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IMMERSED INTERFACE METHODS FOR MOVING INTERFACE
PROBLEMS *

ZHILIN LI !

Abstract. A second order difference method is developed for the nonlinear moving interface
problem of the form

us + Avuz = (Be), — fz,t), z€[0,a) U(a, 1],

da

dt
where «{t) is the moving interface. The coefficients §(z,t) and the source term f (z,1) can be discon-
tinuous across w(f) and moreover, f(z,t) may have a delta function singularity there. As a result,
although the equation is parabolic, the solution u and its derivatives may be discontinuous across
a(t). Two typical interface conditions are considered. One condition occurs in Stefan-like problems
in which the sclution is known on the interface. A new stable interpolation strategy is proposed. The
other type occurs in a one-dimensional model of Peskin’s immersed boundary method in which only
jump conditions are given across the interface. The Crank-Nicolson difference scheme with modifica-
tions near the interface is used to solve for the solution u(x,t) and the interface a(t) simultaneously.
Several numerical examples, including models of ice-melting and glaciation, are presented. Second
order accuracy on uniform grids is confirmed both for the solution and the position of the interface.

=w(l, o uu),
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1. Introduction. In this paper we study the immersed interface method for the
one-dimensional moving interface problem

(1) uy + Auug = (Bu,), — fz,t), z€[0,a)U (e 1],
(2) %%z (t,o; u=,ut w7, uf), t>0,

where w is a known function and u~, ut, u7, and u} are the limiting values of u(z,1)
and u,(z,t) from the left and right side of a moving interface a(t). The coefficient
B(z,t) > 0 and the source term f(=,t) may be discontinuous; furthermore, f(=, t) may
have a delta function singularity at the interface a(t). This is a parabolic problem and
the solution is piecewise smooth. The discontinuities can only occur on the interface
aft). There are also initial and boundary conditions, which are not our main interests
here, may also be imposed. We assume these can be handled using conventional
techniques.

The interface aft) divides the solution domain into two parts: 0 < & < a(t)
and a(t) < = < 1. The solution in each domain [0, a(t)) and (e(t),1] is smooth,
but coupled with the solution on the other side by interface conditions {or internal
boundary conditions) which usually take one of the following forms:
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9204329, DMS-9303404, and DOE Grant DE-FG06-93ER25181.
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Case 1: The solution on the interface is given. One example is a mathemati-
cal model for solidification problems. When tracking an interface of melting ice, for
example, the temperature at the melting/freezing interface is given by the melting

temperature of the ice. In this case u(e,?) = uo, the melting temperature. When
1 o tha rlacgical Qtafan nrohlem

A = 0, this is the classical Stefan problem,

Various approaches have been used to solve Stefan or other linear free or moving
interface/boundary problems numerically [1], [3], [5], [6], [7], [8], [10], [18], [20], [25],
and recent work by Chen and Osher [4] using the level set approach. Compared to
Case 2 discussed below, the Stefan problem is relatively easier to solve because the
value of the solution on the interface is known. However, few numerical methods are
second order accurate in the infinity norm for both the solution and the interface,
Most methods involve some transformations either for the differential equations or the
coordinate system, which complicates the problem in some way. Some of the methods
would exhibit some kind of instability near the interface as explained in Section 4.
The method proposed in Section 2-6 is simpler, more stable, and is second order
accurate both for the solution u and the interface a(t) simultaneously for more general
equations. Furthermore, the solution is obtained using a fixed Cartesian grid.

Case 2: Jump conditions of the form

(3) [4] ©uat,t) - u(a™, 1) = q(t),
(4) [Bu,] % Blat,t) u(at,t) - fla,t) u{a™, 1) = v{t)

ate given, Our interest in this case was motivated by the desire to develop a sec-
ond order accurate algorithm for solving the incompressible Navier-Stokes equations
obtained from the formulation of the immersed boundary method. This method was
originally developed by Peskin and his co-workers for studying blood flow in a beating
heart [21], [22], [23], [24], but has been used in a wide variety of other problems. In
Peskin’s method the physical domain is immersed in a rectangular region. The bound-
ary condition is treated as a forcing term which is only supported on the boundary,
therefore the forcing term is singular. Case 2 is a one-dimensional model for the im-
mersed boundary method formulation with a more general equation for the motion. A
linear model in one dimension would be

1, = (Bu,). — C(t) §(z — a(t)) - C(t) (2 - ot)) — f(z,1),
From this equation, assuming f(z,t) is continuous, we can derive the following jump
conditions

_ 2C(y _
[u] T B+ 8% {ﬁua:] = C(1),

where 8~ and 8t are the limiting value of B(z,t) from left and right of the interface
a(t). In many other cases the jump condition can be obtained from physical reasoning.
For instance, if « stands for temperature, then [u] = 0, and [Bu,] = v(t) meaning that
the net heat flux across the interface is equal to the source strength v(#). One of
advantages of using the jump conditions is that we do not need to discretize the delta
function, an approach described briefly in the next paragraph.

Peskin and many other people use a discrete delta function approach to spread the
singular force term to the nearby grid points and use the discrete delta function again
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to interpolate the velocity field to move the boundary. While this approach seems to
work, it is usually only first order accurate and difficult to analyze especially in two or
higher dimensions.

Various attempts have been made to analyze and improve the discrete delta func-
tion approach or to try to solve the resulting differential equations differently.

Beyer and LeVeque [2] studied various one-dimensional moving interface problems
for the heat equation assuming a priori knowledge of the interface. A discrete delta
function is carefully selected and some correction terms are added if necessary in their
approach to get second order accuracy. Wiegmann and Bube [26] recently applied the
immersed interface method for certain one-dimensional nonlinear problem with a fized
interface. However, for the interface problems discussed here the interface is unknown
and moving, and the discrete difference scheme is a nonlinear system of equations
involving the solution and the interface.

In two dimensions, the discrete delta function approach generally is only first
order accurate. And it seems impossible to find a generic discrete delta function which
makes the algorithm second order accurate. A new approach, the immersed interface
method [12], [15], is intended to solve general PDEs with discontinuous coefficients
and/or singular sources with second order accuracy at all grid points including those
which are close to or on the interface. The main idea is to incorporate the known
jumps in the solution or its derivatives into the finite difference scheme, obtaining
a modified scheme whose solution is second order accurate at all grid points on the
uniform grid even for a quite arbitrary interface. This method has been implemented
for several different applications in one, two and three dimensions [13], [14] [16], [17].
By implementing this method for one dimensional model here, we not only effectively
solve some general one-dimensional moving interface problems, but also hope to get
some insight into the method as well as the problem. We are currently working on
second order accurate immersed interface methods for the full Navier-Stokes equation
with a moving boundary, where we have to deal with the nonlinear term %+ V. That
is one of the reasons why we have the nonlinear term Auu, in our model equation (1).

Case 2 (with A = 0) is also 2 model of heat conduction with an interface between
two different materials. Now u is the temperature and hence is continuous meaning
g(t) = 0 in (3). The net heat flux across the interface is v(t) in (4), the source strength
on the interface. Again in this case we do not know the value of the solution on the
interface but only the jump conditions.

For many classical Stefan problem, the motion of the interface is proportional to
the flux across the interface

(5} %% = o(t) [Bu.], u(a,t) = ug

where 1, is the known temperature at the interface. This kind of problems fit both
Case 1 and Case 2 and will be discussed in §4.3.

2. Computational frame. We use a uniform grid
z; = th, i=0,1,---,N, =0, zy =1,

where h is the step size in space. We use k as the step size in time and assume the
ratio k/h is a constant so that we can write O(k) as O(h) or vice versa. Using the
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Crank-Nicolson scheme, the semi-discrete difference scheme for (1) can be written in
the following general form,

n+1 n
U — Uy ntd /\ 1 1
e +§(u?ﬂ2,¢+“?+ upf') =

 (Gulze+ Gult') = FUT+A™),

~~
=21
S

where uf; and (fu,)z; are discrete analogues of u, and (Bu,), at (z;t"), and Q:-H"%
is a correction term needed in the case when a crosses a grid point during the time
step, as discussed in the next section. Numerical schemes will be displayed in a box,
as illustrated by equation (6). For simplicity, we will drop the superscript n when
there is no confusion. At a grid point z;, which is away from the interface, (i.e. a ¢
[#;..1,@i41] ), the classic central differences will be used

Uy il T
(7) Upy = ""t'l""i'h_l_:
Bior i — (Bicy + Bigs ) wi + Bipgw
(8) (Bus)si = * : - h? = +2 +1’
where B 1 = B(z; + b/ 2,t). We will discuss how to discretize #, and (Bu,), when
& € [z;_1,%;41] for Case 1 and Case 2 in Section 4.
The interface location is also determined by the trapezoidal method applied to (2)

an+1 —a®

1
(9 T o (wh e,

1 1 ! 1,40

where w' = w (#,ol; v, wb', uxl, wb'), and o, w®, uz' are the approximation
of at), u(et,?’), and u,(a*,t') respectively. These quantities are only defined on
the interface. We use the following notation to express the jump in a function g(=,1)
across the interface
def - def -
[g] = g(a"‘,t) “g(a ,t); [g];t = g(a:t+) - g(ﬂ:,t )'

It is easy to see that [g] = *[g]; and the sign depends on the motion of the interface.
For example we have minus sign for the case in Fig.1 (a), and plus sign for the one in
Fig.1 (b).

The kernel of the algorithm at a time level t" consists of the following:
ntd

o Determine Q" ? if the interface crosses the grid line ¢ = #; from time " to

L

o Derive the difference formula for u, and (A, ), at the two grid points closest
to the interface.

o Compute the quantities u*, uF, [u,] etc. on the interface.

¢ Solve the nonlinear system of equations for {u*'} and the location of the
inteface a"*1,

Fach of these steps will be described in detail in the remainder of the paper. Away
from the interface, the local truncation errors for the difference scheme are O(h?). But
at few grid points near the interface, we allow the local truncation errors to be O(h)
based on the fact that the local truncation error of a difference scheme on a boundary
can be one order lower than those of interior points without affecting global second
order accuracy.
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3. Grid crossing. If there is no grid crossing at a grid point z; from time ¢" to
time i"*!, meaning that (z;,1") and (z;,t"*') are on the same side of the interface

a(t), ie, z; € (", a"t"), then we can take @Q; "t} — 0 and we have

(10) ) 1% [ug(zs, 1" 1Y) + wlzi, 1)) + O(K).

(a) (b)

FiG. 1. Interface crossing the grid. (a) a(t) increases with time. (b) o(t) decreases with time.

However, if the interface crosses the grid line z = z; at some time® 7, * <71 <
"1, such that z; = a(r), see Fig.1, then the time-derivative of v is not smooth. In
this case even though we can approximate the z-derivatives well at each time level (see
Section 4), the standard Crank-Nicolson scheme needs to be corrected to guarantee

second order accuracy. This is done by choosing a correction term Q); "+% based on the
following theorem:

THEOREM 3.1. Suppose the equation aft) = z; hes a unigue solution T in the
interval 1" < t < t"**. If we choose

n ., 1 7.
(1) aptt = Mo 2 (it 1) ),
then
4T — w17 n 1
(12) MEfT) =) gred o 2 (o, ) + (g, 7)) + OCR).

Proof: We expand u(z;,t") and u(z;, t"*') in Taylor series about time 7 from each
side of the interface to get

u(z;, ") = u’(wj"r_) + (" = T)ulz; )+ O(kz)a
u(z;, t”+1) = u(z;, ™)+ (t""H - ) w2y, T+) + O(kz)
= w(z;, )+ [ul, + (" — D) w(zy, T7) + (@ - 1) [w], + O(FY).

Combining the two expressions above gives

(13) u(z;, 1) — u(z;, %) = kug(wy, 70) + [ud + (7 = 1) [w), + O(F).

! The cross time really depends on the grid index j as well as the time index n, see Fig.1, we use
the notation r in this paper to simplify the notation.
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On the other hand, from [2] (p. 363} we also have

k k

(14) ku@;, 77) = 5 (u,(mj,t") + ut(a’j’tn+l)) - E[“t];r + O(¥*).
Substituting (14 into ”3) gwes

u(z;, 1*4) — u(zy, 1" 1 " n u).,

(2; )k (;,t") §(ﬂ¢(m5,t )+ (5, t 1Y) 4 _[_%]__
(15) tn+‘-1; -7
A [ue]r + O(k)

This is equivalent to (12). O

We know {u)., from jump conditions. However, to compute @; n+3 , we also need to
find the location 7 and the jump [v,].,. Let us first discuss how to ﬁnd T if it exists.
Using the Crank—-Nicolson formula twice we get:

a —a® 1
—— = g+,
o™t - 1
— +1
W = 5 ('UJ"r + w" ) .
Eliminating w” term we get
27] - a® O‘.’"+1 - wJ _ 1 ntl
(16) r—1n g "§(wn—w )

From this quadratic equation, we can solve for the crossing time 7.
The estimation of [u;]., depends on interface conditions and will be discussed in
Section 5.

4. Discretization of u, and (fu,), near the interface. As we mentioned
earlier, at grid points which are away from the interface (| z; — a| > h) we use the
central difference scheme. So only the closest grid points from the left and the right of
the interface, need special treatment at each time level ¢" or "+, The discretization
apparently depends on interface conditions and will be discussed separately in this
section.

4.1. Case 1: the solution on the interface is known. Let the solution on
the interface be

(17 w(a,t) = r(t).

We begin our discussion with very general motion equation (2). For those Stefan
problems in which the velacity is propotional to the flux, the discussion is given in
§4.3. Since we know the value of solution on the interface, we could discretize u, and
g, using one sided interpolation as usual. For example, if z; < a” < &4 then

noo__ R s
uw,j—“u:c(.?“la J. !mj)a

where

. 1o _ m,+a—2a: Tjpto—2z
18 wUm i) = Bz — @) 7 Tha—g;) Y
( ) Ti- 1+ﬂ7

+ n(1).

(z; — a)(a—=;_ 1)
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This is a second order approximation to u,(z,t). However, notice that o(t) changes
with time, so does z; — a. If |z; — a| gets too small, the magnitudes of the coefficients
in the interpolation (18) become very large, sometimes even blow up. Such instability
is caused from the formulation of the derivatives which is very sensitive to the location
of the interface. An intuiiive fix would be

u:,j = ﬂ:(_}' - 21 J - 15 an3wj)7

when |z; — | is small. A more robust way which we have been using successfully is
the linear combination of those two above:

n
" o —x;

- 3 nye s . n
'u'z,j - h u’x(.? - ]-; I 13:5)
iy~ a”

h

(19)

+ ul(j — 2,7 -1, a”, ;).

There are several advantages of this robust approach. First of all, the interpolation is
still second order accurate. Secondly, if we rewrite (19) as

7
g = 3 A,
j=i-2
then the magnitudes of the coefficients 47 and y3 will always be order O(1/h). Further-
more the truncation error-in such interpolation will smoothly vary as time increases.
This is very significant in two or higher dimensional moving interface problems where
we want to avoid non-physical oscillations.
In the same manner, we use the following interpolation to discretize ug j,.:

n _ a® — L5 ng . n
Us il — 3 um(] +2,j+3, $$j+1)

(20)

Zig1 =" o ; n
+w—-ﬁm——uz(‘7+1,3+2,a s Tjp1 )

Similarly, using the following second order discretization for u,.,

_y 2 _ 2
Uge(f — 1, Jyay2) = h(a—mj_l)uj_l+h(a"$i)uj

(21)

2
o) —a)

we can compute 1y, ; and ug, ;;4 as follows,

n
o — I

Ugri _'h——“:z(.j -1, ja aﬂawj)
(22) e
+ “J‘““ﬁ'““"—u:x(J - 2a .7 - 1) an,mj)-

an

n — L noga . n
(23) Urritl = '"_"E"_Jua:::(.f + 2, J+ 3# 44 :wj-H)
Tipr — @

+ h u;r(j + 17 J + 2) aﬂs mj-l»l)'
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At time level | = n + 1, we still can use the same trick when z; is too close to
o™, But the resulting linear system (if we freeze the nonlinear term uu, ) is no longer
tridiagonal, since an additional point § ~ 2 is involved at grid point ;. However in
this case we can simply set

(24) uptt = o1 *), i ;- a"t] < h?

without affecting second order accuracy. By doing so we will still have a tridiagonal
system for the linearized equations.

4.2. Case 2: The jump conditions are known, Suppose we know the jump
conditions (3), (4) across the interface, {u] = ¢(t) and [Bu,] = v(t). We also should
have knowledge of [8(t)], [F(t)] across the interface. As in [12], [15], the immersed
interface method for the space discretization involves the following steps:

e Use the jump conditions and the differential equation to get the interface
relations between the quantities on each side of the interface.
e Use the interface relations to derive a modified difference scheme.
e Derive the correction term based on the difference scheme and the interface
relations.
With this process, we have the following theorem:

TurorEM 4.1. If z; < a(t) < T;41, then

u(a™,1) w(#;_1,1) Cia O(h®)
(25) (e ,t) | =5 ulz;,t) [—| G2 | + om* 1,
tpe(@™, 1) w(Tj41,t) C;a O(h)

where for k =1,2,3,

v
Cix = 53 {‘1+ E‘;(ﬂ"’j“ - @)

(26) :
+M (q'+[f}_—;; (w—)m*“-i-ﬁﬁ))}a

25+

g and v are defined as in (3) and (4), and § = {s1;} = A1, the inverse of the following
matriz

1 1 1
AT = {akj}T — Tjg— 0O Ty — o a3
(21— ) (z—a) p(z;y—o)f
2 2 2
wnth
— (x.‘f'l'l - a.)2 + - - o+
afza—P(“’Hl‘"a)‘*'““""—‘_(w(l‘f’)'*"\(“ p—u )+ B —pBa).

24+
The proof can be found in the Appendix.
Using this theorem we get a discretized form of (Bu,), at the grid point z;, z; <
a < mj_H,
(Btg)e — Aty ; = (Bus)y — Au"ug + O(h)
(27) (B sa +sm(Br — duT))uyo + (s + s92(f7 = Au"))
+ (B 8as + S3a(B5 — Au)) uj1 ~ (B7Cj 5+ Cj (67 AuT)).
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The attractive aspect of this approach is that we can still use a three-point stencil
and the discretization is valid for any location a. The theorem above also gives an
interpolation formula which can be used to compute v~ and uz values which are needed
for the computation of w and the frozen term luw, (see §5).

For ihe grid point z;41, ¢; < a < &4y, there is & similar formula which we state
as follows:

THEOREM 4.2. Let u(z,t) be the solution of (1) and (2) with jump condition (8)
and (4). If z; < oft) < Tj41, then

u(at, 1) ) u(z;, 1) Cit11 O(h®)
(28) ﬂx(a+, t) = S 'U:(CC:‘_{,]_,i) - Cj-{"l,? + O(h?) s
um,(a‘*',t) U(Jﬂj_'_g,t) Cj+1'3 O(h)

where for k = 1,2,3

Cing = 3 {«»[u] - M (z; — )

B
(29)
(.’BJ- - a)z ( ! 2 - - )
26_ +[.f}"'"ﬁ.. (w Au +ﬁx) »
and § = {3;} = A~1, the inverse of the following matriz
1 1 1
AT = {ﬁk‘}T — 2 Tip1 — @ Tiya — ¢
= {d;}" = ,
(g, —a)f (3-0) (232—@)
2p 2 2
with

. _(zgj—a) (z;-a) 1 wm o B o
az = Jp Jgﬁ.. (w(l P)+A( P U ) p +ﬁw)'

4.3. Stefan problems. For a number of Stefan problems, the governing equa-
tions have the form

Uy = (ﬂuz)x
(30) B = o
u(a,t) = .

S0 we know the solution on the interface as well as the jump relations [u] = 0 and
[Bu,) = &fo.

It is easy to see that the equation (30) can be discretized using either of the
approaches described in §4.1 or §4.2. We have found out that the approach using the
jump relations described in §4.2 is better. However, we need one more equation to
make the discrete system closed because now w = o[Bu,] is unknown, This equation
is the restriction of the solution on the interface

b
] u(z,t) 6(z — a)dz = u,.
0
A second order accurate discretization can be easily derived from Theorem 4.1

81151 + S12%; + Siathjpr — Cj1 = Yo
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5. Computation of the quantities on the interface. As we mentioned in
Section 2, we need to know some quantities defined only on the interface such as u¥,
u¥, [u], in order to compute (9), (11), (16) and (27). Again we distinguish the two

different cases.

5.1. Case 1: the solution on the interface u(«a,t) = r(f) is known. In this
case, the solution is continuous, which means v~ = ut = r(t).

With the knowledge of the computed solution «f, an estimation of uf*t, and the
solution on the interface #{I"), we use the one sided difference (19) exchanging the
position between x; and a®, g; < @® < 4, to compute u;", and (20) exchanging
the position between z;;; and a” to compute u} ™, The same approach is used for the
next time level ¢"t1.

If the interface crosses a grid line z = z; at some time 7, we need to compute ().

i
in order to get the correction term Q?+“. In this case we simply use

wttt —r(r) ()~ u}
_Y _ j
(31) [u*];’f = el o T —n

5.2. Case 2: the jump conditions are known. In this case, ¥ and uf are
computed using (25)-(26) and (28)~(29). In order to compute the jump fu,),, we
differentiate the first jump condition

u(a®,t) - uw(a™,t) = q(t)
with respect to ¢ to get
(ug(at,t) — uz(a™,1)) %% + ug{at,t) — u,(a,1) = ¢(t),
(32) e, = () - [ulw.

We need to express (32) in terms of the quantities at time Jevel either ¢* or o
a" > o™l (see Fig. 1 (b) ), we have, at time ¢ = 7,

u” = u} + O(h), ot = o}t + O(h),
uy = up; +O(h), uf = ult! + O(h).
Otherwise we have
u” =}t + O(h), ut = u} + O(h),
uy = uftl + O(h), uf = ug}' + O(h),

for a® < a™*. Thus we use following scheme to compute [z,]

(33) ntt ntl n4l

" { £ () — wlr a, d un g, W - uly) i a” > o
thr — .
' g () — w(r,uft uf, upt up )y —uzy) ifa” < o™t
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6. Solving the resulting nonlinear system of equations. From the discus-
sion above we know that in order to get the solution u(z,t) at time "1 generally we
need to solve the following nonlinear system:

n o Lntiontly
z g T W Ypi J

L (Bt (ot - S 1)

n+l _ oh
—n-———a A @ = % (w“ + w
where the quantities of ul; and (Bu,),; for { =n or n+1, can be expressed as some
linear combination of u}. The coefficients of such combination near the interface, and
the correction term Q¥ to (uP*' —u})/k , depend on the interface position and the
interface conditions, We have shown how to get these quantities in previous sections
for different interface conditions.

Since we use a full implicit discretization, the numerical scheme is stable. The
local truncation errors are O(h?) at most grid points, but O(h} at two grid points
which are closest to the interface from the left and the right. So the global error in the
solution is second order accurate at all grid points.

So we have a quite complicated nonlinear system to solve. The difficulty is that

s L
some quantities such as Q'-H" ntl

P73, CHf' are not known until we know the solution for
uf*! and o*!, This leads to an implicit system, which must be solved iteratively.
One concern about iterative methods is whether there is a time step restriction. In our
approach we use an implicit discretization for the diffusion term (Bu,), and an explicit
discretization for the motion of a(t) in which the CFL condition is k ~ h. Therefore
we do not need to worry about the time step restriction unless the interface changes
rapidly. In that case, the stiffness of the motion will require that in order to achieve
desired accuracy, we must take a small time step anyway. An adaptive time step is
chosen for equation (2) based on the classic stability theory
1

ow/da } )
The constrain k < h is imposed to maintain second order accuracy both in space and
time. From equation (2) we can get

Ba_ﬁ_ag_ ) aw_é‘w/
3"1'—1; at = 1u, . €. "5'&——87 w.

n+l),

k < min {h,

That implies

. w
k < mm{h, !Wl} s

or in discrete form

n
w" kyg
whtt —

(34) kpew = min {h,

Below we give an outline of our iterative process.

Suppose we have obtained all necessary quantities at the time ¢", and the current
time step is k (i.e. ("1 = 1" 4+ k). We want to get all corresponding quantities at time
level "1, Unfortunately we have to introduce another subscript m for each iteration,



12

For

Y/

Determine j, such that z;, < a® < &;.41. Compute g, (Bu,)s at x;, accord-
ing to the scheme discussed in Section 4.
Set

n41l n n e oy—T t —n
"l =" L k(i ot u "t wtt wl u

?

Y4

!n).

b

Determine an initial guess of the solution 77" at time level "+,
m = 17 2, Y

(**) Determine j,, such that z; < af*! < ;4. Determine the coefficients
and the correction terms for uf*! and uZ#* at ;. Substitute ufy' for uft!
in the nonlinear term u}tult!.

H jo # jm, thenfor I = jo+ 1,2+, jm, when jy < jm, or for | =
Jms Gm+1, ey Jo, when Jo > fmm, first get 7, using (16), then determine the
correction Q?’:ﬁ to (ufk! —u')/k using the technique described in Section 3.

Solve the tridiagonal system for ul}} .

Interpolate {u:‘_;",,il} to get uf,':f' ' uf",';ﬂ, if necessary.

Determine

k !
Of::;'_;ll - an + - (wn + w:;:_l .

2
where
n+li ndl _n+l,, —ntl el entl o 4ndd
wm+1 —w(t 1O Y Umpr sum-[rl )um,m+1au:r,m+1)'

If |ait! — ol | > €, agiven tolerance, then m =m+ 1. Go to (¥*).
If |aitt —atY| < ¢, then set all quantities { } to { }**+1, in other words
we drop the {m} notation and accept these values at time t**1, Determine
next time step as
w* k
wn-{-l — " ’

(35) k= min{ h,

Go to the next time step.

7. Numerical examples. Here we present three different examples. The first

two are from real applications. The third oneis a constructed example for the nonlinear

moving interface problem.

Example 1. Two phase Stefan problem. This is a classical example in tracking

a freczing front of ice in water. The description of the problem is excerpted from
[8], where Furzeland used this example to compare different methods. The thermal

properties are k; = conductivity, C; = ¢;p with ¢ = specific heat and p = density

(assume the same in each phase), A = Lp with L = latent heat. Subscript i =1

denotes phase 1 (ice), 0 < = < a(t); i =2 denotes phase 2 (water), a(t) <z <1

(truncated from infinity). The equations are

O, v,
Cimé?zkiﬂaifél’ 1=1, and 2, t0<t<t*’

=<0, z=0,1t>0,



MOVING INTERFACE PROBLEMS 13

ty = tg =0
ABa L du, k Ou, on z=alt), t, <t
ot ~ oz ? Oz
This problem has an exact sclution

erf¢
. = 1 {1 _ erfc(a:/%/@)}
2o erfc(d/k1/K2) |’

where k; = k;/C;, erf is the error function, and ¢ is the root of the transcendental
equation

ulzu*{l_gw},

E:i + E—z— f:}_ uoe"”1¢2/ﬂ2 + ¢A\/7? _ 0
erf¢ = ki ¥ Ko wrerfe(g/ryJky)  Crv -

which can be easily computed, say using the bisection method. The exact solution is
used as the boundary condition at both ends, = = 0, and z = 1. The following

thermal properties are used
k, =222, k,=0.556, Cy=1762, C,=4.226, A=338,

with t* = 0.288, uv* = —20 and u, = 10 which gives ¢ = 0.2054269---.

TABLE 1
Grid refinement analysis for Example 1 at 1 = 1.0,

N | Ex ratio |E,} ratio
20 i 4.3067 x 103 1.0941 x 10~*
40 || 9.7147 x 10~ | 4.4333 || 2.4947 x 10° | 4.3857
80 || 2.3713 x 10~ | 4.0967 || 5.7298 x 10~° | 4.3539
160 || 5.8160 x 1075 | 4.0772 || 1.3828 x 10~° | 4.1434
320 || 1.4213 x 10~5 | 4.0020 || 3.3721 x 107 | 4.1009

Table 1 shows the results of a grid refinement analysis, where || Ey ||, is defined
as the infinity norm of the error at the fixed time ¢, i.e,

| Ex Ny = max { |aoit) = uf' | },

where N is the number of grid points as defined in Section 2. We use u as the
computed solution at the uniform grid points =z;, ¢+ = 1,2,..., at some time f.
E, is the error between a(t) and the computed interface at the time 3. We see
that doubling the number of grid points give a reduction in both errors by a factor of
roughly 4, indicating second order accuracy. Figure 2 (a) shows the true solution and
the computed solution for N = 40. Figure 2 (b) shows the corresponding error plot.
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(a) (b)

Tia compuled lemporatre, n = 40,1 = L0 x w0 707 plok: True - Approx, it =40, 1 =10

T T

&

S

+ e solL. l r
01 Approx, soln.

0 041 @z 08 D04 05 08 oF os 09 1 % o1 02z 03 04 05 08 0F o8 o9
X X

I't. 2. The comparison of the exact and computed solution at t = 1.0 for Ezample 1 with N = 40.
(a) The solid linc is the exact solution and the dots are the computed results at grid points. (b} The
corresponding error plot.

We see that the error in the solution u is relatively large around the interface compared
to other grid points but not significantly so. Globally we obtain second order accurate
results at all grid points (see Table (1)). We also tested a similar example described by
Keller [11] for modeling a melting and freezing problem at constant speed. The results
again agreed with our analysis.

Example 2. This simulation shows the temperature profile of an ice sheet during
the process of a glaciation. Heine and McTigue [9] proposed a one-dimensional thermal
model to study the temperature change of a glacier. The ice sheet gradually grows to
a thickness of 3000m over approximately 10,000 years. At the same time, a heat
source, in the form of a geothermal heat flux, is warming the glacier from a depth of
4000 in the rock. The point of interest in this problem is the interface between ice
and rock. If the temperature approaches the melting point, the glacier may begin to
slide with catastrophic effect. A similar problem can be found in [10].

The mathematical model Heine and McTigue used is similar to Example 1, see
Fig.3.

pcp%:%(%), 0<z<ht), t>0.
However both pc, and k are functions of T now. So this is a nonlinear model for the
temperature, The estimated height of the ice sheet is

h(t) = ho + 65 + (hoo — ho — 8 }(1 - ety

where hy is the thickness of rock, 6, is an (arbitrarily) small initial ice layer thickness,
h., is the final total thickness (rock + ice), and t, is the rise time for the ice sheet
growth. The boundary conditions consist of constant heat flux from the inner layer of
the earth and constant temperature at the top of the ice sheet:

T(04) = —q0;  T(a(®),0) =T..
The thermal properties are
kiee = C1 gca(TH213.18) L o = constant,

(pep)ice = 71 + 12T, (PCp)rock = constant.
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z = h({) height of glacier

ice ! ,
z=h i ;
e | rock |
rock E [Tg’]
T, "_“'E—QD {HT”
heat —=

i
S iem————
S
8

r— e

S

geothermal heat

FIG. 3. Geometrical frame of Heine and McTigue’s glacier model.

The initial conditions are .

T,,o+-k-‘19-~—(hovm) i 0<2<h
T = rock
1
~ 7 log (€7 — Colho + 61 - 2)T) i ko <@ < hoo,
2
where
_ 90 _97m3isc,
' = . e ,
— 1 "CRTI
T, = —gloe (e - 025,,) .

The following thermal properties are used
C, = 9.828, C, =0.0057, r, = 1.936 x 10% r; = 6.600 x 10°
Krook = 2.50, (€, )roct = 2.30 x 10°% go = 0.06w/m’, T, = —25.0°C.
The geometrical parameters are
ho = 4000m, &, = 1m, he = 7000m, t, =1.9x 10's.

In this example, we have a fixed interface » = hy and natural jump conditions
[T] = 0 and [k8T/8z] = 0 since temperature is continuous and there is no heat source
at the interface. This corresponds to Case 2 in our previous discussion with w = 0.
On the other hand, at the moving boundary h(t) we know the surface temperature
T,. So it is also a one-phase nonlinear moving boundary problem.

Fig. 4 shows the temperature history of the interface between rock and ice. The
geo-physical implication of the result can be found in [9].

To check the correctness of our algorithm, we constructed a problem for which
we have an exact solution within the same geometrical frame. The numerical results
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o

b '
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T T

TEMP (deg. C)
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-
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T
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H Ha
1.5 2 2.5 B ] as
TIME {seconds) xio”

FIq. 4. Temperature on the interface between the rock and ice.

confirmed that our method converges to the exact solution with second order accuracy.
The details are omitted here due to space limitation.

Example 3. Nonlinear moving interface example for Case 2. In this example, we
take A = 1in (1) and construct the following exact solution

sin(w, z)e~f 1™t ifz < aft)
(36) u(z,t) =
sin (wy — Wy) g=frwat if z > alt),

for some choice of w;, wy, 8=, and ft. The source term f(z,t) is discontinuous

~ L, sin(2w, z)e™ e’ if z < oft)

(37) f(z,t) =

Lw, sin(2w, — Yy e~ 2w if 2 > a(t).

We assume that the solution u(z,t) is continuous across a(t). So the interface a(t)
can be determined from the scalar equation

(38) sin(w, o) e? 1" = sin (w; — waa) e Frwa't,

This equation has a unique solution if we take, for example, * < w; < 27 and also
T < wy < 2. Figure 5 gives the plot of a(t) as the parameters (87, B1) changes on a
uniform grid. We can see how the interface crosses the grid. This example is adapted

from [2].

The nonlinear ordinary differential equation for the motion is
(39) E’E = (w%..— w%) u(a: t) .

dt ~ u(a-,t) - u{at,t)

The initial and boundary conditions are

(40) uw(0,t)=0, u(l,t)=0,
sin{w, z) if z < a(0),

(41) u(z,0) =

sin (wy — wy T) if z > a(D).
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A s x L 2 2 A E
03 04 046 05 055 06 085 O4F 0y5 08
X

FIG. 5. Moving interface a(t), 0 <t < 1., from left to right, (ﬁ",ﬂ"’) = (51), (3,1), (2, 1),
(1.8,1), (1,1} and (1,5).

The jump conditions used are

[«} = o,
[Bu (o, t)] = —Btwy cos(wy —wy @) e Pt _ g0, cos(w, ) e,
Figure 6 shows a typical computed profile of u(z,t) as time changes. We can clearly
see how the interface moves and crosses the grid with time. This example is more

challenging than traditional examples because the jump in the coeflicient and in the
derivative of the solution are significantly larger than in the previous examples.

(a) (b)

The profile of u(xt), 0 <wt <w I, N = 168, k=h2

0383

0.6

G4

B2F

.1 =901

[ N i i " .

0 ol 02 53 64 05 D6 GF G805 1

Fic. 6. (a) The profile of the computed solution u(z,t) from i =10 to t = 0.1 with - =gt =1,
and N = 160; () The comparison of the exact and computed solution at 1 = 1.0 with §~ = 5.0,
g% = 1.0, and N = 80. The solid line is the ezact solution and the dots are the computed results al

the grid points.

Table 2 shows the grid refinement analysis both for the computed solution and
the interface. In this case, the interface crosses several grid points during the first few
time steps (see Fig 5). However second order accuracy is still achieved.
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TABLE 2
Grid refinement analysis for Evample 3 at t =0.1.

N | Ex |l ratio |E.] ratio
40 |l 6.5460 x 107* 2.2605 x 102
30 6.0108 x 10~3 | 1.0890 || 8.6674 x 10~ | 2.6081
160 || 1.1557 x 103 | 5.2009 || 2.7449 x 107° | 3.1575
390 || 2.9347 x 10~* | 3.9381 || 6.9958 x 10~* | 3.9238
640 || 7.3175 % 10-° | 4.0106 || 1.7508 x 10~* | 3.9957
1280 || 1.8237 x 10-5 | 4.0124 || 4.3725 x 10~* | 4.0042
9560 || 4.5462 x 10~ | 4.0115 || 1.0913 x 107° | 4.0065
5120 || 1.1370 x 10~° | 3.9982 || 2.7311 x 10~° | 3.9960

8. Summary. In summary we have developed a second order accurate immersed
interface method for a class of one dimensional nonlinear moving interface problems
with two typical interface conditions: (i). Stefan-like problems which we know the
solution on the interface. (ii). Problems in which we only know the jump conditions
in the solution and the flux across the interface. Applications include the immersed
boundary method and heat conduction in different materials. Numerical experiments
have confirmed the efficiency of the methods proposed in this paper. Currently we
are working on similar numerical methods in two dimensions and trying to explore the
possibilities of using the level set technique [19] to track the interface.

9. Appendix — Proof of Theorem 4.1 . Here we present a brief proof of
Theorem 4.1. We first derive one more interface relation using the known information

and then give the proof of the theorem.
LemMMA 9.1. Let u(z,t) be the solution of (1)~(2) with the jump condition (3) and

(4), then

) ul, = pus+ —ﬁl; {q' +[f]- [% (w — Au* + GF)
+ 0z (w01 = p) 4 Map - w)+ 67 E}ﬁ:)} ,

where p = B~ /6%,
Proof: From the equation (1) we know
But, + Biut — utuf - * - uf =
(43) g fr—w
Bug, + Brug — AuTuy — [T — g

Plugging (32) and the second jump condition (4) into (43), arranging terms we get
(42).

Proof of theorem 4.1: Expanding u(z;_;,t), ©(z;,t) from left side, and u(2j41,1)
from the right side of «, we have

1
(44) w(zsq,0)=u" +(Tj —@)ug + 5 (251 — o) ugy + o(h®),
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(45) w(z;,a) =u” + (z; — ) ug + l(:z: — &) ug, + O(h?),
i j 5 \%j
1
(46) w241, @) = ut + (254, — @) uy + 3 (2741 — @) uf, + O(h?).
So
i+t 1
Z Sipejrz W(@pt) = S (u" +{Zj1—a)uz + 3 (zj-1— a)? u;‘z)
k=j—-1
- -1 2 -
(47) + 8 [+ (25 - @) ug + 5(2:,- — ) Uy

1
+ i3 (’M+ + (T4 — o) uF 4+ 2 (zj41 — 05)2 ujz‘)
+ O(R*),

for i = 1,2 and 3. Notice that we have used the fact that s;; is order O(h'~*). From
interface relation (3), (4) and (42) we can solve for u*, uf, and u}, in terms of u™, ug,
and u , and substitute them into the expression above and collect terms to obtain

i1
Z 8; ke p2t{Zr, 1) = (851 + Sia + 8i3) v+ (81 (@1 ~ ) + 842 (z; — )

k=j—1

_ 21— a)? r; —a)? 20, —0)? _
+Si3323)“z+(( . 12 ) 3;'1-5‘( . 5 ) 3£2+( J+12 ) PSis) Uy

+ 53 {q + (€341 — v N (w41 — @) (q,+ (] - B“% (w - Au* _{_ﬁ;))} +O(h*)

G+ 203+
3 3 a u” _
= (Z Siklr1s O SikGhy 2 Sikﬂka) ] o | 4G+ O
k=1 k=1 k=1 'u,;m
ur
=&l -} up | +Cji+ORY).
Ugp

This completes the proof the theorem.
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