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Abstract. The numerical instability of Gaussian elimination is proportional to the size of the L
and U factors that it produces. The wosst case bounds are well known. For the case without pivoting,
breakdowns can occur and it is not possible to provide a priori bounds for L and U, For the partial
pivoting case, the worst case bound is O(2™), where m is the size of the system. Yet, these worst case
bounds are seldom achieved, and in particular Gaussian elimination with partial pivoting is extremely
stable in practice. Surprisingly, there has been relatively little theoretical study of the “average” case
behaviour. The purpose of our paper is to provide a probabilistic analysis of the case without pivoting.
The distribution we use for the entries of A is the normal distribution with mean 0 and unit variance.
We first derive the distributions of the entries of L and U. Based on this, we prove that the probability
of the occurence of a pivot less than e in magnitude is O(¢). We also prove that the probabilities
Prob{||Ueo/ || Allco > m%®) and Prob{]|L|lee > m®} decay algebraically to zero as m tends to infinity.
Numerical experiments are presented to support the theoretical results.
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1. Introduction. Gaussian elimination (GE) is the most common general method
for solving an m X m, square, dense, unstructured linear system Az = b. Together with
partial pivoting, the method is extremely stable in practice. However, this stability
cannot be guaranteed. The worst case examples are well known: without pivoting,
breakdowns can occur and even with partial pivoting, the “growth factor” can be as
large as O(2™) (and can occur in practical applications [5]). Obviously, the practical
numerical stability of GE can only be explained by an “average case” analysis. Surpris-
ingly, there has been relatively few studies on this topic in the literature. The purpose
of our paper is to provide a rather complete analysis for the case without pivoting.

Theoretical studies on the numerical stability of GE have been made since 1940s by
a great number of authors, for example, Turing [10], von Neumann and Goldstine [11],
[12], Wilkinson [13], [14], and so on. Recently, Trefethen and Schreiber [8] considered
the average case analysis. Among their many results, they observed that for many
distributions of matrices, the matrix elements after the first few steps of Gaussian
elimination with (partial or complete) pivoting are approximately normally distributed.
They also found that, for m < 1024, the average growth factor (normalized by the
standard deviation of the initial matrix elements) is within a few percent of m2/3 for
the partial pivoting case and approximately m!/2 for the complete pivoting case.
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Following Trefethen and Schreiber, we study the probability of small pivots and
large growth factors in this paper. Howeover, we will only consider the case without
pivoting. We are doing so for three reasons. The first is quite obvious: the non-pivoting
case is far easier to analyze than the pivoting case. In particular, we are able to derive
in close form the density functions of the elements of the LU factors and probabilistic
bounds for the occurence of small pivots and the growth factors. The second reason
is that, with the advent of parallel computing, there is more incentive to trade off
the stability of partial pivoting for the higher performance of simpler but possibly less
stable forms of GE, including no pivoting. Finally, we are hoping that our results for
GFE without pivoting will be useful in the analysis of, as well as providing a basis of
comparison for, the partial pivoting case.

Throughout the paper, we suppose X € R™*™ is a random matrix with independent
and identically distributed elements which are N(0,1), the normal distribution with
mean 0 and variance 1. This choice is motivated by the empirical results of Trefethen and
Schreiber mentioned earlier. Matrices of this type have also been studied by Edelman
[2, [3], who derived the expected singular values.

In §2 and §3, we derive the density functions of the entries of L and U respectively,
where X = LU, the LU factorization of X. In §4, we prove that the probability of
the occurence of a pivot less than € in magnitude is O(e).! In §5, we derive bounds on
the probabilities of large growth factors. In particular, we prove that the probabilities
Prob(||U|eo /1| Alle > m25) and Prob(||L|l, > m?) decay algebraically to zero as m
tends to infinity. Finally, we present experimental results in §6. We observe that the
probabilities Prob(m < |lL|le < m1®) and Prob(m < ||U|le/l|Alle < m!®) tend to
one as m goes to infinity. This indicates that our theoretical bounds are not the tightest
possible but not too loose either.

2. Density Function of u,,. Let X be an m x m real matrix with independent
and identically distributed elements from N(0,1), to which we simply refer as “X ~
N (O, I)". Let X = LU, where L is an unit lower triangular matrix and U is an upper
triangular matrix, be the LU factorization of X 2. The (p,¢)-th (p < ¢) entry u,, of U
and the entries of X have the following relation.

LEMMA 1. Let X = LU be the LU factorization of X. Then

— - ml Y1
Upg = Tpg = Ly X Tag s
where
T
Tpe = (:L;ula Ty wpp—l)T )
Tog = (ﬂ"lq} Tty mp——lq) y

and X,_, is the (p — 1) X (p — 1} leading principal submatriz of X.

1 We note that Foster [4] has studied the probability of large diagonal elements in the QR factoriza-
tion of a rectangular matrix 4.
2 Since they just form a set of measure zero, we ignore matrices for which the Gaussian elimination
fails.
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Proof. Permuting the p-th and g-th columns of X and U simultaneously on both
sides of X = LU and then comparing the corresponding blocks, we find

[0 =] [ 9] [ U o]

p—
o 1T 1 e
[ 5 pg | Lo 111 0 Upg |
where
T
lp* - (lpl: T lppfi) 7’1
Uy = (“’Erp o 51"‘1)714]')

and where L, | and U, ) are the (p — 1) x {p — 1) leading principal submatrices of L
and U/ respectively. It follows that

- T — o7}
Xy =Ly Uy, lp* = a:p*Upml ,
— Il o T
Uy = L 1T0g s TUpy = Tpg Ip*u*q

and these imply the desired equation.
Let H be an (p — 1) x (p — 1) orthogonal matrix, e.g., a Householder matrix, such
that

al H = (0,---,0,8) = 97

with s > 0. Then

U, = :r:pq—nT(Xp_lH)“}m

PY *q

= 5 _xmTV-1n
= Ty — Y T,

It can be shown that the entries s, z,,, 7, and y;;, 4,7 = 1,---,p — 1, are mutually
independent and all z,,, v;, and y;;, ¢,7 = 1,---,p — 1, are N{0,1) while s? is Xf,ml-
The proof basically follows the approach in [7] and [9]. We now decompose Y as

Y = QR

where @ is an (p — 1) x (p — 1) orthogonal matrix and R an (p — 1) X (p — 1) upper
triangular matrix with positive diagonal elements. We then further have

_ — T R-1OT
Upy = Zpy =1 BTQ1 T,

1l

T -1
Ty, — N R w

1

S?Upm 1

= Tpg T 7 .
p—1p—1

Again, the variables s, 2,,, w; and 75, ¢ < j, 4, J = 1,---,p — 1, are independent. s?
is Xf)—l and 72 is Xgﬂ., i=1,--+,p— 1 and all others are N(0,1). The proof basically
follows the approach in [7} and [9].
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Since the variables on the right-hand-side of (1) are independent and their density
functions are known, it is straightforward to determine the density function of w,,.

THEOREM 1. Suppose X ~ N, (O,I) and let X = LU be the LU factorization of
X. Then the density function of the (p,q)-th entry of U is

[#5%] i
(2) fupq (t) = m{? ﬁéj(—f—i—/—l% ; gi,p F-2i-2 (m—-l)[ﬂ“:i“j ¢, t—pHemp(—%tZ) ¢p(t)

where

1 p=2 3,

— p=1-2((p-1)/2]
b (1) = (f exp (Efr?) d:t:)
0

and where —oo <t < 00, 2 < p < q.

Proof. Since the variables 2, (7,151 2 0), 82 (s = 0), w,_; and z,, in (1) are
X3 Xf;—l and N(0,1) respectively, the density functions of 7,1, 1, 8, Wp1 and x,, are
given as follows,

)
2

\/:e:r:jJ(—~t2/2) t>0
f'f‘pfjpm] (t) = T

| O t<0,

( 1
20-920((p - 1)/2)

t-2exp (—t3/2) t>0
£t) =

0 t<0,

Fur (1) = \/%exp(—ﬂ/z)

and

fo () = \/;_We:cp(—tﬁ/z) .



Sinece 7, s, W and Ty are independent, their joint density function is given b
p—1p—1: p—1 J

flrswe) = fo (1) fo(9) fu, s (W) fo, ()

'

s 1 N\
&sP~2exp (—5(82 2wt + 332)) T, 8>0

¢ otherwise

-~ 1 e . :
where & = BT ((p — 1)/3)" Thus, the distribution function F, () of u,, is

_ 1 ,
F, (o) = cf/ffu . sP=2exp (—5(32 +r ot wl o+ :cgq)) ds dr,_1, 10w, 1dT,,
Py

= “Zeap —1(3 + 72 +w?  4al)] x
- _p:_1__<0 LF 9 p—1p—1 p—1 7 Vpg

dsdr

p1p— 10wy 1 Ay

Using Lemma 3 in Appendix, we can show that

(3) Fupe () = f dﬁfoo o ezp (——é (mz + (y +1) )) dy

which can be further reduced to (2) by Lemma 4 in Appendix. g

3. Density Function of [,,. Similar to the derivation of the density function of
Up,, We first establish a relation between [,, and the entries of X and then simplify it.
Let X = LU and X7 = LU be the LU factorizations of X and X7 respectively. Set

-~ ~ ~ ~ T
D = diag(@as, - i) Thus, X7 = LDD0. S0 X = (D7) (LD)". Note that

. ~\T T .
DﬁlU) is unit lower triangular and (LD) upper triangular. By the uniqueness of
the LU factorization of X, we have

Hence

for 1 < ¢<p<m. By Lemma 1,

- I
Uy = Tpg— T, Aq 1T
and
g = T X
flyy = Tgq r*q)sq 12 g



where

T
Tps — (mpla e ’mpq—l) 1
_ ) T
Tq* — (mqls T aiqul) s
) g - 3
Tig = 17" sbg—1q)

and X, is the (¢ — 1) x (¢ — 1) leading principal submatrix of X. We now let H be
an (¢ — 1) X (g — 1} orthogonal matrix such that

a:'qu = (0,---,0,8) = 77
with 8 > 0, Then
-1
Tpg = 1" (A(?LIH) Tpx
-1
Ty — nT(Xg’HH) "

aq

Pe

Ty -1
Tpg — N Y 712y

I

I Vs | )
Ly — 17 ¥ 1T,

As in the case of u,, in §2, all the entries in the above expression are mutually inde-
pendent and s? is x? | while others are N (0,1). Let

Y = QR

be the QR factorization of ¥ where R has positive diagonal elements. Then the expres-
sion can be reduced to

T, — T R1QT,,

Pg Tgq — WTRAQT%*

. _ TR
Ty — W R W

—~—
N

——
1

Ty — N R

Tg—1q-1%pg — SWq—1

Tg-1g-1Tqq = Slq—1

The entries T,,, T,,, w; f4; and 75(i < j) are N(0,1) while s? is x2_; and 72 is X2_,,
where i =1,---,¢— 1,7 =2,---,¢ — 1. They are all independent.
THEOREM 2. Suppose X ~ N,,(O,1) and let X = LU be the LU factorization of

X. Then the density function of the (p,q)-th entry of L is

1 1
T 1412

(5) fi, (&) =

where —co <t < oo andl < g<p<m.



Proof. Suppose ¢ > 1 and let F, (a) be the distribution function of ,,. Since the
joint density function of 7,141, Zpgr Tgqr Wo—1, g1 and s i8

f(rrqwlqﬁla qu} ‘qua wq—l: fv"’q-—l} S)

( 1

q—2
W (g - 1)/2)°

= 1
exp (— 2( g Tal el +ulo+ pe g+ 82)) Tg-1g.1> 8 >0

v

L0 otherwise |

and since
/ / q 1g—1> mprp mqqa wq—h ,qu,h 5)qu——1q—1d$pqd$qqdwqm1duq—lds »
lpg S

(5) holds from (4) and Lemmas 5 and 6 in Appendix. The case where ¢ = 1 is quite
trivial if we notice that 1, is the division of two N(0,1) variables x; and zy;. 3

4. Probability of Small Pivot. In practice, if one of the pivot elements wu,, is
zero or gmaller in magnitude than a preset tolerance ¢, Gaussian elimination will fail.
In this section, we describe the probability of the occurrence of such a situation. First,
we give a bound on the density function f, (¢} of u,,.

LEMMA 2.

1 I'(p/2) £2 1 I(p/2) 2
o N+ 12 °7 (”’“5) < oD < TG 2) (3>

for —co <t < oo and p > 2.
Proof. From (3), we have

Fun (©) f dx foo v (ercp <~é (a2 + (y + t)’*)) + eap (—% (a2 + (y ~ t)Q))) dy.

Letting y = xz, this can be written as

fu, @) = ¢ Aoo dz /000 fjj; (eﬂ:p (—% (12 + (zz + t)z)) + exp (—% (3:2 + (zz — t)Z))) dz

- e[ a [ V7 eep (_%((1+z2)x2+t2)) (cap (—z2t) + exp (w20)) dz.

1+ 22

(6)

Since exp (£) + exp (—&) > 2, we have

o0 O -
1) > 2"] d.*] ‘
f”“() = 0 'L{) 1+22

5 1 5 oo oo P2 1 on g
= 2¢exp —515 fo dz/ﬁ 1+Z28.’E}‘3 —5(1+z)3: dz.

7

P2 1
exTp (ma (1 + 2%)z? + tz)) dz




1
Let w = ~2~(1 + z2)x?. Then

2 1 co 00 ‘
A > op | — 2 d 2\~ (P+1)/2, (p-3)/2 —u\d
/ ~f-u(- ) 2 w20 ((p — 1)/2) op ( Zt ) Jo ZJ[B L+ v exp (—w)dw
1 T'(p/2) ltg)
= exp | —=t* }.
i TG+ D/2) T\ 2

Moreover, from (6) we have

ca oo pp—2 1
fu (t) < 25] d:r:f - exp | —= ((1 + 22)a? + %) | exp (zz|t]) dz
v D o 122 2

-+ z

oo Pl 1 ) 1/1 )
< 2cf d’ﬂf gl s (14 2*)z® + %) ) exp 3 E(arz) +2t2 ) | d=
1 co gp—2 1 1
9% e | 242 —_
2cexrp (2?5 ] / emp ( 5 (1 + 3% ) ) dx.

1
Letting u = (1 + 22"-) z?, we finally have

—~(p—1)/2

fn® S e (30) [ [0 (1452)

w3 2exp (—u)du

\/ﬁ 1 oo . 1 —(p—1)/2
= g e (21&2)]0 (1 z%) (1%—522) dz

ﬁ 1 co 1 ~(p+1)/2
2 1.2
ey exp 2t )/o (1 + 22 dz

2 1 0
= Ty CEP (Etz) / (1 -+ 22)ﬁ(p+l)/2dz
T 0

VAN

_ 1 T (1
B wr«p+1>/2)e‘“p(2t)‘ 0

To make the statements below neatly, we use a shorthand notation here. For given
e>0and 1 <p < m, we define

= {X € "™ |u,,| <c}.
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| < € is naturally denoted by | J E,
p=1
COROLLARY 1. Suppose X ~ N,,,(0,I) and let X = LU be the LU factorization
of X. Givene >0 and 1 <p <m. Then

Then the event that at least one u,, has |u,,

| _ Tw/?)
Pr Ob(Eplf) W ap"m

2 € 1 2 re 1
where —\—/—_— f exp | —=t* | dt < o < -—/ exp | —t* |dt.
T Jo 2 ’ T Jo 2

Proof. For the case where p = 1, it is sufficient to note that

Prob(E, () = Prob{|zy| <) \/_/ exTp (»——t2) dt.

Other cases are just the direct results of Lemma 2.
THEOREM 3. Suppose X ~ N, (O, I} and let X = LU be the LU factorization of
X. Then

m 1

(7) Prob(|J B, ) < c(m)eexp (562)
p=1

2 m P(]J/Z)
where c(m) = — ) | wmme—m——u——r,
(m) 7r pZ:; '{{p+1)/2)
Proof. Since Prob(| ] E, ) < Z Prob(E, ), (7) follows by Corollary 1.
p=1 p=1

The coefficient ¢(m) of € exp ( 52) is a rather slow-growing function of m. In fact,

it is about 1800 even when m = 10°%. So, if ¢ is small enough, (7) will certainly give a
satisfying bound for the desirable probability. Moreover, the right hand side of (7) is
approximately linear with ¢ for small .

5. Probability of Large Growth Factor. When Gaussian elimination is per-
formed on an m X m matrix A in floating point arithmetic, the computed LU factors L
and U are produced. Then, by solving two corresponding triangular systems, we obtain
the solution £ to Az = b. The computed solution & satisfies

(A+E)i=0b
with
|E| < mu (314] +5 L] 7)) + O(u?)

where u i the unit roundoff and where, for any matrix M, we use |M| to denote the
matrix obtained by taking the absolute value of the elements of M, see, for instance,
[6, Theorem 3.3.2]. From this, it follows that

1Blleo < musfiAli (3 + 5!@1@%) +O(u?).

9



We define the growth factors py, and py to be

pr = Ul Pu = Vlloo/ 1Al -

It iz possihle that p; and gy can be very large because small pivots can appear. The

following Theorem gives probabilistic bounds on the sizes of py, and py.
THEOREM 4. Suppose X ~ N.(O,1) and let X = LU be the LU factorization of
X. Then there exist numbers 1 > b > 0 and ¢ > 0, independent of m, such that

c C 1
Prob(py >71) < =-m%? 4+ min (—7717/2 , .__,) + bm
7 T m

and

c
Prob(p,>71) < -md
T

for any v > 1.
Proof. We first claim that there exists a ¢; > 0, independent of m, such that

(8) Prob(JJUfl. > ) < f‘;im?/ﬂ.

In fact, by (3), we have

0 = o
Fu () 0 g+t |t]/2 'L? (
0
6/ dx
0 e+l <lil/2 2% + 32 "y

[o.9]
f d’L/ S (w—('L + - t2 )dy+
0 212

{ L E d
ap | —= 4y -+t
</0 “r ly+tj<|ti/2 22 +t2/4 2 (SE (y ) ) v

o0 p—1 1

¢exp (—uﬂ) f d’lc/ ;ﬂ c:cp (w—z-wz) dy +
co T

4¢ peo 00 1

= . =1 ey | 2 (2 2

tf’-/o dm/_mmp en,p( 2(56 +(y +1t) ))dy

1 ( 1 ) 442 T(p/2) 1

2% + (y +1) ))dy+

w]%—l

N)Ip—x

+(y+1) ))dy

INA

[N

A




Since

lim
kh—+too

4 42 T(k/2)
(xﬁ rV/ET((k - 1)/2 ))
exists by Stirling’s formula
lim (z+1)
e—tos pegp (—x)v2mT

we can find a ¢y such that

1,

4 Az I(k/2) <
Vi TR A=) =

for all k. Hence

fu,,q(t) < CQ\/];/tQ'.

Therefore

wmom

Prob(|U||l. > 1) < D03 P(luyl > r/m)

p=1g=p

moom

=¥

p=1q=p >?/m

p=1g=p |>r/m

IA

CaCy

< Sl

T

for some ¢z > 0, independent of m. The existence of ¢y is due to the existence of the
limit
k

1 1
;,ETOOE:*/_ZPZ_;UC_?_'—U‘/?} = fn(l—-t)\ftdt.

We set ¢; = cyey and then (8) is proven. For proving the first inequality in the theorem,
™

we note that the expected value u and the variance o? of the variable ¢; = > |zy,| are

g=1
2 2
p=mif~ , o?={1—~—}m.
v n

2
Setting € = m4/1 — — in Chebyshev’s inequality [1, p.183]
T

o
Prob(|lzy —p|l 2 )< —

&
11



we have

1
(9) Prob{z, <mey) < —,
m
[ =
Z Z
where ¢, = \/ o \/ 1 — —. Combining (8) and (9) we find
m

Prob(py > 1) = Prob([Ull. > rllAll)
< Prob (U]l > r)
= Prob([JU|l. > rzy, 2, = mey) + Prob(||U|l, > ra, mey >z > 1) +

PTOb(”U”oo > TE, T S 1)

AN

Prob({|U]|., > mrey) + min (Prob (U], > ), Prob(z; <mey)) +

Prob (|m1q| <1, ¥1<g< m)
5y [ Sz L I /1 AR K
c,;rm <+ min ( . mte, - + ,m..zﬂ_ » exy 5 .

m p—1 -1
Prob(p, >7) < ZZPmb (|ipq| > 1)

VAN

Finally,

#=2 g=1
1 m o p— 1/
p 2 q— t|>:1 111
Cs
< 2t
pe

for some ¢5. g

6. Numerical Experiments. In this section, we present numerical results to sup-
port Theorems 1 - 4. All our caleulations have been carried out in MATLAB 4.2¢ on
SUN workstations.

In our first experiment, 595000 matrices of dimension m = 31 were selected at
random from the class Ay (O, I). Then Gaussian elimination was applied to each of the
matrices and then statistics on the elements Iy 19, {3p 29, 12,19 80d gy 3 Were accurmu-
lated. The data are plotted in Figures 1 - 4 together with the corresponding functions
indicated in Theorems 1 and 2. In order to make clearer the difference between Figure
1(b) and 2(b), we present them together in Figure 5(a).

The purpose of our second experiment is to test formula (7). Matrices of several
dimensions m were selected at random from N,,(O, I), with the sample size varying. A

12



| m ] € | Sample Size l Fsr‘equenc'y] Empirical probability [ Theoretical bound |

25 | 109 108 5 5x 10-5 8.2853 x 10-5

50 | 103 104 90 (3,009 0.012

50 | 104 104 8 8§ x 104 0.0012

50 | 109 104 0 0 1.2014 x 104

50 | 105 108 9 9 x 10-9 1.2014 x 104

75 | 103 104 89 0.0089 0.0149

75 1 104 104 3 8 x 104 0.0015

75 | 10-5 104 0 0 1.4876 x 104
100 | 10-3 104 115 0.0115 0.0173 ‘

TaBLE 1

Probabilities of small pivot.

few tolerances e were used. The results are outlined in Table 1. The frequency column
of the table provides the numbers of matrices which, in their LU factors, have at least
one i, less than ¢ in maguitude. By comparing with the empirical probabilities, we
conclude that the bound given in (7) is a fairly tight one.

Finally, if we set r = m®, a > 2.5 for py and o > 3 for py, in Theorem 4, then
we can see that the probabilities Prob{p; > m®) and Prob(py > m®) decrease with m
increasing. In fact, empirically this is true even for smaller a, say, o > 1.5 for both g,
and py, as illustrated in Figures 5(b) and 6. In this experiment, we chose sample sizes
to be 968500, 365500 and 98000 for m = 25,50 and 100 respectively. In each sample,
we calculated p; and py for each matrix X. Then the data of p;, and py were grouped
into ten classes respectively. In the case of p;, for example, the first class consists of
matrices X with m® < p; < m0% and the second class with m®® < p; < m!, the third
one with m! < p; < ml% and so on. The number of matrices in each class was then
divided by the corresponding sample size to get the percentage frequency to the class.
The distributions have been plotted in the form of histograms. Empirically, there is a
tendency that Prob(m < p;, < m15) and Prob(m < py < m!3) tend to one as m goes
to infinity.

7. Appendix
LeMMA 3.

1
//f wa’*le:cp (—5 (22 + %+ 22 + wg)) dzdydz dw

o o0 oo P 1 9

where Q = {(z,y,2,w) | 2 —yw/z <a,w >0,z >0} and 1 < p.

13



1
f_/f Qw?’*emp (—-2— (2? + y? + 22 + wz)) drdy dz dw

g oo 00 o0 1
= ] d:u] ciwf dzf whlexp [ —= (2?2 + 2+ 22 +w?) | dy
—oo 0 0 (z—a)zfw 2

Letting ¥ = uz we find

"OC = o0 OO 1
Fla)y = / dn:/ dwf dz/( y zwP lexp (—5 (22 +ulz? + 2% + wz)) du
—oc 0 ¢ T—ao) fw

g
B
It

%] oo oo 00 1 .
= / (in:/ dw / swblexp | —= (22 +u22? + 22+ w?) | dz
—00 0 { 0 2

du
a—a}w

[ [Tan S (2w an) d
= T T — =\ .
—~00 v 1] v (e—a)fw 1+ w? erp 2

Letting v = v/w this can then be written

o0 oo o0 wP 1 2 2
F(OJ) = [_mdﬂ:/{) dw mﬁﬂmﬁﬂ:}) “5(33 +’UJ) dv

-ooJI 00 ! oo i 1 5 5 4
= /Moocrr,/m_awfﬂ L —E(a: +w?) | dw.

Finally, letting v = x — ¢ we have

wh 1
2y — 2 2
F{o) / daf dtf S ze:vp( 2(3: 4w )) dw
a o0 g% wP 1
[ e (<2 ) o
.[moo L™ wr i (x —t)° P ( Z(T w?)
o < oo P ] 1 2 5
= /;oo dt/;oodl/; mﬁlp (—5 ((i“"t) + w )) dw [

LEMMA 4.

[ [ e (<3 (2 o)

L 55=]
1
— 2@41)/2\/7?1“ (g) (Z &pt 24 2+( 1)[(? 1)/2JC = PHm:p(—-mtz)qbp( ))

i=0
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where

1 p=2,3,

. 1 p—1-2|(p-1)/2]
¢p(t) = (f exp (512) dm)
0

and where —oo <t < 00, 2 < p.
Proof.

f(t) = fﬂoodm/o;m;p 1

1
" exTp (—5 (:L‘2 + (y + t)z)) dy

P

1
= exp (——t2 €T (—5 (22 + y2)) exp (—yt) dy

ooﬂ,2+,j

oo oo TP 1 1 oo f_ tn
= exp ("—f2> A dx — €L (--5 (932‘1’3}2)) Z( yt) dy

2
—oo B4 + Y = n

— o erélnl T
= exp (—-t2 | f f i e'rp (—— (z? +y )) dy
~ nl

1 o0 in oo pp—laln 1
= Zexp (—51&2)2 / f Ty —exp (—§(m2+y2)) dy

11*0 iE + y

9 1t2 i tn / f Zn P 1 . (1 N ) i
= i —_— T exp | —— Z .
erp 2 {2n)! z2 v L 2:C

n=0

n=

where y = zz. Let w = 22 (1 + 22) /2. Then

00 n]&Zn 22n
t) = 2-1/2 ——~—t‘* f / ntp=8)/2eqp (—w) dw
() exy 2 0 (2n)! (1+22) vz W P (~w)

1.\ &2 ang?n p—1 P 1
= 2p=3}2p —f2 T B{=, —
exp ( ) ng(l )] (71 +— ) (2 n—+ 2)
r

= 90— . Lo} & 2ne p—1\T %)I‘(n-k%)
- e <“5t2)? - .F(M 2 ) (n+25)

o]

15



b2 1 s 1 (2n — 1N
= olb-1/2,/r T (_> — 2 n
vr 2) P\ 72 ”2} m+p—1 (2n)
— 2(3)—1)/2vfln}'r (E\ exyp {_Eﬁ \T 1 1 #en
\2/ 2" ) plondn4p—1
=0
» 1 x 1 1
= 9fp—1)/2 T (_) — 42 )l f2ntp—1
vr 2) P\ 73 it 2ntp—1
= 912 4 Lio) i pt
= L2 /gD 5 ) exp —§t t=P+lg(t),

where and below we define 0! = 0!l = (—1)!! = 1. Since

d o2 1
—qg(t) = pinte=2 o pp-legg [ —2 ] |
dtg( ) ﬂ{j{) FANA p (2 )

we find

. 1
g{t) = /U:cp‘:’ea:p (5.1:2) dx

1 [%3} i1 .
= exp (Etz) (- [p-2j-3) 23+
j=0

i=0

~1-2{(p-1)/2
{om13/2] Co1 N p—1-2{(p—1}/2]
(—1) (p— 3N exp | 5 dx
0

by integration by parts and then the desired result follows. g

LEMMA 5.
1 G 6
// zi P eap (w“ ZT?) 11 de;
Q@ 24 i=1
= 220220 ((qg+1)/2) f d?h/ dygf (lyS/ s i <
© (1+ 32 +12)
1

Ay,
372
(1 + iy + 1)+ (vs + yd)z)

where ¢ > 2 and Q = {(21, -, x6) | (71705 — T2/ (325 — 2925) < @, 21 > 0, x5 > O},

16



Proof. Let

Tg={(y +P)Ts , Ty=EYs

@y = (ys + Yajirg , We = T1Y4
Then
1 G 5
F@ = [oof ot e (-5 301) T
. . 1
_ / f i alxexp (_5 (rbf (1 +y2+ yj) + 2 (1 + (11 +u2)* + (v +y4)2))) X
/Y35
4
day dry [ dys
i=1
1 ([ (- )
yy/yasa \JO 21 2 !
oc 9 i 9 2 2 :
fu zpeep | =5 (1 + (yy +12)° + (3 + va) ) dzy | [ dy:
-1
1
= /222120 ((q + 1)/2) //f] TR
n/msa 1 + (g1 +92)" + (vs + 94) )
1
(1372 H‘“‘
(1 +yi+y )
= w2 (g4 )2) [ dydyy [ du [ s
nfys<e (1+u2+v2)"
L }
577 “Ya -
(1+ (o + 1) + (a + )’
Since
// (2, y dwafy*/ d’E/ (zy, ¥yl dy,
m/y<a
we have
oy 22 |ys]
Flo) = /2004— /I‘ ({g+1) /2)/ d’fJJ/ d?fs dyz (g+1)/2 X
-0 1 +yi+y )

17



1
32
(14 (w19s + 1) + (1 + v)°)

dys. 3

LEMMA 6. Let

fit) = zmzf d:cif (hz/ a1 X

aj2
1+ (g + @18) + (23 + 27) )/

1

dx
+1)/2 "3
(1+:z:g+:z;§)(" /

where 2 < q and —o00 < t < oo, Then

1 1
ml 482

f) =

Proof. We rewrite the expression of f(¢) as

1® = 7r21-|-t2/ d“f d“/ =

372
o 1 + (g + cx))* + (75 + sxl)z)

1
57 (T3
(1+22+ a:g)(” )/

where ¢ = ¢/v/1+t? and s = 1/+/1 + 2. Let

v =y, v =iy —sys), @3 = yilsys + cys).

Then
_g-1 vilv|
f(t) - 47{2 1 +t2 / dylf d?f?[ 2 9 3/2 X
(1442 ((1+m) +42))
! ]
(orn)yz “Us
(o)
1 1
= E1+t2§'
Since

oo 1 o 1
[ron = L[ hm = 1

18



we have £ = 1 and therefore the lemma follows.
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FiG. 1. (a} Distribution of uiz2. (b) Observed density function (dashed) of ui2,12 and its predicted
function (solid).
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Fia. 2. (a) Distribution of uz1 31. (b)) Observed density function (dashed) of usi,31 and ils predicted
function (solid).
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Fra. 4. (a) Distribution of lzp 0.
funetion (solid).

(k) Observed density function (dashed) of lsp,20 and
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FiG. 5. (a) Overlap of Figure 1(b) and 2(b). (1) Percentage frequency distributions of pr (dashed)
and py (solid). m = 25.
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F1G. 6. Percentage frequency distributions of pr (dashed) and py (solid). (a} m =50, (b) m = 100.
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