioners {13] and sine transform preconditioners [11]. If

"2
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A, and A4, are “good” approximation for the elliptic part and the Toeplitz part in
(8) respectively, then A, + Ay should be a good approximation to Ag{u*). There-
fore, A, + A, satisfies the first criteria of being a preconditioner. Unfortunately, the
matrix-vector product (A; + Az)”'v cannot be formed easily in general even though
A7'v and A;'v can. Hence, this approach of constructing preconditioner for Ag(u*)
cannot work in most situations. In this paper, we propose a preconditioner which is
of the form A, + A, and which is easily invertible.

For matrices arising from elliptic boundary value problem, a “good” preconditioner
must retain the boundary condition of the given operator [23]. Based on this idea,
optimal sine transform preconditioners were constructed [12] for elliptic problems with
Dirichlet boundary condition. If the boundary is rectangular, it was proved [12, 31]
that the convergence rate of the PCG method with this preconditioner is independent
of the grid size. In our present problem, Neumann boundary condition is imposed.
Since the discrete Laplacian on a unit square with Neumann boundary conditions
can be diagonalized by the discrete cosine transform matrix, this motivates us to use
the optimal cosine transform approximation {7] to Ls(u*) as a preconditioner for the
elliptic part in (8). Note that the idea of using sine transform preconditioners for
elliptic problems was also introduced by Huckle [20], Fiorentinno and Serra (17].

In addition, R. Chan, Ng and Wong [11] applied the sine transform approximation
to construct preconditioners for Toeplitz systems. It gives rise to fast convergence
of the PCG method. They mentioned that the PCG method with optimal cosine
transform approximation can also produce the same convergence result. Therefore,
it seemns reasonable to use a cosine transform approximation to construct precondi-
tioners for the system (8).

Our main idea in this paper is to propose a preconditioner by taking the sum
of cosine transform approximation to the matrices K*K and La(u*) separately, it
can still be diagonalized by the discrete cosine transform matrix and therefore easily
invertible.

In the next section, we will define and construct the optimal cosine transform
approximation for a general matrix. In §3, we will use the approximation to construct
a preconditioner for the system (8). In the final section, numerical performance of
the preconditioner will be presented.

2 Optimal Discrete Cosine Transform Precondi-
tioner

The concept of optimal transform approximation was first introduced by T. Chan
(13]. Since preconditioners can be viewed as approximations to the given matrix
A, it is reasonable to consider preconditioners which minimize ||B, — Ay|| over all
B, belonging to some class of matrices and for some matrix norm |} - {|. T. Chan
[13] proposed optimal circulant preconditioner that is the minimizer of the Frobenius
norm ||B, — An||r over the class of all circulant matrices B,.. These preconditioners
have been proved to be very effective preconditioners for solving Toeplitz systems
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with the PCG method; see [5]. Analogously, R. Chan, Ng and Wong (11} defined
the optimal sine transform preconditioner to be the minimizer of {|Bn — Aylip over
all matrices B, which can be diagonalized by the discrete sine transform. They
proved that for a large class of Toeplitz system, the PCG method with the sine
transform preconditioner converges at the same rate as the optimal circulant one.
Following the same approach, we are going to construct the optimal cosine transform
preconditioner for general matrices and then apply it to precondition both K*K and
Lg in (8) separately. Recall that the reason for us to use “cosine” instead of “sine” is
that the cosine transform approximation matches the Neumann boundary condition
of the system (8). For a survey on fast transform type preconditioners, we refer the
reader to [10)].

2.1 Construction of One-dimensional Preconditioner

Let us denaote C, to be the n-by-n discrete cosine transform matrix. If ;; is the
Kronecker delta, then the (i, 7)th entry of C,, is given by

/2::5,1 Cos((i—l)(;f—l)w)’ 1<ij<n, (9)

see Sorensen and Burrus [27, p.557]. We note that the C.’s are orthogonal, 1e.
C,Ct = I,. Also, for any n-vector v, the matrix-vector multiplication C,v can be
computed in O(nlogn) real operations; see [32].

Let Bnhy«n be the vector space containing all matrices that can be diagenalized by
C,. More precisely,

Buxn = {CLALC, | Ap is an n—by—n real diagonal matrix}.

For an n-by-n matrix A,, we choose our preconditioner c¢(A,) to be the minimizer
of ||Bn — Aql|F in the Frobenius norm in the space Byxn. According to the termi-
nology used in T. Chan, the approximation is called the optimal cosine transform
preconditioner for A, and denoted by ¢(A,). It can be shown that c(A,) is linear and
preserves positive definiteness; see [19].

We will show in the following that ¢(A4,) can be obtained optimally in O(n?)
operations for general matrices. The cost can be reduced to O(n) operations when
A, is a banded matrix, or a Toeplitz matrix (in our case Lg and K respectively)
which is the same as that for constructing the optimal preconditioners. In order to
construct ¢(A,)} efficiently, one way is to make use of a sparse and structured basis
for Bxn, [11].

Lemma 1 (Boman and Koltracht [3]) Let Q;, i = 1,...,n, be n-by-n matrices
with the (h, k}th entry given by

1 iflh—kj=1i-1,
1 fht+k=2n—1+2,
0 otherwise.
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Then {Q:}", is & basis for By

We display the basis for the case n = 6.
100000 11000 0Y) /01100 0Y
010000 101000 100100
0010G0CO 010100 100010
c‘?1'“000100’@2‘001010"’2““"010001’
000010 000101 001001
000001 000011/ \0 00110/
001100 000110\ /00001 1)
010010 001001 000101
_100001Q_010001Q_00101o
Q= 1 gooo0o1p’® 1000101010100
010010 100100 101000
001100 011000) \1 1000 0/

In general, each 'Q; has at most 2n non-zero entries.
In order to give a precise description of Baxa, We introduce the following notations.

Definition 1 Let w = (wy,...,w,) be an n-vector. Define o(w) = (wo, W3, - - -,
wy, 0)t. Define To(w) to be the n-by-n symmetric Toeplitz matriz with w as the first
column and Hn(w) to be the n-by-n Hankel matriz with w as the first column and
(Wn, - .., w1)t as the last column.

Lemma 2 Boxn = {Ta(w) + Halo(w)) | w = (wr,...,wn)' € R"}.

Proof: By noting that Q; = Tn(e;) + Hn(o(e;)) for 1 < i < n, the proofis similar to
that of Lemma 2 in [11].

Now computing the optimal cosine transform approximation can be reformulated
as solving the n-dimensional minimization problem,

min _[Ta(w) + Halo(w) = Al (1)

w={w1,...,Wn)ER
The minimum can be-calculated by setting %[Iﬁ(u}) + Hn(o{w)) — AnllF = 0, for
i=1,...,n. The following theorem gives the solution with an explicit formula for the

first column of ¢(A,). Before that, let us give a notation. For any matrix Ay = [aij]s
let 7, be an n-vector with k-th component given by

gﬁ"n)k= Z Qi,j, (12)

(Qi)ij70

which is just the sum of those ay; for which the corresponding entries of (J; are
NONZero.
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Theorem 1 Let A, be an n-by-n matriz and c(A,) be the minimazer of ||Br — AxllF
over all B, € B,y,. Denote by q the first column of ¢(An). If s, and s, are defined
respectively to be the sum of the odd and even index entries of r,, then we have, for
n even,

[y = 5p(enfra +nfrols 250

1 .
[Q}z - ""2“?':!’"5(1'&[1'“]5 + n[rn]i+1 - 23&) I = 2, R 1 1

d, = 5;1')—2(—21@30 + (2n — 2)s, + nfry)n)

and for n odd,

IQ]I = 5:;"2'(2”[1'1;]1 + ﬂ[l‘n]2 - 250)
[, = -j%g(n[rnh + nfrplip: —280) 1 = 2,...,n—1

q), = 2—;—5(—21@38 + (2n = 2)s, + n[Ln)n).

Proof: The proof is similar to that of Theorem 1 and Corollary 1 in [11].

If A, has no special structure, then clearly by (12), r, can be computed in O(n?)
operations because the Q%s has only O(n) non-zero entries each. If A, = [a;;] is a
Toeplitz matrix {correspond to K in (8)), then the sum in (12) can be computed
without explicit addition because summing a; ; for constant value of |j — i| can be
reduced to a scalar multiplication. Similarly, for banded matrix A, with lower and
upper band width b and b,, the cost of forming 7, can be reduced to O((b + by)n).
By Theorem 1, computing ¢ from r,, requires only O(1) operations. Note that c(A,)
is completely characterized by its eigenvalue matrix A. If D denotes the diagonal
matrix whose diagonal is equal to the first column of C,, and 1, denotes the n-vector
of all ones, then q is related to A by

D~'Cpg = Al,. (13)

Therefore by using the Fast Cosine transform, we can calculate the eigenvalues of
c(A,) from ¢ in O{nlogn) operations. Now, we summarize the construction cost of
¢(Ay) in Table 1.

An cost of constructing ¢(A,)
general O(n?)
Toeplitz O(nlogn)
banded O({b; + by)nlogn)

Table 1 Cost of Constructing ¢(A,)
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2.9 Construction of Two-dimensional Preconditioner

For 2D nzn images, the matrices K*K and Lg in (8) are block matrices of the
following form:
Ay Az o A
Ay Aap . Azn
Ann = : o :
An,l An’g P An,n

Here A;; are square matrices of order n.

In {14], T. Chan and Olkin proposed the Level-1 and Level-2 circulant precondi-
tioners for such block matrices. Following their approach, we will define the Level-1
and Level-2 cosine transform preconditioners for Ap,. The idea of the Level-1 and
Level-2 preconditioners is to approximate the matrix A, in one direction and two
directions respectively. The Level-1 preconditioner is constructed by taking approxi-
mation to each sub-block of A,, and Level-2 preconditioner is constructed based on
the Level-1 preconditioner. More precisely, the Level-1 cosine transform precondi-
tioner is defined by

C(Al,l) C(AI,Q) s C(Al,n)
) = | V2] ) e el
C(An,l) C(Angz) .- C(An’n)

To define the Level-2 cosine transform preconditioner, let us first give some notations.
For any n2-by-n? block matrix An,, we denote (Ann)ijky to be the (i,7)th entry of
the (k,[)th block of A,,. Let P be a permutation matrix which simply reorders A,,
in another coordinate direction. More precisely, P satisfies

(P AunPijks = (Anndkpig, 1545 <n 1<k 1<
Then the Level-2 cosine transform preconditioner co{Apn) for Ayny, is defined by
e2(Ann) = Pes(P'ei(Amm) P)P" (14)
It is easy to show that the approximation cy(Ann) can be diagonalized by Cr,®Cy:
c2(Ann) = (Cn ® Cn)' diag((Cn ® Cu)Ann(Cn ® Cr)*) (Cn ® Ca).

Hence, c3(Any) can be inverted easily.
For elliptic problem, it can be proved that the Level-2 optimal cosine transform
preconditioner ¢x(Ann) is a “good” preconditioner.

Theorem 2 Let A,, be the 5-point centered discretization matriz of

—(a(a:, y)uz)m — (b(:]:! y)uy)y + TU = f(IE, y) on [0’ 1]2
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with homogeneous Neumann boundary condition. Assume 7y > 0 and the mesh is
uniform with size 1/n. Then we have

K(Cz (Ann)mlAnn) S (Cmax )2

Cmin

where 0 < cmin < a{z,9), b(Z,¥) < Cmax

Proof: The proof is similar to that of Theorem 2 in [12].

Optimal cosine transform preconditioner can also be shown to be good for solving
Toeplitz system; see [5, 8]. For the optimal cosine transform preconditioner, we can
prove the following result.

Theorem 3 Let A, be a block Toeplitz matriz with Toeplitz blocks. If the generating

sequence asf) = (Ann)(j-t)n+k,1 Of Ann 18 absolutely summable, i.e.,

oo oo )
Y3 el < G < 0.
=0 k=0

Then the number of iterations for the PCG method converges with preconditioner
ca(Ann) 18 bound by O(n).

Proof: The proof is similar to that of Corollary 1 in [8].  We remark that the

numerical results in [8] for the Level-2 optimal circulant preconditioner is better and
the number of iterations seems to be independent of n.

3 (Cosine Transform Preconditioner for TV denois-
ing and deblurring

A straightforward preconditioner for Ag(u¥) is c2(Ag(u¥)) = c2(K*K + aLg(u®)) =
co(K*K) + acy(Ls(u*)). However, computing c;(K*K) according to the formula in
Theorem 1 requires computing all the entries of K*K and is costly. Another way is to
approximate ¢;(K*K) by e2(K)*c2(K). More precisely, a preconditioner for Ag(u)
in (8) can be defined as

M = cp(K) oK) + acy(Lg(u)). (15)

One problem with the preconditioner M in (15) is that it does not capture the
possibly large variation in the coefficient of the elliptic operator in (8) caused by the
vanishing of |Vu| in (5). To cure this problem, we apply the technique of diagonal
scaling, see [6, 12]. More precisely, if we denote p(-) to be the spectral radius of a
matrix and we define A = p(K*K)I + adiag(Ls(u*)) then we consider solving the
equivalent system

AWM @ = Kz
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where A(u¥) = K*K + alg(uf), K = KA, Ls(u) = A-Y2Lg(u¥)A™/? and
7% = AV2uk I summary, the Level-2 cosine preconditioner with diagonal scaling is
given by

Mp = R*K + 05C2(I:,(3(’U.k))

where K = cp(K)ca(A~1%). We note further that if Ay, A, and Aj are respectively
the eigenvalue matrices of c2(K), co(A™Y?) and co(Lp(u*)), then the preconditioner
can be expressed as

Mp = (G ® Co)t (MAIASA + crhg) (Cr ® Cn).

Hence, the preconditioner can be easily invertible.

Finally, we comment on the cost of constructing Mp and of each PCG itera-
tion. We note that Ly is a sparse matrix with only five nonzero bands. Also for
K corresponding to a discretization of the convolution operator (2), K often will be
a block Toeplitz matrix with Toeplitz blocks. By using Table 1, the construction
cost of ¢;(K) and ¢o(Lg) can be shown to be O(n?logn) operations; see [8, 14]. The
cost of one PCG iteration is bounded by the cost of the matrix vector multiplication
A(uF)v = ATV2(K*K +aLg(u¥)) A~y and the cost of solving the system Mpy =1b.
The matrix vector multiplication A~2y can be computed in O(n?) operations be-
cause A~1/2 is a diagonal matrix. Since Lg(u¥) is banded, Ly(u*}v can also be done
in O(n?) operations. For K being a block Toeplitz matrix with Toeplitz blocks, Kv
can be calculated in O(n?logn) operations; see [8]. Therefore, the matrix vector
multiplication can be done in O(n?logn) operations. The system Mpy = b can be
solved in O(n?logn) operations by exploiting the Fast Cosine transform. Therefore,
the total cost of each PCG iteration is bounded by of O(n?logn).

4 Numerical Results

In this section, we present results of a numerical comparison of no preconditioning
and with our preconditioner in solving the linear system in (8). Let us choose the
following test image

u(z,y) = X[1/3.1/2)x(1/4,5/6) T X{2/3,5/6]x[1/4.5/6] (z,y) € [0,1] x [0,1]

where x4 denotes the charactertics function for the interval [a, d]. Then we consider
the spatially invariant point spread function K in (2) with kernel & given by

_ e~ 180" ) i x|, |y| < 1/4
k(z,y) = { 0 otherwise '

The noise function 7, is scaled such that the noise-to-signal ratio (NSR}, |n|r2 SN Kl 12,
was 0.1. The true image and the observed image are shown in Fig. 3 and Fig. 4
respectively.

We will perform the FP iterations until the gradient g in (5) satisfies llg(u*1)il2/
llg(u®)|l2 < 107, We will apply the CG method to solve the linear system (8). The
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method will be stopped when the residual vector vy of the linear system (8) at the
k-th CG iteration satisfies ||rk|l2/{|roll2 < 107*. In our numerical experiment, we will
concentrate on the performance of our preconditioner for various of parameters n, o
and S.

Tables 2 and 3 show the number of iterations required for convergence of the FP
iteration and the CC iteration for different choices of preconditioners and parameters.
Note that the CG iteration numbers shown in Tables 2 and 3 are the average number of
CG iterations per FP step. The symbol “#” denotes the number of iterations for I'P.
The notations I, A, M, Mp denote respectively no preconditioner, diagonal scaling
preconditioner, cosine transform preconditioner and cosine transform preconditioner
with diagonal scaling. Some of the data are plotted in Fig. 1 and 2.

We observe from Fig. 1 that the Mp preconditioner requires significantly fewer
iterations than other preconditioners for all values of @, § and n. Moreover, we can
observe that the smaller the g is, the more ill-conditioned the system is. In fact, it
can be casily shown that the coefficient xg(u) in (6) of the elliptic operator Lg(uk) is
bounded above and below by 1/+/8 and O(1/n) respectively. Therefore by Theorem
9, for fixed n, x(ca(Lg) " Ls) < O(1/B). We note that the slope of the dotted line -
(i.e. no preconditioning) in Fig. 1 is -0.2377 which agrees with the bound O(1//5)
for the number of PCG iterations.

From Fig. 2a-c, we observe that the number of iterations corresponding to [
grows like O(n®?). Therefore, «(Ag(u*)) = O(n'?). If the preconditioner Mp is
used, the number of iterations grows like O(n%?), iLe., &(Mp'Ag(u¥)) = O(n").
However, preconditioners A and M reduce the growth of the number of iterations
only to O(n®%®) and O(n®%?) respectively. We remark that for large n, the number
of iterations corresponding to Mp seems to be independent of n, see Fig. 2b-c. This
agrees with Theorem 2 and the remark after Theorem 3.

From Table 3, we observe that our preconditioner Mp is quite insensitive to o,
at least in the range [107%,107%}, unlike the unpreconditioned system. When o be-
comes very small (o < 107%), the jteration number does increase. However, this only
happens when the regularization is too small.

In Fig. 5, we show the recovered images for various (. The smaller § is; the closer
the recovered image is to the true image. Fig. 6 shows how the recovered images
depend on the value of c.

n=16 n=32

0012112414211 13 |10} 51 (62|28 |47} 19 |13
0.1 (161511113} 10 { 9 ||45]35(20!125 | 15 |12

10 10113113} 5 5 [10{27112)12| 7 7 |10
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n=64 n=128

B # I [AIM|Mp|P| # I |A{MI ! Mp| P
001l 131 (113 (37165 19 [11] 2871192 |61 |94 22 |10
01 [121] 62 | 26|35 15 1113031074149 | 15 | 8
1 104 | 34 (2018 11 [101]{282| 64 |30 |24 | 11 |10

10 | 74 | 2011619 7 [10}136] 39 [256]12] 7 |11

Table 2. @ = 1077

_ n=16 n=32

781 66 | 53 [ 10! 9
75| 46 | 29 | 25| 15
451 35 {20 | 26| 1o
27132 | 290 23| 20
39 (130|131 |36| 36 |63

10753239 | 3716 ]| 7
100631 23] 16 |16] 10
10— (16 15 ] 11 [ 13| 10
1081733 ]33 {13! 13
1079119125125 |17 | 17

= et
comcooo"u

S| b0
DU M| o|o|e|

n=64 n=128

P
105 77 1221919 7 | 7 1100|246 165 |11 9
10-% 200 | 81 [45|33 | 16 | 8 {450 ;151 | 56 | 45| 19
107121 62 | 26[35] 15 |11 || 303107 | 41 | 49| 1d
108 87 | 58 135(34| 26 |18 129103 | 41 | 48] 29
100 49 | 81 |79 (35| 33 [ 36| 100|101 | 77 [ 49| 42

[
2| 5| | oo~y

Table 3. B =0.1
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§ 10 15 20 25 a0

Fig. 3 True image

5 10 15 20 25 30

Fig. 4 blurred and noisy image with NSR = 0.1
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B=1 B=10

Fig. 5 Deblurred images for oo = 1077, n = 32 and various 3
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s 10 15 - 25 30 5 0 1% 2 *a 20
a=10"7 a=107"
Fig. 6 Deblurred images for § = 0.1, n = 32 and various «
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