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Abstract

A level set method for capturing the interface between two fluids is combined with a variable
density projection method to allow for computation of two-phase flow where the interface can
merge/break and the flow can have a high Reynolds number. A distance function formulation
of the level set method enables us to compute flows with large density ratios (1000/1) and flows
that are surface tension driven, with no emotional involvement. Recent work has improved
the accuracy of the distance function formulation and the accuracy of the advection scheme,
We compute Aows involving air bubbles and water drops, among others. We validate our code
against experiments and thecry.

1 Introduction

In [17] an Eulerian scheme was described for computing incompressible two-fluid fow where the
density ratio across the interface is large (e.g. air/water) and both surface tension and viscous effects
are included. In this paper, we modify our scheme improving both the accuracy and efficiency of
the algorithm. We use a level set function to “capture” the air/water interface thus allowing us
to efficiently compute flows with complex interfacial structure. In [17], a new iterative process was
devised in order to maintain the level set function as the signed distance from the air/water interface.
Since we know the distance from the interface at any point in the domain, we can give the interface
a thickness of size O(h); this allows us to compute with stiff surface tension effects and steep density
gradients. We have since imposed a new “constraint” on the iterative process improving the accuracy
of this process. We have also upgraded our scheme to using higher order ENO for spatial derivatives,
and high order Runge-Kutta for the time discretization (see [16]).

An example of the problems we wish to solve is illustrated in figure 1. An air bubble rises up to
the water surface and then “bursts”, emitting a jet of water that eventually breaks up into satellite
drops. It is a very difficult problem involving much interfacial complexity and stiff surface tension
effects. The density ratio at the interface is about 1000/1. In [2], the boundary integral method

was used to compute the “bubble-burst” problem and compared with experimental results. The
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boundary integral method is a very good method for inviscid air/ water problems because, as a
Lagrangian based scheme, only points on the interface need to be discretized. Unfortunately, if one
wants to include the merging and breaking up of fluid mass, the boundary integral scheme becomes
very difficult to use. In our example, we automatically handle the “bursting” of the bubble and the
process of the jet breaking up into smaller drops. We also compute flows involving wind over water
(see figure 8), which necessitates an Eulerian scheme.

In order to compute flows with steep density ratios and surface tension, we give the interface a time
independent width of only a few grid points wide. This is similar to what is done in [21], where the
authors computed two fluid flow involving air and water. As shown in [17], a uniform thickness is
crucial in accurately computing surface tension driven flows with steep density gradients. We show
examples where we accurately compare with the boundary integral scheme for problems with 1000 /1

density ratios and varying values of surface tension (see figure 4).

2 Equations of Motion

To fix ideas we shall call one of the fuids a liquid and the other a2 gas. We shall assume that both
fluids are governed by the incompressible Navier-Stokes equation; therefore,

Duy

pe = —Vpe+2uV -D+peg, V-uyg=0, =€ the liguid,
2 »
P Dtg = —Vpg+2u,V -D+pyg, V-uy,=0, @ thegas,

where u is the velocity, p is the pressure, p is the density, and p is the viscosity of the fluid. The
subscripts £ and g denote the liquid and the gas phase respectively. D/DT is the material derivative,
D is the rate of deformation tensor, and g is the acceleration due to gravity. The boundary conditions
at the interface, I', between the phases are:

2n - (gD — pgD) = (pg —pg -+ ox)n and uwp=1uy zel (2)

where n is the unit normal to the interface drawn outwards from the gas to the liquid, k =V :n is
the curvature of the interface, and & is the coefficient of surface tension.
We will denote the domain containing the two fluids as  and its boundary as 8. Since the fluid

cannot penetrate the boundary then we have

w-n=0 on O (3)

3 Numerical Formulation

3.1 Level Set Function

As described in [17], there are many reasons to formulate the Navier-Stokes equations in the level
set formulation. Computing spatial derivatives for ¢, such as in the advection equation and for
computing curvature, is more accurate than computing those values for a non-smooth function.
Secondly, we maintain the level set function as a smooth distance function allowing us to give the
interface a thickness fixed in time. Density and surface tension both depend on the level set function
being a distance function.



In our algorithm, the interface is the zero level set of ¢,

T = {z{p(x,t) = 0}
We take ¢ < 0 in the gas Tegion and ¢ > 0 in the liquid region. Therefore we have

>0 if ¢ € the liquid
¢(z, 1) =0 fxzel {4)
<0 if ¢ € the gas
The unit normal on the interface, drawn from the gas into the liquid, and the curvature of the

interface can easily be expressed in terms of ¢(x,t):
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Next we let
_Ju ¢>0
—{ug ¢ <0,

w is called the fluid velocity. By virtue of the boundary conditions w is continmous across the
interface. Since the interface moves with the fluid particles, the evolution of ¢ is then given by

8¢ _
a—%—u-qu—O. (6)

It was shown in [12] that equation (6) accurately moves the zero level set according to the velocity
field u even through the merging and breaking up of fluid mass. To better understand equation
(6), we can use ideas from the method of characteristics. Assume that at time , the interface I' is
parameterized by (s,t),y(s,t), then the evolution of (z,y) is determined by the equations

420608 _ (5,8, (s, )
dy&i,t) = v(z(s, 1), ¥(s, 1))

Since ¢(x(s,t),y(s,t),¢) is defined to be zero for all (s,t), we must have

dp(z(s,t), y(s,t),t) _ dpdz  dédy dp _ _
dt =ma ta T BT T =0

The governing equation for the fluid velocity, u, along with the boundary conditions can be written

as a single equation,

P82t = —Vp+ V- (D) — RSV + (D), ™)

where p and u are the density and viscosity respectively and ¢ is the Dirac delta function. The

surface tension force is interpreted as a body force localized on the interface. By %{¢) we mean

K($) =V (i-‘;jgl)

Since the density and viscosity are constant in each fluid, they then take on two different values

depending on the sign of ¢, and we can write

p($) = pg + (pr — pg)H () (8)




and
p(@) = pg + (pe — pg) H () (9)

where H(¢) is the Heaviside function given by

H(¢)={

The Navier-Stokes equations for two-fluid flows written in a form similar to this was used by Unverdi

if ¢ < 0
ifp=0 . (10)
>0

[ S e

& Tryggvason [21]. The fact that the surface tension can be written as a delta function concentrated
at the interface has been used by Unverdi & Tryggvason, and Brackbill, Kothe, & Zemach [3]. The
form we use is due to Chang, Hou, Merriman, & Osher {5}

3.2 Dimensionless form

Tt is useful to write (1) in dimensionless form. We use the following dimensionless variables
z=Le' u=U« t=(L/U}Y
p=ppU* p=pp' p=pap

where the primes denote dimensionless variables. Substitution of these variables into (7) and drop-

ping the primes we have

Vp
ut+p(—¢5——F (11)
where . . X
wvu Y L (Lo up - s |
F=ruv FT+M@(RJ7&M@D W@(@M@Vﬂ (12)

Gravity is now taken to be pointing in the —y direction. y is a unit vector in the y-direction. The

density and viscosity, respectively, are now

p@)=A+(1-NH(¢) and p(d)=n+(1-nH(¢) (13)

where X = p,/p¢ is the density ratio and n = pg4 /e is the viscosity ratio. The dimensionless groups

used above are the Reynolds number,

Re = ngU,
7]
the Froude number,
UZ
Fr=—
r oL
and the Weber number,
2
We = PV
Lo



3.3 Projection

In [1], a variable density projection method was described. We use a projection scheme coupled with
high order upwind differencing of the convective terms in order to handle high Reynolds number

we assume that

¥, Sin 1] lvergen 3 S80T
-
V- Ty == 0.

According to the Hodge decomposition, one can uniquely decompose the quantity F found in (11)
into a divergence free part (u;) and the gradient of a scalar divided by density (;%). For actu-
ally computing the decomposition, we use the fact that u; is divergence free and hence for two-

dimensional flow, we can write it as:

IR
U = ( B, ) (14)
dax
If we multiply both sides of (11) by p and take the curl of both sides:

—

~Vp($)Vse = V x (p($)F) (15)

The above equation eliminates pressure from (11).

3.4 Thickness of the Interface

In order to solve {15) numerically we must modify it slightly due to the sharp changes in p across
the front and also due to the numerical difficulties presented by the Dirac delta function contained
in F'. To alleviate these problems we shall give the interface a fixed thickness that is proportional
to the spatial mesh size. This allows us to replace p(¢) by a smoothed density which we denote as

pel¢) and is given by

pe(d) = X + (L — A}He(¢) (16)
with
0 ifp < —c
Ho($) =< 1 +2+Lsin(ng/e)] g <e (17)
1 fop>e

The smoothed or mollified delta function is

dH
8.() = — 18
@) =% (18)
It is clear from {17) that the thickness of the interface is approximately
2e
i 19
4l (1)

In our algorithm the front will have a uniform thickness which means we need that |V¢| =1 when
|¢! < e. A function that satisfies

WVd|=1 for € with d=0 for el (20)

is called a distance function. This is because d is the signed normal distance to the interface, I'.



If the level set function is equal to a distance function, then it follows from (17) that the thickness
of the interface is 2¢. In our numerical calculation we shall take £ = aAz where Az is the grid size.
This means as we refine our mesh the interface will reduce in size.

Therefore, it seems ideal to choose the level set function to be a distance function. It is clear
that we can choose ¢{z,0) to be a distance function however under the evolution of {6) it will not
necessarily remain one. This means we must be able to solve the problem: given a level set function
$(a), reinitialize it so that it is a distance function without changing its zero level set.

This is achieved by solving the following partial differential equation

%9 - sign(@)(1 - val) (21)

with initial conditions

d{,0) = ¢(=)

where
-1 ifd<O
sign(¢)=4 0 if¢p=0 (22)
1 He¢>0

and T is an artificial time. The steady solutions of (21) are distance functions. Furthermore, since
sign{0} = 0, then d(a,7) has the same zero level set as ¢(®). Therefore, we simply solve (21} to
steady state and then replace ¢(x) by d(®, Tateady)- It is clear from (17) that we only need ¢ $o be
a distance function close to the front. Therefore we have reached “steady state” when

iVdj=1 for |d|<e.

A nice feature of using this procedure to reinitialize is that the level set function is reinitialized near
the front first. To see this we rewrite (21) as

dr + w - Vd = sign(¢) (23)

where

w = sign(qb);—jl—
Tt is evident that {23) is a nonlinear hyperbolic equation with the characteristic velocities are pointing
outwards from the interface in the direction of the normal. This means that d will be reinitialized to
IVd| = 1 near the interface first. Since we only need the level set function to be a distance function
near the interface, it is not necessary to solve (23) to steady state over the whole domain. We may
use a fixed number of iterations in order to insure the distance function property near the interface.
For example, if the iteration stepsize is A7, and the total interfacial thickness is 2¢ then can stop
the iteration process after no more ¢/Ar time steps. In practice we find that we need only two or

three iterations since we are already close to distance function.

4 Numerical Procedure

We describe the actual numerical discretization of equations derived in the previous section. The
outline of our scheme is as follows:

given ¢n, Un, defined at cell centers, we solve for ¢ni1,unt1.



1. Spatial Derivatives We compute F' (see (11}) and w - V$ using high order ENO upwind dif-
ferencing for the convective terms and central differencing for the viscous and curvature terms
(see [17]).

jection We solve (15) for u,,,. Equation 15 is solved using a MILU PCG scheme,

AL Uiy R L 4P L

3. Temporal Derivatives We advance in time using second and third order TVD Runge-Kutta
methods found in [16]. The time step At is determined by CFL condition, viscous, and surface

tension constraints (see [17]).

4. Redistance We perform a “redistance” update on ¢, ;- Given qbflo,i)_l = @1 as initial data, we
solve the equation d. = sign(q&f&ll)(l —|Vd]) for 7 = 0 to T = aAz where oAz is the thickness
of our interface. The new solution q}ffgl = d{aAx) will represent the signed distance from
the zero level set of ¢£104)_1 for points within aAx of the interface. We use a new constraint,
developed in [19] and described below in section 4.4, for improving the accuracy of the above

operation. We let our new ¢, 1 value be qbiffgl.

4.1 Spatial Derivatives

4.1.1 Convective Terms

The Convective terms are discretized as:

5 ti(fiae — Gimrszg) | (a2 — dij—1y2)
u-vVé = Aw + Ay
T = wij{Uiy1/2; — Wi-1/25) LY (Wijp1/2 — Uij—1/2)
Az Ay ’

The above equations represent the result of subtracting off the divergence free part from the con-
servative formulation. Since we use the stream function formulation for the projection (see section

4.2) we can write u;; and v;; as

wi; = (fgpayz; + Bio1705)/2
v = (Byyye+ Tij-172)/2
Gipiyz; = (Sivr/ziei/z — Siviyzi-1/2)/ DY

Bigrie = —{Siv1/2541/2 — Si-1/3541/2)/ DT
The values @ and ¥ are numerically divergence free:
(fhit1/25 — Bi1/25)/ A2 + (Tijsas2 — Bij1/2)/ Dy =0
The edge values ¢;.p1 /25, Wit1/25s Pijk1/2 and u;;41/9 are computed using a high order ENQO proce-
dure derived in [16]. The procedure for computing the quantity f;11/s,; is as follows:

1. Upwind

P Uiy1/2; 2 0
1 i+ 1 otherwise

2. First Order

1
-ff+)1/2,3 = fkl:j



3. Second Order
fk1:i - fkl"""l)j
Az

b = Frat1,s — Trei
Ax

. = {a if |a| < |b|

b otherwise

P ky —1 ifla|] < b
G kq otherwise
2 1 Ar .
f1(+?l/23 = f(+)1/2 3 P C(l - Z(kl - 'b))
4, Third Order
a Fra=13 = 2fkp,i + Fratry
(Az)?
b = Trai = 2fkav1,j + Fravay
(Aa)?

. = {a 1f§a.i_<_.|b|

b otherwise

(A:r

(3) (2)
fi—%-l/ZJ - f3+1/2,3

c{3(kg — )% ~ 1)

The quantities fi;,.1/2 are computed in a similar manner as above except derivatives in the “x”

direction are now replaced by derivatives in the “y” direction and the upwind step is determined by
ﬁij—l~l/2 as opposed to ’t'.'l.i+1/2j.
4.1.2 Viscous and Curvature terms

We use central differencing for computing the viscous and curvature terms in a manner identical to

[17]. Our difference operators are defined as:

Duofiviiriyz = (Firg + firrger — fi — figr1)/(24Az2)
D.fi; = (firrjzi-1/2 + Firrpzgrrye — fisyyzg-172 — fim1/2,5+1/2)/ (2Ax)
Dyfiripagrie = (Fioger + firngm — fig — fira,s)/ (24y)
Dyfi; = (ficrjagirse + fiprzgeryz — ficiago1y2 — firnyei-12)/ (28y).
i11j T Qi1 41 F Qijp1 T Qi
Mivi/z4+1/2 = #(¢ 115+ dits ﬁz Pii1 T 9 J)

For discretization of the divergence of the stress tensor 2uD we have:

(stsa)o + mfﬁ;ﬁ&)y ) _ o [ Da(uDou) + Dy (u232e%)
{pvy)y + = Uz)w Dy(ﬂpyﬂ)+Dm(!‘2ﬂg‘jﬂ)

For discretization of the curvature x(¢) = V - I—g’%l we have:

6-(2@):2(

|€’¢Ii+1/2,j+1/2 = \ﬂDw¢)2+(Dy¢)2

Ny = —
Vel
T, = D}¢
Y vl
k{py = Dong+ Dyny



An interesting property of the our discretization of curvature is the following: as long as |€'¢5|,~+1 /2,i41/2 £
0, we can bound x(¢) by ? as opposed to O(h™?).

4.1.3 Surface Tension

In (12), the surface tension force is prescribed as

L RV )
We p
The surface tension force is a part of the right hand side of (15). After taking the curl of p times

the contribution due to surface tension cne has:
= 1
- —_— . 25
¥ x = w(¢)($) V9 (25)

We use the fact that VH(¢) = 6(¢)V¢ where H () is the Heaviside function as defined in (10).
As was done in [17], we simplify (25) by eliminating the need for two derivatives on either w(d} or
H(¢). The resulting contribution to the right hand side of (15) due to surface tension is

1

m(ﬁmﬂy had NyH:,;)- (26)
We discretize (26) by replacing H(¢$) with H.(¢) as defined by (17). We discretize the curvature
according to the description in section 4.1.2 above. The derivatives of k and H, are discrefized using
central differences as defined in section 4.2 below. The discretization of the contribution of surface

tension to the right hand side of {15} is:

%((Dmn) (DyH.) — {Dyr)(DoHe))-

4.2 Projection

We discretize {15) using an “exact” projection algorithm as found in [1, 17]. The discrete form of
the divergence (D) and gradient (G) operators are chosen such that one can uniquely decompose the
diserete quantity F into a discretely divergence free vector {Duy = 0) and the gradient of a scalar

divided by density. For divergence we have:

UgpD,j+1 — Uil + Wig1,5 — Ui
Duszu—i—Dyv = i+1,5+ 1,3+ it1,3 L1y

2Ax
Vitlj+1 — Vitig T Vi1 T Vi
2Ay
For the gradient we have:
G.®); 5 L T N T It Mot T ]
(GE);; = (Go®)is ) 2 - = 257 =
BTN Gy B T R N i LT T i TR
2y !

We solve equation (15) for the discrete scalar s, which is defined at cell corners (i -+ 1i+3)

—~Da(p(Gast)) — Dy(P(GySt)) = Dy(pF3z)— Dy(pF1) (27)

_ GySg
w-( )

The resulting value w, is (see (14})):



4.3 Temporal Derivatives

In [17] we advanced in time using a second order Adam Bashforth scheme. Currently we are using
high order TVD Runge-Kutta schemes. Runge-Kutta schemes were used for the advection scheme
presented in {16] becanse they preserved the TVD property of the spatial differences used. By
using Runge-Kutta schemes, we find better stability in our results. We present the second order
Runge-Kutta scheme here,

Let Fy, represent 1, and ¢y, and F, represent u, and ¢,. We have:

Fn—{—l - Fn + AtFin
At -
Foip = Fp+ —2—(Fm+1 + Fin)

The timestep At is determined by restrictions due to CFL condition, gravity, viscosity and surface

i (pc + Pb)WeAmajz
8w

tension:

At, =
. .3 p(Re)Az?
At = min(ﬁ,A:cF'r)
2|
At = %min(At,,,Ats,/_\tc)

4.4 Re-distancing Operation

In section 3.4, we stated the importance of maintaining our level set function as the signed distance
from the interface. We describe in this section the details for discretizing (21).

Equation 21 does not change the position of the zero level set of ¢. Unfortunately in numerical com-
putation this may not be true. In recent work [19], we have developed a constraint that significantly

improves the accuracy of solving (21). We use the fact that
a, / H{d)=0 (28)
i

in every grid cell Qi = ((z,¥)|Tic1/2 < & < Tiqprp and Y12 <Y < Yj+1/2)- That is, since the
interface should not move, the volume should not change either. We modify (21):

od
or
d(e, 0}

i

sign(¢)(L — [Vd]) + Ai; £(9) = L(¢,d) + A £ () (29)
¢() (30)

il

Xij is constant in each cell {};; determined using,
o [ B@=[ B~ [ mou= [ EO@WD T =0
i i i i

Aij is calculated to be

) Py _ IQ{J' H’(¢)L(¢: d)
v fﬂi;‘ H'($}f(4)

(31)

16



In our calculations we choose

f$) = H'(#)IV4l.

This insures that we only correct at the interface without disturbing the distance function property
away from the interface.
For ease of notation, we will denote ¢,(f’ll as ¢, qﬁfﬁi as dy and h as Az. If we want to recover the
distance function a distance ah from the zero level set of ¢, we need to solve (21} for 7 =0... ah.
As noted in section 3.4, we can rewrite (21) in the form of an advection equation with speed w (see
(23)). In light of this, we shall use high order ENO upwind schemes (see [16, 6]} for solving (23).
The discretization presented here is a second order generalization of a first order scheme presented
in [14].
Given dy we solve for (ik+1 as follows:

1. compute an approximation to | Vdy | using second order ENO as described below. Let L{dy) =

sign, (¢)(1— | Vdy |). We use a sign function with thickness h:

sign,(¢) = 2(Ha(4) —1/2)

2. Let dk+1/2 =dy -+ AT(L(dk)).
3. compute | ‘?’dkﬂﬂ |
4. Let dyyr = dp + (A7/2)(L(dx) + L{drt1/2))

In order to compute | Vdy, | we use the following process:

For {d,};; we have:
1. Do the following steps for k; equal to ¢ — 1 and i:

1. First Order

40— Frrrg —dhy

=i h

2. Second Order

Qi 1,5 — 2dg, 5 + dp 41,5
B2

5 = dry g — 2dpy 11,5+ iy +2,5

= -3

. {a if fa] < o

b otherwise

h
a2 = g0 o2k —1) +1)

,iF €,

3. Upwind if ks = i — 1, dy = d); otherwise df = do),

dt if d}sign(@) < 0 and d sign(¢) < —dF sign(¢)
dy m < df if d7 sign(¢) > 0 and dJ"sxgn $) > —d; sign(¢)
(d"i" +d;)/2  if d7sign(¢) < 0 and d;sign(¢) > 0

11



In two-dimensions, one computes d, in a similar manner. By using second and third order ENO, we
find substantial improvement over first order.

We modify the above discretization in order to include the constraint as described in equations (29)
through (31). Given di, we compute dyt1 as described above. Then we compute A;; (see (31))

where:
L{dry1) =~ (drp1 — 6)/Ter
H'(¢) =~ OHa(¢)/0¢
H) ~ H'($)| V]
e @)
)\(dk-’rl) ~ fg‘JH’(Gb)f(qS)

The numerical integration over the domain
Qi = ((2,9)|@i_1/2 <& < @iq1pz and Y5172 <Y < Yjp1/2)
is computed using a nine point stencil:

11
‘/n__fﬁ (Y] 3 firmirn) + 1555007 /24.

m=—1n=—1

Our new updated dg; is

de1 = dit1 + Trpr i F()-

As stated before, we only solve up to 7 = ah where « is the number of grid points away from the
interface in which we wish d to represent a signed distance from the interface. For an interfacial
thickness of four points, we would require only four iterations; each with a time step of h/2.

The error in mass due to the redistance procedure,

A 'Hh(d'k+1) — Hy(¢)

can be expanded in a Taylor series which gives:
[ A -0 = [ H@On -0+ [ @92
05 ij iF

The Lagrange multiplier A;; is chosen so that the first term in the above series
[ @ o)
4

is zero. For the drop collision problem (see figure 2), the average mass error when using our new
constraint was 0.09 (1% error) and the error without the constraint was 0.21 (3% error). The average

mass error is defined as:

i
Morror = f |ML(t) — M(0)|/(t5)
=0

where

M(t) = fﬂ \H($(z, 3, 1)) ddy.

12



Ar error | order
1/4 | 1.54E-3 ; N/A
1/8 | 4.57E-4 1.8
1/16 | 5.77E-5 3.0
1732 | 6.77E-6 31
1/64 | 8.15E-7 3.1

Table 1: Convergence study: Diagonal translation of circle

5 Translating circle and Zalesak’s problem

These examples will show the effectiveness of our advection scheme. The velocity field is pre-specified,
so that only equations for ¢ are solved. An advantage of the level set scheme for advection of sharp
interfaces is the fact that one can use arbitrarily high order schemes for solving equations (6) and
(23). We compute the solution for a translating circle in a 4 X 4 periodic box:

ug(z,y) = vo(z,y) =1

9750(33:?}) =4z +y? -1
We discretize (6) using third order ENO (see {16]) and third order Runge-Kutta. The redistancing
algorithm is discretized using third order ENO for the spatial derivatives and third order Runge-

Kutta. We run the above problem up to £ = 4 and then measure the error. The error is measured

as
fn |H (Great) ~ HB)I/T (32)

where I is the perimeter size of the initial interface. In table 1 we measured third order accuracy.
‘We now test our advection scheme for computing “Zalesak’s problem” (see [22]). The domain size
is 100 % 100 and it contains a slotted circle centered at (50,75) with slot width 15. We initialize u

and ¢ as follows:

wp = (w/314)(50 —y)

vo = (m/314)=z — 50)

¢g = signed distance from object
We compute for £ = 0 to ¢ = 628 (one full revolution) on a 100 x 100 grid; the same as that used
in [22]. We then refine the grid in order to measure accuracy. In each case, the time step is equal
to Az. We get an order of accuracy of 1.3 (see table 2) which is very good considering the sharp
corners in the initial data. We overlayed the coarse grid results with the expected solution in figure

3. The maximum mass fluctuation was less than 1.3 percent on the coarse grid and less than 0.1

percent on the finest grid.

6 2d and 3d axisymmetric air/water flow

6.1 Bubble and Drop problems

The following 3d axisymmetric tests demonstrate our ability to accurately handle fows with steep
density ratios (1/0.001225) and large surface tension effects. We have modified our 2D code in a
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Az error | order
1 2.62E-1 | N/A
1/2 | 418E-2 2.6
1/3 | 2.43E-2 1.3

Table 2: Convergence study: Rotation of cutout circle (Zalesak’s problem)

time | v/U | expected | aspect ratio | expected
5.0 0.98 1.00 2.7 2.7
6.0 0.98 1.00 2.8 2.7
7.0 0.98 1.00 2.8 2.7

Table 3: Viscous gas bubble: comparison with Bubble A of table I in Hnat and Buckmaster.

similar manner as done in [1, 18] for handling 3d axisymmetric problems. In figure 4, we display
rising gas bubbles with infinite Reynolds number and varying surface tension. We agree very closely
to our boundary integral scheme (see [20}) and the tests run in [9].

In figure 5, we display a rising gas bubble (density ratio 1/0.001225 viscosity ratio 1/0.01) that
reaches a steady speed/shape due to viscous and surface tension forces. We use far-field boundary
conditions in our computations in order to circumvent wall effects. In table 3, we show that our

results agree very closely with the experiments of [7] {figure 1A). They had a dimensionless rise speed
major axis

ThoE a.xis) of 2.7. Our results also match closely to the computations

of 1.0 and an aspect ratio (
of [15] (figure 6).

Tn order to illustrate our ability to compute with surface tension, we compute 3d axisymmetric zero
gravity drop dynamics and compare with the low amplitude linearized drop oscillation solutions of
[8] {ch. 275,355). We also compute large amplitude solutions and compare with [10]. In figure 6,
we display 7(@ = 0) of an initial “2-mode” perturbation and compare with the expected linearized
viscous effects. The computed dimensionless period is 3.18 and the expected period is 7. In figure
7, we display the evolution of a drop when given a large amplitude “4-mode” perturbation. The

results agree very closely with {10] (igure 6).

6.2 Breaking Waves

There has been recent work done in computing wave growth due to wind (see [4]}. We have done
many preliminary tests including standing wave calculations and Stokes wave computations. In figure
8, we see the effects of wind being blown over a 2d large amplitude Stokes wave (see [13]) causing
the wave break. Without the wind, in the moving frame of reference, the wave will maintain the
same shape. In figure 9, we show good agreement with expected viscous effects for a low-amplitude
standing wave (see [8] ch. 348).

7 Conclusion

We have presented a robust scheme for handling 2d or 3d axisymmetric incompressible air/water

flow. Asg a result of a new “constraint” in our re-distancing scheme, we see improved accuracy. We
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have done basic tests demonstrating the accuracy of the scheme and also tests validating the effects
of surface tension and viscosity. We have shown many problems with density ratios of 1/6.001225
along with stiff surface tension effects, with good agreement with expected results. In the future,
we would like to be able to improve the resolution of the scheme through adaptive mesh technology;
thus enabling the simulation of fine scale behavior such as growth of the various modes of a wind

driven wave.

References

[1] John B. Bell and Daniel L. Marcus, A Second-Order Projection Method For Variable-Density
Flows, J. Comp. Phys., 101, pp. 334-348, (1992).

[2] Boulton-Stone, J.M. & Blake, J.R., J. Fluid Mech., Gas bubbles bursting at a free surface, 254,
437-466 (1993).

[3] Brackbill, J.U., Kothe, D.B., and Zemach, C., A Continuum Method for Modeling Surface
Tension, J. Comp. Phys., 100, pp. 335-353, (1992).

[4] Chambers, D., Marcus, D. & Sussman, M., Relazation Spectra of Surface Waves, Proceedings
of the 1995 International Mechanical Engineering Congress and Exposition, November 1995.

{5] Chang, Y.C., Hou, T.Y., Merriman, B. and Osher, 8., A Level Set Formulation of Eulerian
Interface Capturing Methods for Incompressible Fluid Flows, J. Comp. Phys (1995), to appear.

[6] Harten, A., J. Comp. Phys., 83, 148-184 (1989).

(7] Hnat, J.G.& Buckmaster, J.D., Spherical cap bubbles and skirt formation, Phys. Fluids, 19,
182-104 (1976).

[8] Lamb, H., Hydrodynamics, Dover Publications, 1945.
[9] Lundgren, T.S. and Mansour, N.N., Vortez ring bubbles, J. Fluid Mech., 224, 177 (1991).

[10] Lundgren, T.S. & Mansour, N.N., Oscillations of drops in zero gravity with weak viscous effects,
J. Fluid Mech., 194, 479-510 (1988).

[11] Mulder, W., Ogher, S., and Sethian, J.A., Computing Interface Motion In Compressible Gas
Dynamics, J. Comp. Phys., 100, 209 (1992).

[12} Osher, S. and Sethian, J.A., Fronts Propagating with Curvature-Dependent Speed: Algorithms
Based on Hamilton-Jacobi Formulations, J. Comp. Phys., 79,1, pp. 12-49, (1988).

[13] Rienecker,M.M., and Fenton,J.D., A Fourier approzimation method for steady water waves, J.
Fluid Mech. (1981), 104, pp. 119-137.

(14] Rouy, E. and Tourin, A., A Viscosity Solutions Approach to Shape-From-Shading, SIAM J.
Numer. Anal., Vol. 29, No. 3, pp. 867-884, June 1992.

[15] Ryskin, G. & Leal, L.G., Numerical solution of free boundary problems in fluid mechanics. Part
2 Buoyancy-driven motion of a gas bubble through a quiescent liquid, J. Fluid Mech., 148, 19-35
(1984).

15



[16] Shu, C.W. and Osher,S., Efficient Implemeniation of Essentially Non-Oscillatory Shock Cap-
turing Schemes, II, J. Comp. Phys., 83, pp. 32-78, (1989).

[17] Sussman, M., Smereka, P., & Osher, $.J., A Level Set Approach for Computing Solutions to
Incompressible Two-Phase Flow, J. Comp. Phys., 114, pp. 146-159 (1994).

[18] Sussman, M., UCLA, Ph.D. thesis, June 1994.

[19] Sussman, M. & Fatemi, E.,An Efficient, Interface Preserving Level Set Re-distancing Algorithm
and its Application to Interfacial Incompressible Flow, preprint (1995).

[20] Sussman, M. & Smereka, P., Azisymmetric Free Boundary Problems , J. Fluid Mechanics, 341,
pp. 269-204 (1997).

[21] Unverdi, S.0. and Tryggvason, G., A Front- Tracking Method for Viscous, Incompressible, Multi-
fluid Flows, J. Comp. Phys., 100, pp. 25-37, (1992).

[22] Zalesak, S.T., J. Comp. Phys., 31, 335-362 (1979).

16



List of Figures

1

[ 3]

r=56mm, Re=531, We=1, Fr=.29, 44x176, spherical (axisymmetric) air bubble burst-
ing at surface. . . . ... L e e e e e e
Re=20 We=2.0 Fr=1 density 1/14 44x44 two-dimensional drop collision. When the
redistance scheme with the constraint was used, the average mass error was less than
without the constraint. . . . . . . . . . . o . i e e e e e
Zalesak’s problem, Az = At =10 . . . . . . .. e
Re = oo Rising 3d air bubble 120x240. dotted lines: boundary integral method . . .
Re = 9.8 We = 7.6 Fr = 0.78 32x128 steady rise of 3d air bubble; corresponds to
Bubble A of table I in Hrat and Buckmaster. . . . ... .. ... .. ... ...
Mode=2, small amplitude oscillations of zero gravity water drop due to surface ten-
sion, 3x3 domain, 50x100 grid € = 0.02 Re=200 We=2.0 . . . . .. .. ... ... ..
Mode=4, oscillating zero gravity water drop due to surface tension, 4x4 domain,
64x128 grid e = 0.3 Re=2000 We==2.0 .. .. .. ... ... .
10m breaking wave, 3.4m/s wind initial slope=0.4 128x64 . . .. ... ... ... ..
standing wave, 1.0x1.0 domain, 50x100 grid, Re = 1000, Fr = 1.0, ¢ = 0.008

17

18

19
20
21

22

24
25
26



t=0.0 t=1.58 t=1.93

Figure 1: r=5mm, Re=531, We=1, Fr=.29, 44x176, spherical {(axisymmetric) air bubble bursting at
surface.
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Figure 2: Re=20 We=2.0 Fr=1 density 1/14 44x44 two-dimensional drop collision. When the
redistance scheme with the constraint was used, the average mass error was less than without the
constraint.
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Figure 3: Zalesak’s problem, Az = At =1.0
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t=1.2 Re=o0, We=200, Fr=1 t=1.8 Re=c0, We=10, Fr=1

Figure 4: Re = oo Rising 3d air bubble 120x240. dotted lines: boundary integral method
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t= 2.00

t= 8.80

Figure 5: Re = 9.8 We = 7.6 Fr = 0.78 32x128 steady rise of 3d air bubble; corresponds to Bubble

A of table I in Hnat and Buckmaster.
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Figure 6: Mode=2, small amplitude oscillations of zero gravity water drop due to surface tension,
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Figure 7: Mode=4, oscillating zero gravity water drop due to surface tension, 4x4 domain, 64x128

grid € = 0.3 Re=2000 We=2.0
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Figure 8: 10m breaking wave, 3.4m/s wind initial slope=0.4 128x64
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Figure 9: standing wave, 1.0x1.0 domain, 50x100 grid, Re = 1000, Fr =1.0, e = 0.008
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