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ABSTRACT OF THE DISSERTATION

Vortex Sheets, Singular Integrals and Steady Flows
by

Shin-Shin Kao
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1995

Professor Russel Caflisch, Chair

The first part of this thesis is devoted to the study of the “shortest-distance singularity”, which ap-
pears as two vortex sheets approach each other. Desingularization methods for the singular integrals
in the two-sheet Birkoff-Rott equation and in the PDE system by the potential and dipole distri-
bution formulation are developed. It is concluded that the velocity field and the related functions
have a discontinuity at the collision point, but the implication of this result is not understood yet.
Numerical experiments showing that desingularization can reduce the errors due to this singularity,
and ensure (at least) linear convergence independent of the separation distances are performed.
The second part is a numerical study of the stationary “flying droplet” with inner vorticity and
outside circulation in a uniform flow. Symmetric solutions are obtained by the collocation method
for different Atwood numbers and vorticity strength. The most Limiting solution reached by our

method is consistent with the presence of one or more stagnation points on the boundary and has

viii



a circular-cap shape.

The introduction of the first problem is given in chapter 1, while that of the second problem is

given in the beginning of chapter 5.
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CHAPTER 1

Introduction

There has been much work devoted to the study of the dynamics of a single vortex
sheet. Theoretically, Moore[24] showed that a small sinusoidal perturbation of the vortex
sheet leads to a curvature singularity on the sheet at a finite time, due to the well-known
Kelvin-Helmholtz instability. Numerical evidence consistent with Moore’s results was first
provided by Baker, Meiron and Orzag (1982)[2], then by Krasny (1986)[20], who controlled
the machine roundoff error by Fourier filter method, and hence confirmed that the singularity
is associated with the self-rollup on the sheet.

Our work is concerned with the singularity which comes up as two vortex sheets ap-
proach each other, about which there are relatively fewer studies. This “shoftest-dista,nce
singularity” can be observed in many situations (fig.1.1); the most obvious example is the
collision of two droplets. Another example is the evolution of the water waves subject to
a small perturbation. The interface first becomes vertical, then turns over and breaks at a
finite time. In the region close to the breaking point, we can find that the distance between
two sets of particles, which are initially away from each other, decreases to zero as time
evolves. The other example is given by an underwater bubble subject to gravity accelera-
tion. In the experiment described by Walters and Davidson [15], where an approximately

two-dimensional air bubble was produced in a thin vertical slab of water, it is found that the



initially circular bubble with radius 1 inch rose and formed a jet at the bottom. The jet was
observed to approach the top of the bubble, but never touch it. The jet instead slows and
extends so that the bubble becomes a horseshoe shape and eventually detaches into three
parts. In this case, we see the tips of the horseshoe and the upper interface are closer and
closer as time evolves.

The above phenomena has been numerically studied by many researchers using the
boundary integral methods, such as Anderson[1], Baker, Meiron and Orzag [3], Baker and
Shelley [5], Beale, Hou and Lowengrub [8], Krasny [19] [20], Longuet-Higgin and Cokelet [13],
Moore[25) and Shelley[28] for the interfacial water wave problem, and Baker and Moore [4],
Blake, Doherty and Taib [10][11], Lungren and Mansour [22] for the rising bubble problem.
The key advantage of using the boundary integral methods is that only quantities on the
boundary need to be computed, due to irrotationality. However, as far as we know, there
is no results by the boundary integral methods that can simulate the evolution up to the
breaking time. The most visible practical limitation is the numerical instability. In order to
obtain acceptable accuracy, the grid-spacing must be reasonably small, at least compared to
the local scale of the flow, the radius of curvature of the surface or the distance between the
two interfaces described in the previous paragraph. But as the mesh size is reduced, not only
the total number of mesh points is increased like N2 (for 3-D problems, or like N for 2-D
problems), but also the time step must be decreased for the numerical stability, Beale, Hou

and Lowengrub have derived theoretical results for the nonlinear stability and convergence

of certain boundary integral methods for time-dependent water waves[9]. They also present



numerical results to show that a modified filtering (or smoothing) of the Fourier symbol of
the derivative operator is necessary for stability. Analytical results for those in the rising
bubble problem are not reported yet. Baker and Moore [4] calculated the shape and position
of the two-dimensional rising bubble, but the codes failed when the jet and the lateral wall
were close.

Since we have not been able to analyze the full time-dependent problem of a réconnecting
interface, we restrict our attention to the singular integral that appears in the vortex sheet
problem. First of all, we model the situation as interaction between two interfaces. Secondly,
we assume that the profile of the two surfaces remain fairly smooth or unchanged as they
approach each other. Thus the problem is reduced to a stationary problem, in which we take
the distance between the two surfaces as a parameter and inspect how the equations change
as the distance is decreased.

. We use desingularization to analyze both the Birkoff-Rott equations and the PDE system
derived by the potential and dipole description for the two vortex sheets. We find that the
velocity filed jumps as the two interfaces meet, but the implication of this result is not
well understood yet. Numerically we use the boundary integral method to compute the
associated function values at various distances. We find that as the distance shrinks, the
pumerical scheme fails to converge due to the high variation in the integrands (we call it the
shortest-distance singularity), as was reported by Baker and Shelley’s [6] for the same test

problem. But after doing desingularization, the ill behavior in the integrands is removed and

hence (at least) linear convergence is guaranteed independent of the separation distance.



Chapter 2 derives the two-sheet Birkoff-Rott equations and introduces our desingular-
ization method. Chapter 3 gives the PDE system derived from the dipole distribution and
potential description, and the corresponding desingularized equations. Chapter 4 describes

the test problem, which Baker and Shelley [6] worked on, the numerical algorithms with and

without desingularization, the experimental results, and the conclusion of the whole work.
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Figure 1.1: Examples of shortest-distance singularities.



CHAPTER 2

The Two-Sheet Birkoff-Rott Equation

We wish to describe the flow in which one fluid is separated into two parts by the other
fluid, and the distance between the two separated parts is decreased. Both fluids are as-
sumed to be homogeneous, inviscid, incompressible and irrotational for simplicity. Let p,,
U, be density and velocity of the ith fluid, i = 1,2. Then the situation is pictured below,

where p is constant, 7 - U; =0 and 7 x U; = 0.

Fluid 1
pl, Ut
Fluid 2 p2, U2
w— \
Fluid 1 pl, U1



2.1 Derivation of the two-sheet Birkoff-Rott equation

Recall the derivation of 2-D single-sheet Birkoff-Rott equation. Consider an interface
between two ideal fluids. In 2-D, it is a curve C represented by Z = X + Y. The normal
velocity across C is continuous while the tangential velocity is discontinuous. Thus it is a
vortex sheet.

Let [/, and 7 be the limiting velocities from above and below on the vortex sheet, and

U7 be the velocity of the whole fluid, so [7 is discontinuous across C. Therefore,

szxU

il
—~—
~
gz’
o
i d

(2.1)

Here k is the unit vector (0,0,1), T and N are the tangential and normal vectors on C
accordingly, and we define & = —([7+ ~0.).

On the other hand, we can express U in terms of &:

vxvxU

VX
= v(v-0)-v-(v0)

= -y U.



We have used the assumption that ¥/ - [ = 0 above. This implies that

0@ = - [ G@E-z) vz xd(z)de

R2?

(2.2) jR VaG(E - &) x 3(&)d,

where
G(&) = 5-Logld!
(z') = or oglz'|.

Here G is the Green’s function for R? and (2.2) is the Biot-Savart law.
Now we write U as U = (u,v,0), then & = (0,0,w), where w = w(Z) = d,v — Gyu. Also

# = (z,y) and 7' = (', y"). Then (2.2) becomes

- - J hand ! - -
_1-_ ( (y y )!-(‘x L ))w(z,r)dmf.
2w JR? tf _ mll?

(2.3) (u,v)(Z) =

From (2.1), w = 0 away from C, so (2.3) is rewritten as

(2.4) (u,0)(Z) = -2—1; / Sl W CIad ) PYE NPT

|2 — 22
This gives the velocity for # away from C. Using complex variables such that Z corresponds

to z = z + iy, = corresponds to Z = X +1Y, and (u,v) corresponds to u — 1v, (2.4) is:

25 (u-i)my) = 5o j-"—(-;)-”-’z—c(% for (a,5) € B2\ C.



In the two-sheet problem, the vorticity w is confined to C', where C = C,UC,; and they are

parameterized by Cy = {Z;(s) = 2,(s} + iy1(s)|s € R} and C; = {Z,(s) = z,(s) + iy(s)|s € R}.

By the same derivation, we have

: 1 Gy(s) dCi(s) Fy(s") dCy(s")
2.6 —iv)(z,y) = — , [ = :
(2.6) (u = iv)(z,) 2riJoy x iy~ Z4(s) Jo, x4y~ Zz(s'))

Writing (2.6} in terms of Lagrangian variables a, 8, we get

)

iy = o DDl 5,(8) - Ts(B) 4B

21t Jeoo 4ty — Z1(a) ~o0 T+ 1y = Z5(6)
RIY b v (o) da + f°° v,(f8)dB )
i ooz +1y — Zy(@)  J-oo z+ 1y — Z,(B) ,

2.7) =

where

3

vi(a) = & {a) -f,(a) v Y2(B) = Ga(B) - T2(B)-

The functions 7, , 7, are the “vortex sheet strengths” for sheet Z,, Z, respectively. This
gives the velocity for (z,y) away from the two sheets.
To obtain the velocity for a point on the sheets, where u — {v is discontinuous, we shall

define the velocity at (z,(a), y;(a)) € C, as the average of the velocities across the interface:

(wy —tvy) + (u- - iv_)

(2.8) (u — iv)(zy(@), (@) = : ,
where
Uy — 1 = li o
+ Uy (”")_(’1(31131(“»”“(1& iv)(z,y)
uid above Cy
— y = ll _ . ‘
M- (=.v)—-(=1(alr§,ryl,(.,n,,.m(u tv)(:c, y)
Fluid below Cy



Using the Plemelj formula [23}, we obtain

. _ 1/€ 1 (a’) do! 1 g 12(B) 4B
(- in)a(@ @) = lma([ 4 [ st [ )

_ ni@)de = ple)de
(2.9) . - 2m( .[oo z+1y— Z(e!)  J-o z +iy — Zy{a) .
From {2.8),(2.9),
— _ 'n a' t)do’ 72(e, t) do!’
(210) 8Z:(et) = PVf Zy(e, Z,(a' t) 2’” j Zy(e,t) = Zy(e!,t)

By the same argument,

(2.11) 8Z () =

(o, t) de’ / n(e,t) do’
21|'2' -0 Zz(a’, t) - Z](a t ZQ O’.,t) - Zg(a’ t)

Here PV [ denotes the Cauchy principal integral centered at o.

2.2 Desingularization

To simplify the notation, we denote the coupled system (2.10) and (2.11) by

— 'ym(a’ t)de! o0 Ta(e, t) do’
Bth(aat) = PV_/ - Z (o, t) 27!'!-/ Z (05 ) -2 n (s t)
- 1 1 mn=l,2
(2.12) = ”é';r“i-[mm(a,t) + ﬁImn(aa t): m#n y

The integral I,,,, describes the influence on the velocity field 8,Z,,{c,t) of particles on the
same sheet. It is the same integral as in the single-sheet Birkoff-Rott equation, where the
integrand has a singularity at o = a at any ¢. The desingularization method was introduced

by Van de Vooran in 1979[29], who replaces the singular integrand by a regular one and adds

10



an extra term which represents the contribution of the immediate neighborhood of the point
considered. Here we study the singularity in the integrand of I,

Let 3 be the singularity of ., i.e., Z,(a,t)— Zy(8,t) = 0. This implies that 8 = f{a,t).
Since there is no real singularity unless the two sheets meet at a specific point at a certain #*,
Im|B(a,t)] # 0 Yo € R, except at the collision point at the critical time 2*. This is different
from the real singularity o/ = a in the integrand of I,,,, which appears uniformly in time.

We remove this complex singularity by the following theorems:

Theorem 2.1 Suppose |Z,(a,t) — Z,(e,t)] # 0 for (e,t) € R X [to, t*] ezcept at a = 0,
t=1*. Let

, B ¥(af,t) Yolot)
flo,a'st) = Zi(oo ) = Zy(ay1)  Zy(t) — Zo{a,t) + BaZafen t)(a — o)

Assume that:

(A1) For any ty <t < 1*, Z;, v; are andlytic (uniformly in t) in the strip
{a € C,|Im{a)| < A}, A > 0.

(A2) Z;(c + 2m,1) = Z;(e, ) + 27, 7j(e + 27, 1) = 7;(e, 1)

(A8) Z,(a,t) = Z,(a,1), Yo € R, t € [to,1"]

(Ad) Re[0,Z;(e, )] 2 p >0 Ve, t € [to,1°],

Then f(a,o,t) is uniformly bounded for (a,/,t) € R X R x [tg,2*]-

We have assumed in (A1) that the two sheets are fairly smooth for t; <t < t*, so we
can consider t as a parameter controlling the distance between the two sheets in a station-

ary problem. To focus on the shortest-distance singularity of the two sheets, we suppose

11



they are so close to each other that no self-rollup is present before they meet. That is,
RelfaZ;(a,t)) > p > 0 in (A4) or Zj(e,t) = a+i- Y(a,t), where Y(a,1) is real for all
(o,1) € R x [t;,1*]. Furthermore, let these two sheets be symmetric to each other for sim-
plicity , as in (A3). The proof is in appendix; we locate the complex singularities of both

terms in f(a,o,t) and find them very close to each other. Thus the function value of each

term get canceled on the real axis.

Proposition 2.1 Under the same condition and assumptions in Theorem 2.1,

lim 'Yz(a',i) _ 72(0:,15)
o'=a Zy(a,t) = Zy(e', t) Z(a,t) = Zy(a,t) + 0, Zy(a — o)

exists and is a finile number at the collision point « =0 at t = 1*.

proof: Att=1t*,a=0, Z,(0,t*) = Z,(0,t*) by assumption. “¢*” is dropped to save space.

lm 72(e’) _ 7(0)
o= ZI(O) - Z] (a') 21 (0) - ZQ(O) + aaz?(o)(o - &’)
T ()

aima Zo(0) — Zo(a!)  0cZ,(0)(0 — o)
'Yzag,azz — 20,7:0.2,
( 2(8a22)2 )(0)’

which is a finite number by assumption.

Theorem 2.2 When the condition in Theorem 2.1 and the assumptions (A1)-(A4) hold,

1o, t) dod’

(2.13) I = f_ w0 Z3(0, 1) — Zy(a, ) + 0, 25(a, t) (e — o)

is continuous everywhere for (a,t) € R X [to,1*] except at a =0, ¢ = t*.

12



proof: The integral in (2.13) is a regular integral because

[ o # Re[0,Z,(a,t))(a —a'} # 0
when t < t*,
1 o =o Zi(a,t) — Zy(a, 1) # 0
o # o Re[0,Z,(a,t* (@ — ') # 0
Whent:t*,aiéo [ 2( 3 )](
o=a Zy(a,t) — Zy(o,t) # 0.
Only at t = t*, o’ = a = 0, the denominator vanishes, but it is shown to be nonsingu-

lar in Proposition 2.1. So

f 72(“: )da
-0 Zl(aat) - Z2(a$t) + aaZ2(aut)(a - a')

72(0:1” oo do/
0aZy(eyt) J-co Zaa_zf (@) +o—a
= T2(a; 1) = ap
(2.14) = aazz(mt)Pme £ Im[—‘—“z(a -4

Here we do change of variables by ' = o' — Re[ (a t)] — a and the Cauchy principal

integral is centered at 0 in particular. Therefore, the integral in (2.13) is approximately

a>0,a#0

d.r TFi 3f
~ PV] <

0o & — 10 )
0 if a=0

Sincea =1 m[i—é{fz%’();{-ﬁl] # 0 except at a = 0, ¢ = t*, this implies the velocity field jumps at

the collision point. The implications of this conclusion are not understood yet.

13



CHAPTER 3

The Potential Description of the Two-Sheet Problem

In this chapter, we want to study the interacting vortex sheets from a different for-
mulation. That is, the dipole distribution and potential description. The conclusion that

associated functions have discontinuity at the collision point is obtained again.

3.1 Derivation of Formulation

First recall the 2-D exterior problem [6], i.e. the single-sheet formulation. Consider a
bubble staying in ideal fluid. Let the boundary of the bubble be denoted by 8D, where D
is assumed simple connected and let ¢ be the potential function of the surrounding fluid.

Then we have
(3.1) V¢ =0 V(z,y) € De.

Assuming that the bubble volume is conserved, the solution of ¢ is given by the following

formula [21}:

(5.2) §9) = PV [ ula)ascGlpa)ig — "2 on oD,

where G is the Green’s function satisfying 2G = 6,(¢g) and p is the dipole distribution
function. N is the normal vector pointing into D. The principal value integral is acquired

by using Plemelj formula [23].

14



The integral formulation for ¢ when D is multi-connected, D = D; U D,, is obtained by

the same derivation as for D that is simple connected (fig 3.1).

(3.3) éi(m) = PV fop, i1(0) 25 (p1, 0)dg + Jop, #2(0) B (p1> 0)dg + wi) e dD;,

(3.4) ¢o(py) = PV Jfop, #2(9) 25 (P2, 9)dg + o, 111(0) 25 (2y 9)da + 242 p, € D,

Here p,, is the dipole distribution defined on the m-th boundary, and N,, denotes the nor-
mal pointing to D¢ on the 8D,,, 8D; and 8D, are parameterized counter-clockwise by
(X1(q), Yi(q)) and (X2(q), Ya(q)).

The 2-D Green’s function G is given by 7-log[(X — X,,)? + (¥ - Y,.)?], where (X,,,Y,,)

lies on the m-th boundary dD,,. Denote %Q;(p,q), pedD,, qedD,, by K,,.. We have

1 X! (9)[Yalp) = Yu ()] = Y2 (91 Xalp) = Xin(4)]
o [Xa(p) — X9 + [Yalp) = Yau(g))?

n,m =1,2.

(3.5) Kpm(prq) =

Here X! = @.;im, and Y/ = &=
; m g m g

To simplify the symbols, rewrite the system (3.3), (3.4) as

$u(p) = PV fa p, (DK (Py 0)dg + fa o, (@ Konn(p,0)da + Eﬁiggl
(3.6) = Lu(P) + Lna(p) + #_épl min

15



Figure 3.1: Examples of multi-domain situation.
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3.2 Desingularization

To study the singularities in I,,.,,(p) and I,,.(p) in (3.6), we investigate the behavior of

the kernels, K,.,.(p,q) and K,..(p, q).

Proposition 3.1

, 1 (X Yr—Y!X")

= — - Curvature(p) - ((Y!)* + (X:n)2)1‘,2(3’)-

We conclude that I (p) has a regular integrand as long as p,,, m=1, 2, are well-behaved,
and the boundaries are smooth and have finite curvature.

The singularity in I,..(p) is similar to that in the two-sheet Birkoff-Rott equation. {3
is not present until the two interfaces meet, since K, (p) is not singular until there is a
specific p where (X, (p), Yu(P)) = (Xn(p), Y (p)). We first remove this “shortest-distance”
singularity for the case where 8D, and 8D, form two concentric circles, then extend the

desingularization method to more general problems(fig 3.2).

Proposition 3.2 Let 8D, = {(X;,Y1)|X; = cos(p), Y, = sin(p),0 < p < 27} and

8D, = {(X;, V2| X, = poos(q), Y, = psin(g),0 < ¢ < 27}, then

(¢) SO Kau(p,q)dg =0 p>1
1

(b) f;;hr Kzl(P,(I)dq = “2“ p=1

(¢) JmKu(p,q)dg =1 p< 1.

17



Figure 3.2: 8D,, 0D, in Theorems.

proof: K, (p,q) is given by (2.7):

1 X (g)(Ya(p) - Yi(9)) = Y (9)(Xa(p) — X1(9))
2 (Xi(g) - X.(p)? + (Vi) - Yalp))*

Ky (Pa ‘1) -

or

1 1-pcosd
o 14 p?—2pcost’

(3.7 K,(0) = §=p—-gq.

This is the Poisson kernel for the unit circle. Proof of property {¢) can be found in many
references (e.g. [14]). Proof of properties (a) and (b) is an application of the Cauchy integral

theorem. The Poisson kernel for more general boundaries which are homotopic to the unit

circle has these features as well. That is,

18



Proposition 3.8 Let 8D = {(X,Y)(q)|0 < ¢ < 27}, which is homotopic to the unit circle.
Let 7, refer to some point in the plane, and let d be the distance between 7z, and 8D. We say

d > 0 if 7 is outside 8D and d < 0 if 2, is inside OD. Let K denoie the Poisson kernel for

D. Then
(@) J¥"K(%%,q)dg =0 d>0
. 1
(b) [ K(z,q)dg = 2 d=0
(¢) & K(z,q)dg =1 d< 1.

Theorem 3.1 Define 3D, and 8D, as in Proposition 3.2. p < 1.

(a) Let maXy ”{21(?1 q)| = IKzl(PsP*)I; then p* = p, and

(39 [ @K 0)ds

N ./0%[#1(9) = () = iy (p*)sin(g = P Kn(p, 9)dg + C, - (),

where C, =1 forp <1 and Cy = L
(b) If L > 2, then for any given p € [0,2x], there ezists M, independent of p, g, and p, such

that

%((Q*P)L'Kzl(PaQ)) < M

proof:
(a) g%(&ﬂ = 0 implies ¢ = p. (3.8) is true by Proposition 3.2 (b),(c). That is,

19



let § = g — p, then
max|K,(6)] = [K,(0)l,
[, mOK,©)® = [, [13(8) = 1(0) = 5, 0) sin(O),(6)d0 + C, - 0.

It is observed that K,(0)

I

1.1
21, — tooasp— 1. Furthermore,

1 1-— pcosf
6-K,(0) = —0-
o(f) 2r 14 p? —2pcost
a 1 psin6(p? —1)0 1 1—pcosf
550 K,(0) = .

06 %(1—}-;12—2;0(:039)2 27 1+ p? — 2pcosd

At 8 =0, Z(0- K,(6))]p=0 = ;—Wf}; tends to 400 as p goes to 1.

(b) It suffices to show that £(6? - K,(8)) is uniformly bounded.

1 1—pcosf
2. - —g2.
02 K, (0) 27 14 p*—2pcosf
d 1 psinf{p? —1)8? 1 1-pcosd
—(0* K = — — -2
39( K,(6)) 21r(1+p2——2pcost9)2+27rl+p2—-2pcos£3 0
1
.9 = —(A+ B
39) L(4+5)

Given e > 0, 36 > 0, s.t. V|#| < 6, we have

sin # cosf —1
(310) |T—1|<E . | 72

-+ -l*l < E.
2
Since we are interested in the case where two boundaries are very close, we may assume
|1-p| < 6 < 1 and [8] < 6. We prove that both A and B in (3.9) are uniformly bounded for
1—p>18and for 1 —p < 9]
(Case-1) 1-p 2> |0]:
14 p* —2pcosf = (1—p)*+2p(1 —cosb)

>z (1-p)
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Therefore,

4] < |

< e+ D)- 22

6] <1 - p < & implies that [#8¢] < 1+ ¢ by (3.10), so |A| <2-(1+¢). For B,

1 —pcosé
|B| < |———=72
| (1= p)? |
1-p+ P2 1l=gpst cosﬂ
(1 - p)?
26 2p 03(1=2)
< I+ 7|
1-p (1-p)
1 —cos@

16| <1— p < & implies that |[1=522f| < 1 + € by (3.10), s

|
|B] < 2+2p-5-(§+6)
< 241-(1+2)

= 342

Thus |[A + B| <5 +4e.

(Case-2) 1 ~ p < |6} :

14 p*=2pcosf = (1-pPF+2p-(1 ~ cos )

v

(3.11) 2p (1~ cosl)



Therefore,

psinf - (p? —1)6?

<
< | (2p(1 — cos 8))? |
_ - e
- 40284(!1—&»:9[)2
sind
ILI“:L_)"'_{;"LI
( cos )
sin 8
S l+p| 1-—::39 2"
4 (4

|6] < & implies that |’"‘9| <1+eand |l=528 > 1 —¢ 50

l4p 1+4e¢
ST
' 1 1+4¢€
< .
612 S -h G-
1
(3.13) <
(3-¢°

Inequality (3.12) holds since 1 +p < 2and 1 —p < §. Inequality (3.13) holds by the
assumption that § < 1. Also by (3.11),

1—pcosf
2p(1 ~ cos §)
1~ p+p(1—cosb)
2p(1 — cos 8)

|1B| < - 201

20|

= |

IA

=
-+
=

A

(3.14)

| -




Inequality (3.14) is true because lcosd > 1-cand 'l—;f- < 1. Hence we get
A+ B| < (—glff—)—, + 11—+ 1. Now we have bounds independent of p in both case. This proves
the uniform boundedness. (b) also implies that the first derivative of the integrand on the

r.h.s of (3.8) is bounded independent of p.

From (a) and (b), the nature of I, changes discontinuously at the contact point since (',

jumps from 1 as p < 1 to } as p = 1. This agrees with the results by studying the two-sheet

Birkoff-Rott equation.

The following proposition and theorem for Ky, are established by the same argument.

Proposition 3.4 Define 8D, and 3D, as in Proposition 3.2.

(¢) & Ky(p,q)dg =1 p>1
n e 1

(b) f: Kia(p,q)dg = '2‘ p=1

(c) fomr K (pyg)dg =0 p<l.

Theorem 3.2 Define 8D, and 8D, as in Proposition 3.2. p < 1.

(a) Let max, | K;5(p,q)| = | K12(p, p*)l, then p* = p, and
2r
(3.15) / 12(9) K 12(p, @)dg
0
n
=/ [12(9) — pa(p*) — py{p7) sin(g — p*)} K 1a(p, 0)dg + C, - pa(p*),

where C, =0 forp <1 and C; = 3.

(b) If L > 2, then for any given p € [0,27], there ezists M independent of p, q, and p such

that

d
E((q - P)L : Klz(PaQ)) < M
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We are able to establish the following proposition and theorem for the more arbitrary
domain case (fig.3.2 right):
Corollary 3.1 Let D, = {(X;, Y1) X, = acos(p), ¥ = bsin(p),0 < p < 2x}, here
a>1,b>1; and 3D, = {(X;, Y2)| Xy = cos(q), V2 = sin{q),0 < g < 27},

Thenatp=0orp=m,

JE& Ky(pgidg =0 a>1
T §r 1
5 Ky (p,g)dg = 5 a=1
027r Ku(pg)dg =1 a<l.
Forallp#0, 7,
" Knlpq)dg =0 Va.

Corollary 3.2 Define 0D, and 3D, as in Corollary 3.1. Let b> 1 be fized and
a>1,a—1, buta#1.
(a) max, |Ky(p,q)| = |Ko(p, p*)|- Then at p=10 and p= 7, p* = p.

(b) For all 0 < p < 27,

[ n@Katoada = [ lale) = i) = 5 37)sinla = 2o (. 0)de
where & satisfies
(3.16) o () -
(3.17) 2" a,(q) K (p, q) - sin{g — p*)dg =0
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(¢} If L > 2, then for any given p € [0,27), there ezists M independent of p, q, and a such

that

d

aq
k]

((¢— P)L -Kplpg)) < M.
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CHAPTER 4

Desingularization in Boundary Integral Method

. We implement the idea of desingularization in the Boundary Integral Method for problems
in multi-connected domain. The numerical experiments are performed on a test problem,
in which the function values are computed on an annulus with thickness tending to zero to
explore the appearance of the shortest-distance singularity. It is shown that desingularization

helps to reduce the numerical errors greatly.

4.1 Boundary Integral Method in Stationary Problem

For a simple-connected domain, we use the following equation in the Boundary Integral

Method:

_ 2 Mo
(4.1) $(p) = PV LDp(q)aﬁG(p,q)dq-— ; oD.

We observe that this is a Fredholm integral form of the second kind of 4 whenever ¢ is given.
Kellogg(1929) proved that all eigenvalues of the associated homogeneous equation are real
and distinct with absolute value > 1, as required by the Fredholm theory. Thus one can
construct g by doing direct iteration on (4.1). Since the solution is unique up to a constant
addition, one can fix u(py) = 0 at a certain p, for convergence.

The Boundary Integral Method for multi-connected domains is given in “Boundary In-
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tegral Techniques for Multi-connected Domains” by G.R. Baker and M.J. Shelley [6]. The
main difference from that for simple domains is that the iteration is done on a coupled system
(3.3), (3.4) to compute p;.and p, on both boundaries.
More specifically, define two operators 1y, T, as follows:
Ty i)p) = 2PV [ in(@Kun(pa)da =2 [ ia@)Kulp,0)da
+ 2:4:(p)

T2, 12)(P)

2 fm p1(9) K (p, ¢)dq + 2PV fa . p2(9) Kna(p, 9)dg
- 2 ¢2(P)-

Then the iteration scheme becomes

(4.2) W) = T, 6 ) - T, 18”) (o)
(4.3) W) = T, u$)(p) — Ta(ed™, 15”) (po),

where K,,, are given in (3.5).

4.2 Test Problem— Two Concentric Circles

To understand how this shortest-distance singularity influences the Boundary Integral

Method, we work on a test problem of two concentric circles (fig.3.2 left):
8D, = {{(X, )X, =E; cos(g), Yy = Ry sin(q)}
8D, = {(X;,Yo)|X; =Ry cos(q), Y = Rysin(g)},

where R, and R, are constants. In polar coordinates, a solution to

vig(r,8) = 0 R, <r<h
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is given by

é(r,0) = ((i}m-(%)m)-cos(ma).

Restricted to the boundaries, we have

mm:u4%wrmww)

R
40) = (2 ~1) - cosom - 1)
1
and the exact solutions for the dipole distribution p, u, satislying #1(0) = 0, p2(0) = 0 are
#1(p) = map) = 2 [cos(m - p) ~1].

Assuming that ¢,, ¢, are given functions, one then constructs iy, fip by (4.2) and (4.3).

4.3 Desingularization

Qur previous investigation about the behavior of the kernel K., shows that K., m
= 1, 2, is regular as long as the boundary is smooth and well separated. However, K,
m # n, becomes singular as the distance between the two interfaces decreases to zero. The
strong variation in the integrands will lead to large errors as we approximate the integrals by
numerical integration methods such as trapezoidal rule. The discrepancy errors accumulate

to prevent our iteration scheme from converging. In the test problem, this occurs as R, tends
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to R,. So we improve the iteration scheme by defining new operators 5; and S, as follows:

Sk )(p) = —2PV [ (e Kn(po)de
- 2 jap,(’”(q) — ta(p) — py(p) sin(g — P)) Kra(p, 9)dg + 2 - 61 (p)
Syl a)p) = 2 [ 12(0) = (o) = 4 () sinla = P)) Kas(pr0)dg

+ 2PV /ap, p2(q) Kaz(p, 9)dg + 2+ 11 (p) — 2 - $2(p)-

Then the iteration scheme becomes

(4.4) W) = S, 1) — S, 15 (o),
(4.5) W@y = S0, ) E) = Sa(u™, 587 (po)-

Here we apply Theorem (3.1) to ensure that the first derivative of the integrands in S; and
in S, are uniformly bounded, i.e. independent of the distance between 8D, and 8D,. In

the following experiments, the central difference scheme is used to approximate the values

of u!(p) and uj(p).

4.4 Numerical Experimental Results

We compute p, g, with the non-regularized operators Ty, T, and with the new regularized
operators Sy, Sy for m = 1. The results are compared with the exact solution to give the
errors. There are two ways of setting the mesh points: aligned mesh and offset mesh (fig.4.1).

“Aligned mesh points” means the points on the two boundaries are set as

. . 27
91(3) = 1 T\F
. . 27
0,(j) = J- TVF
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Aligned Offset

Figure 4.1: Setting the mesh points.

While “offset mesh points” means the points on the two boundaries are not aligned, for

example,

. . 27
91(3) = J'TV"

. . . 2r :
6,(j) = (J +shzft)--ﬁr—, shift # 0.
We did experiments for nine distances: d; = 10(=3) . 210-¢ 3=], 2,..., 9.

That is, R; = 1, Ry = 1 + d;. In offset mesh, shift = 0.33. Iteration stops

when Maz{Maz; s (g;) — 1 ()l Maz; |+ (g;) — 7 (g5)[} < 51015,
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4.4.1 Aligned Mesh

Without regularization (using (T}, T;)), the iteration scheme converges for all values of
N for d, only (Table 1, fig.4.3). Since when the distance is small, the kernel is very singular
near the point closest to the other boundary, the numerical approximation of the ill-behaved
integrand using aligned mesh points does take the singular value and might result in large
errors after several iterations. The convergence, for d; only, is spectral.

However, after doing regularization (using (S, S;)), the iteration scheme converges for all
distances from d, to dy (Table 2, fig.4.4). For large distances, d, to dg, spectral convergence
is clearly observed. For small distances, ds to dq, linear convergence is observed due to the
uniform boundedness of the first derivative of the new integrand.

We call the new operators (51, S;) second-order desingularization of the original inte-
grands, since the regularized integrands in (8;,5,) are proportional to (g — p)?. Although
mathematically it is shown that the first derivatives of the integrands are uniformly bounded
only if one does second or higher order desingularization (Theorem 3.1, 3.2), we find numer-

ically the first-order desingularization perform as well as the higher-order desingularization.
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The first-order desingularization scheme is expressed as:

Sy (1, 12)(p)

fl

~2PV [ 11(0)Ku(pa)da
= 2 (1ale) ~ ma() Kaa(pr M + 2 (9)

Salp, p)(p) = 2 faDI p1(a) = i (p)) K2 () 9)dg

+ 2PV fam pi2(9) Kz22(p, 9)dg ~ 2 - ¢(p)-

(4.6) WGy = §, 1) - S, 67 (po),

(4.7) wF ) = S, w5 ) - S, 1) (po).

The results generated by the first-order and the second-order regularization are nearly

identical. The differences are no greater than 10-1°, as shown in Table 3.
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4.4.2 Offset Mesh

Without regularization (using (T},T;)), the iteration scheme converges for all distances
from d to dy and the convergence is spectral from d; to ds(Table 4, fig.4.5). However, they
converge to the exact solution only at large distances, i.e. from d; to d,. At small distances,
they do not converge to the correct answers. The singularity of the kernel is concentrated in
a very narrow region, thus by offsetting the mesh points, one always misses the contribution
from the singularity, and hence reports errors of O(1).

When the integrands are regularized (using (S, 53)) and when the mesh points are offset,
the values of py(p) in S; (or py(p) in S,) are obtained by interpolation, which is different
from using aligned mesh points, since in this case p* does not refer to any of the mesh points
on 8D, for S; (or 8D, for ;). We use interpolation of order zero, i.e. u(p) ~ #{g;), where
Ip— @l = Minylp— g;l.

When the integrands are regularized (using (S),5;)), the results are similar to those
by aligned mesh points(Table 5, fig.4.6): spectral convergence at large distances and linear
convergence at small distances. The results by the first-order regularization (using (51,5)
also report similar convergence, but the errors are in general slightly greater than those by

the second-order regularization (Table 6, fig.4.7).
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4.5 Test Problem— Circle inside Ellipse

In this section, numerical experiments are performed on a more genera) problem. A circle
is placed inside an ellipse (fig.4.2). We increase the radius of the inner circle so that the
shortest distance between them are decreasing. In this problem, singular integraﬁds appear
only as one computes p;(p), #2(p) for p lying on the top or at the bottom of the boundaries
when the two boundaries are very close to each other. This is different from the two-circled
problem, where Ky5(p, q) a,nd. K (p, ) are singular for all p as long as the distance between
the two circles is small.

The geometry in this case is set as the following:

8,D = {(z,y)lz = a- cos(8),y =b-sin(F),0< 8 < 27}

8,D = {(z,y)lz =1 cos(f),y = r - sin(F),0 <8 < 27},

where a = 2 - cosh(0.5), b = 2 sinh(0.5), r = b — 210" - 10-4 for n=1,....,10. That is,

d, = 219-n.10-4. The iteration scheme without desingularization is the same as in the
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Figure 4.2: Geometry in the test problem for a more arbitrary domain.

two-circled case, while with desingularization, (5, S;) are modified as follows:

S1(#1, 12)(P)

il

~2PV jaD, 1 (¢) K11 (py 9)dg
- 2LD2(P2(Q) — uy(p) — 1 (p) sin(g — )y (9) Kra(p; 9)dg + 2 - 6:(P)
Sa(p1, pa)(p) = 2 /801 palq) — i (p) — . (p) sin(g — p))Bp(@) K (P, 7)dq

+ 2PV [ (@) Kn(pa)da = 2 ¢a(p).

These regularized operators are used for all 0 < p < 27, not for top or bottom points
only, in order to make the scheme uniform. The uniform boundedness of the first derivatives
of the integrands in S;, S, are proved in Corollary 3.2. a,(g) satisfies (3.16), (3.17) and we

construct it by reflection:

o,(g) =1 pr<g<p
Ifp* < then ¢ o)

K - :
a,(q) = —-‘}éﬁ'%f;;)—ql Otherwise

a,(g) =1 pr-n<g<p
If p* > =, then <
Kiz(p2p*—q) .
\ ap(q) = ‘j(lz(zp.q) Otherwise
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If Ky2(p,q) = 0 for some g, simply make o, (q) - Kialp, @) = K,2(p, 2p* — q). Since o,(q) -
K,5(p, q) is an even function centered at p*, (3.17) is true. One can construct B g) in the
similar fashion, by changing K, to Ky, in the formula above.

There is no analytical solution for gy, gy in this problem, so we examine the errors in
the integration (without iteration) by comparing the numerical solution obtained at various
number of mesh points { N=16, 32, 64, 128, 256 ) with the solution generated at very fine

mesh points { N=1024 }. In offset-mesh experiments, we take

. . 27
91(1) = J"‘A‘f
2

0,(j) = j-—j%-i—shz‘ft*%, shift = 0.33,

which is different from the two-circled case. Since by setting mesh points in the above

manner, we can compare the errors without the exact solution.

4.5.1 Aligned Mesh

When the mesh points are aligned, without regularization (using (Ty,T3) ), we have
convergence at all distances (Table 7, fig.4.8): spectral convergence for larger distances
(dy,d,, d3), and at least linear convergence otherwise. However, the absolute value of the
first derivatives of the non-regularized integrands are so large that the errors are of very large
size. In Table 7 and Table 10, the ratio of the distance and the mesh size (&) of the entries
with parenthesis is 0.3259. Above this diagonal, ﬁ > 0.3259; below, ﬁ < 0.3259.

After doing desingularization (using (S;, S;)), we still have linear convergence and the
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errors are of reasonable size even for the very small distances (Table 8 , fig.4.9). The errors
for large distances with N=128 and N=256 are greater then those without regularization
because of the extra term o, {g) sin(q — p} - K12{p, q) and B,{(g)sin{g — ) - Knlp, ).
Experimentally, we try the first order desingularization (using (5., S,)), where neither
o,(q) nor f,(q) needs to be constructed for each p. It is found that the errors are only
slightly greater than those by the second order regularization when the distances are small

(Table 9, fig.4.10), the same as in the two-circled case.

4.5.2 Offset Mesh

When the mesh points are offset, without regularization (using (7y,T;)), the errors are
about 0.5 or greater as ﬁ = 0.3259, and do not converge at small distances d, to dyo (Table
10, fig.4.11). On the other hand, the error goes to zero faster than linear convergence if we
use the second order regularized operators (S;, 5;) (Table 11, fig.4.12). Our experiments also
show that the errors are only slightly greater if the first order regularized operators (5'1, Sa)

are used (Table 12, fig.4.13).

4.6 Conclusion

In conclusion, we have been able to remove the shortest-distance singularity that appears
in two-sheet stationary problems, assuming the interfaces are sufficiently smooth, using the
iterative boundary integral method. Although the kernel is very singular near the points

where the two sheets are most close to each other as the separation distance is small, we
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still maintain high accuracy and at least linear convergence by desingularization, and the
implementation of this idea is a lot easier than the interpolated quadrature techniques that
Baker and Shelly introduced in [6]. The theorems show that the sccond order desingular-
ization is necessary to ensure the linear convergence, but practically the differences between
the results obtained by the first and the second order desingularization are fairly small.

We also find that the values of related functions such as the velocity fields and dipole
distribution functions jump as the two sheet meet, but the implication of such results is not

realized yet.
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Errors— Aligned Mesh W/O Regularization

D\N 8 16 32 64 128
\dx{ 0.7854 0.3927 0.1963 0.0982 0.0491
d,=0.5120 1.290 | 3.475-10-2 | 4.611.10-5 | 8.224.10-1 | 8.304-1013
d,=0.2560 NaN 1.476 | 2.758.10~2 | 1.861-10-5 | 7.093-10-12
dz=0.1280 NaN NaN 2.497 | 3.215.10-% | 1.431.10-%
d,=0.0640 NaN NaN NaN 7.132 | 4.803-10-2
ds=0.0320 NaN NaN NaN NaN NaN
dg=0.0160 NaN NaN NaN NaN NaN
d,=0.0080 NaN NaN NaN NaN NaN
dg=0.0040 NaN NaN NaN NaN NaN
dy=0.0020 NaN NaN NaN NaN NaN

Table 1 (Two Concentric Circles)
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Figure 4.3: Error vs. Mesh size and Log(error) vs. Mesh size W/O regularization.
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Errors— Aligned Mesh W/ 2-nd Order Regularization

D\ N 8 16 32 64 128

\ dx 0.7854 0.3927 0.1963 0.0982 0.0491
d,=0.5120 | 7.937-10-2 | 2.750-10-3 | 3.679-10-¢ | 6.011-10-12 | 8.371-10-"
d,=0.2560 | 2.074-10-1 | 2.760-10-2 | 6.966-10~* | 4.731-10~7 | 1.648-10~"2
d,=0.1280 | 3.429 -10-1 | 8.91710~2 | 1.111-10-2 | 2.300-10-4 | 1.032:10~"
d,=0.0640 | 4.424 -10-1 | 1.567-10-1 | 4.118:10-2 | 492910~ 9.118-10-°
d;=0.0320 | 5.028 -10-1 | 2.054-10-1 | 7.494 -10-2 | 1.977-10-2 | 2.313.107
d,=0.0160 | 5.360-10-% | 2,343 -10-' | 9.909-10-2 | 3.666-10~2 | 9.680-10-°
d,=0.0080 | 5.534-10-1 | 2.501-10-! | 1.133 -10-1 | 4.869-10-2 | 1.813-10~
dg=0.0040 | 5.624-10-1 | 2.582.10-1 | 1.210 -10-1 | 5.573-10-2 | 2.414-1072
d;=0.0020 | 5.669 -10-1 | 2.624-10-1 | 1.250-10-! | 5.952:10-2 | 2.764-10-

Table 2 (Two Concentric Circles)
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Figure 4.4: Error vs. Mesh size and Log(error) vs. Mesh size W/ 2nd-order regularization.
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Aligned Mesh

Error(Order-1 Regularization)-Error(Order-2 Regularization)

D\N 8 16 32 64 128

\ dx 0.7854 0.3927 0.1963 0.0982 0.0491
d,=0.5120 2.7.10-15 -1.8-10-1% 9.0-10-16 0.0-10-1¢ 5.0-10-¢
d,=0.2560 0.0.10—1® -9.0-10-18 -5.3-10-18 9.0-10-18 1.8-10-1%
d;=0.1280 -2.6-10-1% -4.4-10715 -6.2:10-%° -4,4.10-18 0.0-10-16
d;=0.0640 -3.6-10-15 -3.6-10-15 -5.3-10-1% -6.3:10-1% -3.6-10-15
d5=0.0320 0.0.10-16 -3.5-10-15 -1.8-10-18 | 4.778.10-13 -9.0-10-1¢
dg=0.0160 | -4.956:10-% | 4.938-10-1 -4.956-10-13 | 4.805-10-13 | 4.894-10-1°
d,=0.0080 | -1.026-10-12 | -1.24.10-* 9.823-10-13 | 5,063.10-13 | 9.983-10-13
ds=0.0040 | -2.038-10-12 | 2.577.10~1? 3.470-10-13 | -1.517-10-"* | -9.837.10-12
dy=0.0020 | -2.587-10-1* | -1.358-10-1! 2.315.10-11 {-2.500-10-12 | -2.318-10-1!

Table 3 (Two Concentric Circles)
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Errors— Offset Mesh W/O Regularization

D\N 8 16 32 64 128

\ dx 0.7854 0.3927 0.1963 0.0982 0.0491
d,=0.5120 | 4.165-10-1 | 1.652 -10~2 | 2.232:10-% | 4.296-10-11 | 2,883 10~
d,=0.2560 1.868 | 4.591.10-1 | 1.315.10-2 | 8.964.10-¢ | 1.144-10-11
d3=0.1280 3.175 9.328 | 6.251 -10-1 | 1.531.10~2 | 6.896-10-%
d,=0.0640 3.674 3.502 9.844 | 9.440-10-1 | 2.273-10-2
ds=0.0320 3.856 3.824 3.723 3.827 1.439
de=0.0160 3.932 3.926 3.908 3.853 3.597
d,=0.0080 3.967 3.966 3.962 3.953 3.924
dg=0.0040 3.984 3.983 3.983 3.981 3.976
dy=0.0020 3.992 3.992 3.992 3.991 3.990

Table 4 (Two Concentric Circles)
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Errors— Offset Mesh W/ 2-nd Order Regularization

D\N 8 16 32 64 128

\ dx 0.7854 0.3927 0.1963 0.0982 0.0491
d,=0.5120 | 3.283.10-2 | 2.847-10~4 | 8.241 -10-7 | 5.172-10-12 | 288310~
d,=0.2560 | 1.215 -10- | 1.020-10~2 | 5.902:10-5 | 1.167.10~7 | 7.397-1072
d5=0.1280 | 1.985-10-" | 5.279-10~? | 3.78010~° 9.123.10-5 | 2.671.10-%
d,=0.0640 | 2.366-10-1 | 8.989-10~2 | 2.419-10-% | 1.503-10-3 | 8.931-10-°
d,=0.0320 | 2.656-10-1 | 1.049-10-1 | 4.210-10~% | 1.150-10-% } 7.257-107*
ds=0.0160 | 2.811.10-1 | 1.155:10-1 | 4.892:10-2 | 2.029-10-% | 5.595-107°
d,=0.0080 | 2.892:10-1 | 1.320-10-1 | 5.859-10-2 | 2.348-10-% | 9.950-10-°
dy=0.0040 | 2.934-10-1 | 1.402:107! | 6.798-10~% | 2.969-10-2 | 1.148-10-
4,=0.0020 | 2.95510-1 | 1.442:10-1 | 7.273.10-2 | 3.450-10-2 | 1.493-10-

Table 5 (Two Concentric Circles)
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Figure 4.6: Error vs. Mesh size and Log(error) vs. Mesh size W/ 2nd-order regularization.
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Errors— Offset Mesh W/ 1-st Order Regularization

D\N 8 16 32 64 128

\ dx 0.7854 0.3927 0.1963 0.0982 0.0491
d,=0.5120 | 6.634-10-2 | 2.292.10-3 | 2.868:10~¢ | 7.334-10~1? | 2.889-10~""
d,=0.2560 | 1.567-10-1 | 2.456 -10-2 | 5.75110~% | 3.680-10~7 | 7.426-10717
d,=0.1280 | 2.257-10-1 | 7.664.10-2 | 9.947 -10-% | 1.891-10~* | 8.007-10-°
d,=0.0640 | 2.587 -10-1 | 1.183 -10-* | 3.656:10-2 | 4.426:10-3 | 7.473.10-°
3530.0320 9.720-10-1 | 1.364.10- | 5.948-10-2 | 1.782:10-2 2.077-10-
d,=0.0160 | 2.777-10-! | 1427-10-1 | 6.992:10-? | 2.981:10-2 | 8.791-10-°
4,=0.0080 | 2.875:10-1 | 1.453.10~1 | 7.430-10-2 | 3.540-10-% | 1.492:10-7
d,=0.0040 | 2.925.10-1 | 1.46810-1 | 7.604:10-2 | 3.772:0~% | 1.785107
d,=0.0020 | 2.951 -10-1 | 1.476-10-1 | 7.677-10~% | 3.864-10-2 | 1.902-10-

Table 6 (Two Concentric Circles)
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Errors— Aligned Mesh W/O Regularization

D\N 16 32 64 128 256

\ dx 0.3927 0.1963 0.0982 0.0491 0.0245
d,=0.5120 | 4.6735-10-2 | 1.0163-10-3 5.0163-10-7 | 1.3101-10-12 | 8.8818.10-1°
d,=0.2560 | 3.7031.10- | 4.9791-10~2 1.1732:.10-3 | 6.8275-10-7 | 2.3848-10-13
d3=0.1280 (1.3277) | 3.7839-10"1 5.1876-10-2 | 1.2772 -10-3 | 8.1321-10-7
d,=0.0640 3.4536 (1.3390) | 3.8318-10-? 5.3061-10-2 } 1.3363 -10-3
dy=0.0320 7.8196 3.4665 (1.3451) | 3.8576-10-1 | 5.3690 1072
dg=0.0160 16.610 7.8333 3.4732 (1.3484) | 3.8710-10-
d,=0.0080 34.219 16.624 7.8403 3.4767 (1.3500)
dg=0.0040 69.453 34.233 16.631 7.8438 3.4784
dy=0.0020 139.93 69.467 34.241 16.634 7.8456
dyo=0.0010 280.88 139.94 69.474 34.244 16.636

Table 7 (Circle inside Ellipse)
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Errors— Aligned Mesh W/ 2-nd Order Regularization

D\N 16 32 64 128 256

\ dx 0.3927 0.1963 0.0982 0.0491 0.0245
d,=0.5120 | 1.3658-10-3 | 4,9927-10-5 | 1.0351-10~% | 1.5380-10-6 | 1.5914-10°7
d,=0.2560 | 3.6767-10-3 | 3.7386-10-¢ | 1.4082:10~° | 1.5075-10-° | 2.1459-10~7
d,=0.1280 | 6.1836:10-3 | 9.3739-10~4 | 8.6896-10-° | 2.3966 -10~¢ | 1.9723-1077
d,=0.0640 | 9.3761 -10-3 | 1.9067-10~% | 3.2850 -10~4 | 2.8032 -10-° | 6.7387 10~
d,=0.0320 | 1.1132:10-2 | 2.7610-10-2 | 8.3279-10-% | 1.4470-10~* | 7.6012 -10-°-
d,=0.0160 | 1.2126-10-2 | 3.2512:10-3 | 1.3889-10-° 37103104 | 5.103710-5
d,=0.0080 | 1.2642.10-? | 3.5037-10-3 | 1.7606-10~3 | 5.6604-10~* | 1.2295-10~*
d;=0.0040 | 1.2905-10-? | 3.6313.10-3 | 1.9715:10-3 | 6.8491-10~* | 1.8862.10~
do=0.0020 | 1.3038.10-2 | 3.6954-10-3 | 2.0832:10-3 | 7.4844-10~% | 2.3605-10~
dy,=0.0010 | 1.3105-10-2 | 3.7276-10-2 | 2.1406-10-° | 7.8084-10~* | 2.6481-10~

Table 8 (Circle inside Ellipse)
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Errors— Aligned Mesh W/ 1-st Order Regularization

D\N 16 32 64 128 256

\ dx 0.3927 0.1963 0.0982 0.0491 0.0245
d;=0.5120 | 1.7745 - 10-2 | 2.8377-10~° 1.3870-10~8 | 1.1102.10-1¢ | 1.0214-10-
d,=0.2560 | 6.1316:10-% | 5.0969-10—* | 7.9008 .10-6 | 4.5980-10-2 | 9.7700-10-1°
d,=0.1280 | 6.4229-10-% | 1.2386-10°° 1.7031.10-¢ | 3.4366-10-¢ | 1.6825 -10-°
d,=0.0640 | 9.3486-10-2 | 2.5879-10~2 7.2132.10-4 | 6.5036-10-5 | 1,1564.10-¢
lds=0.0320 1.1312-10-2 | 3.6676:10-3 | 1.4191-10-3 | 2.6863-10~4 2.5943.10-5
de=0.0160 | 1.2424.10-2 | 4.3528-103 1.9571-10-3 | 5.1053-10-* | 9.7305-10-°
d,=0.0080 | 1.3000-10-2 | 4.7393-10-3 2.9852.10-3 | 6.8149-10~4 | 1.7736-10-4
ds=0.0040 | 1.3292:10~2 | 4.9447-10~3 2.4651-10~3 | 7.7875.10~* | 2.5876-10~*
dy=0.0020 | 1.3439-10-2 | 5.0505-10-3 2.5592.10~3 | 8.2941.10-¢| 3.5194-10~4
dyo=0.0010 | 1.3513.10-2 | 5.1043-10-2 92.6072-10-3 | 8.5495.10~4 | 4.0459.10~*

Table 9 (Circle inside Ellipse)
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Figure 4.10: Error vs. Mesh size and Log(error) vs. Mesh size W/ 1st-order regularization.
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Errors— Offset Mesh W/O Regularization

D\N 16 32 64 128 256

\ dx 0.3927 0.1963 0.0982 0.0491 0.0245
d;=0.5120 2.9887.10-2 8.0069'10.-4 3.6814-10-7 | 1.2523-10-13 | 1.0214-10-1¢
d,=0.2560 2.3230-10-1 3.9105-10-2 | 1.0629 -10-3 | 5.6004 -10-7 | 2.1005-10~1°
d,=0.1280 | (5.5738 -10°*) 2.9437.10-1 | 4.3553 .10~ | 9.7956 -10~4 | 7.8262-10-7
d,=0.0640 7.1334.10~1 | (4.4146-10-1) | 2.7601-10-! 3.3579-10-2 | 1.3001-10-3
ds=0.0320 8.5406-10! 6.9220-10~1 | (6.6341-10-1) | 1.8926-10~1 5.2052-10-2
dg=0.0160 9.2714-10-1 8.4203-10-1 7.4477-10-1 | (4.5823-10-1) | 3.7118-10-7
d,=0.0080 9.6400-10-1 9.2052-10-1 8.6223.10-1 6.4941-10-1 (1.2537)
dg=0.0040 9.8245-101 9.6020-10-1 9.3559-10-1 8.1119-10-1 2.9460
dy=0.0020 9.9168-10-! 9.8010-10-1 1.0120 | 9.0469-10-1 5.1772
dy,=0.0010 9.9629-10-1 9.9005-10-1 1.0528 | 9.5223-10-1 6.3345

Table 10 (Circle inside Ellipse)
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Errors— Offset Mesh W/ 2-nd Order Regularization

D\N 16 32 64 128 256

\ dx 0.3927 0.1963 0.0982 0.0491 0.0245
d;=0.5120 | 3.5401-10-3 | 3.3064-10~4 6.8614-10-5 | 1.1113-10-5 | 1.0064-10-°
d,=0.2560 | 9.5564-10-3 | 5.4759-10~* 1.108‘6-10‘4 1.1800-10-5 | 1.6574-10-%
d;=0.1280 | 7.3615-10-3 | 3.2612-10° 9.9727-10-5 | 1.0658:10-% | 2.0389-10-%
d,=0.0640 | 1.9320-10~2 | 5.6029-10~3 1.0642-10-3 | 5.0169-10-5 | 2.2954-10-¢
d;=0.0320 | 2.0201-10~2 | 7.0080-10-3 2.1546.10-3 | 3.1439 -10~* | 1.0408-10-°
d,=0.0160 | 2.0588-10-2 | 7.9174-10-3 92.8361-10~3 | 6.3320-10-* | 6.3068-10-°
d,=0.0080 | 2.0769-10-2 | 8.9192-10-3 3.2481-10-3 | 8.8174-10—4 | 1.5202-10-1
ds=0.0040 | 2.0856-10~2 | 9.8447-1072 3.4711-10- | 1.1639-10-3 | 2.3142.10~*
dy=0.0020 | 2.0899-10-2 | 1.0329-10-2 3.5866-10-3 | 1.3849-10-3 | 3.0168.10-*
d,,=0.0010 | 2.0920-10~2 | 1.0577-10-2 3.6453-10-3 | 1.5100-10-3 | 3.7513-10~4

Table 11 (Circle inside Ellipse)
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Figure 4.12: Error vs. Mesh size and Log(error) vs. Mesh size W/ 2nd-order regularization.
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Errors— Offset Mesh W/ 1-st Order Regularization

D\N 16 32 64 128 256

\ dx 0.3927 0.1963 0.0982 0.0491 0.0245
dy=0.5120 | 2.9441.10-3 | 3.3193 -10-° 1.2093-10-8 | 1.0214.10-14 | 9.3259-10~15
d,=0.2560 | 6.9501-10-3 | 5.4114-10-* 8.9862-10-6 | 4.4416-10-9 | 1.0214.10-4
d,=0.1280 | 1.0453-10~2 3.0492.10-3 | 2.2558 -10~* | 8.6072-10~% | 1.5971-107°
d,=0.0640 | 1.8384-10-2 | 6.3528-10-3 1.1441-10-3 | 8.8195-10-5 | 1.2990-10-°
d;=0.0320 | 2.2120-10-2 | 8.4977-1073 2.2625-10~3 | 3.5546-10-4 2.827.1-10—5
dg=0.0160 | 2.5292.10-2 | 9.6489-10-3 3.0083-10-3 | 7.3307-10-4 | 1.0292-10-4
d,=0.0080 | 2.6961.10-2 | 1.0236:10-? 3.4160-10-3 | 1.0107-10-3 | 1.9610-10-*
dy=0.0040 | 2.7816.10~2 | 1.0792-10-2 3.6260-10-3 | 1.2550-10-3 | 2.8775-10~*
dy=0.0020 | 2.8248-10-2 | 1.1253-10-2 3.7322-10-3 | 1.4527-10-3 | 3.8842-10-4
dyp=0.0010 | 2.8465-10-2 | 1.1488:10-2 3.7855.10-3 | 1.5638-10—3 | 4.4065-10~*

Table 12 (Circle inside Ellipse)
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CHAPTER 5

Stationary Droplets

There are many studies about the permanent form of vortex sheets that separate two
inviscid, incompressible fluids, one of which is filled with fiuid of uniform vorticity while
the other is irrotational. The importance of such flows, as was pointed out by Batchelor
[7], is that they may be the zero-viscosity limits of viscid flows, and such flows can describe
the wake at the rear of a body. When a rigid body is placed in a stream of fluid of high
Reynolds number, one can observe that the streamlines passing the front face of the body
break at the sides of the body and enclose fluid at its rear. The whole region at the rear of
the body is called the wake. Batchelor proposed that the flow in the wake is characterized
by two adjacent regions with constant vorticity, which might be of different constants, and
separated by a common streamline. The stationary profile of the vortex sheet lying between
the wake and the otherwise uniform stream of fluid is of considerable interest|7].

Moore, Saffman and Tanveer [26] calculated the steady, inviscid, incompressible, two-
dimensional flow with uniform vortex patches bounded by a vortex sheet, for the vortex on
the plane wall (the Sadovskii vortex) and the vortex in a right-angled corner (fig.5.1). They
applied a hybrid collocation method to two different formulations for the problem: one is
basically a representation as the Birkofi-Rott equation of the complex velocity field, which is

a boundary integral over the interface between rotational and irrotational flows; the other is
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a boundary integral form of the harmonic part of the stream function. In both methods, they
represented the shape of the vortex sheet in a Fourier expansion and performed Newton’s
iteration to solve the descretized equations. The numerical scheme was successful and results
were reported to confirm the previous work by other researchers [27](12}).

With the same numerical scheme, the collocation method, Pullin and Grimshaw [16]
presented numerical solutions to the problem of the steady profiles of finite-amplitude solitary
waves at the interface between two homogeneous fluids, of which the upper layer consists of
a constant vorticity and is bounded by a rigid surface and the lower layer is irrotational with
infinite depth. Their work on such problems allowed them to generate results showing the
existence of the “mushroom” shape solution for the interface between two fluids of different
densities and in the Boussinesq approximation [17][18], which is beyond the S-shape profile
obtained in [16]. (fig.5.1)

In all studies above, only symmetric solutions are sought and no conclusion is made
about the existence of the non-symmetric solutions, which cannot be reached by the present
numerical methods. In addition, special techniques, such as introducing canceling functions
to give accurate evaluation of the contribution near the singularities , using adaptive mesh
points or a suitable choice of the interface parameterization to handle severe deformations
in overhanging portions, were developed to improve the original collocation method.

Inspired by the success of the collocation method adopted in these steady flow calcula-
tions, we employ the same technique to look for the steady profile of a “flying droplet”, which

is a closed vortex sheet between two inviscid, incompressible, homogeneous fiuids of different
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densities under the influence of gravity. Inside the sheet there is a constant vorticity, around
the boundary there is a circulation, and away from the sheet the flow is uniform (fig.5.2).
The steady state solution to this problem will be the resuli of a balance between the lift
force (Magnus effect) due to the flow and the buoyancy forces due to the gravity. We seek
to know how the magnitude of the inner vorticity, the surrounding circulation, the far-field
uniform velocity and the density ratio influence the resulting steady shape, the velocity field,
and associated quantities. In our work, no particular modification is done to the collocation
method.

Section 5.1 sets up the PDE system of the stationary motion of the flying droplet; section
5.9 describes the numerical method we use for the descretized equations; section 5.3 shows

two tests of numerical consistency; section 5.4 gives the results and discussion; section 5.5 is

the conclusion.
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Figure 5.1: Upper: Sketches of the Sadovskii vortex (left) and the rotational corner flow

{right). Lower: Steady wave profile for interfacial solitary waves.
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Figure 5.2:
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5.1 Egquations of Stationary Motion

We set up the PDE system describing the situation in fig.5.2 in a manner similar to the

one that Pullin and Grimshaw derived for the interfacial waves in a two-layer shear flow [16].

5.1.1 Egquation for the sheet strength— v

First of all, we derive the Bernoulli’s equation modified for rotational flows with constant

vorticity. Starting from the momentum equation:

We are working on 2-D flows, in which @ = (u, v} is the velocity field and @ = gxi = (0,0,)
is the vorticity, where Q is a constant. Also p is the pressure, p is the density of the fluid,
and g is the gravity acceleration in the negative y direction. @ x @ = (v}, —uf}), and we

express the above equation in the component form:

i 1 i P

— “ul4 -4 s =l = -0 .0
5t T 0,5 + Sv +p+gy] v Py
8

1 1 p
5 T 3y[2u +35v +p+gy] uld = -1, Q.

Here 1 is the stream function and ¢ = (—v,u). This implies that

&

a 1 1 P
a 1 1 P
G = _9l-ut4 24 ol
5 By[zu +2v +p+gy+1,b ]
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So for stationary flow,

1 1
_u2+_

v+ P + gy + ¢! = constant.
2 2 p

We shall denote the boundary of the two-dimensional droplet by 8D, which is between
two inviscid, incompressible fluids. We have constant vorticity © inside the droplet and

constant circulation I' surrounding it (fig.5.2). The governing equations are:

1 1
(5.1) -2-u§ + ivf + % +gy+ ¥, =B, inside 8D
1

1, 1
(5.2) —ul 4 o2+ 2

gt T 5% p+9y+0=Bg outside aD.
2

Here all quantities with index 1 or 2 refer to those inside or outside the droplet, respectively.
In particular, #; = (u;,v;) is the velocity field, 3; is the stream function, and B; is the

Bernoulli constant. The boundary conditions are:

(5-3) pl = pz on BD

(5.4) i = uy-i=0 on 4dD.

Equation (5.4) holds because at the steady state the normal velocity along the boundary
vanishes. Represent 8D by 8D = {Z(8) = z(0) +iy(0)[0 < 0 < 27} in the complex plane.

Define ¢; and ¢, as follows:

N F 4 e !flglm inside(ul +iv1)(2)
@ = Z—8D }lg}l tmt.su'de(u2 + EUZ)(Z)'
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Then (5.1) and (5.2) can be written as
1
(5.5) 5‘11‘]1 + + gy +HQ = B
1
(5.6) '2"?_2‘12 + ;; +gy = B
Consider —1 € # <1 and let

_ . (48
G = 4 2Z9
L 1=8n
q2 - q+ 229 *

Here v = (§, — §;) Zs is the sheet strength, which is equal to jump of the tangential velocities
across the sheet. We denote by g the velocity defined on 8D. By (5.3), p =py =pon dD.

Subtracting (5.5) from (5.6) implies that

1
(5.7) 5" (§ag — ) + P ( ) ¥, = B, — By.
M1P2
Adding (5.5) and (5.6), we get
1 _ +
(5.8) 3 (292 + Ga) + P (&a"&) +2 gy + 9. =B, + By.
2

Replacing ¢; and ¢, in (5.7) and (5.8) by their definitions, then we have

1 g4? PP
5.9 .Re[L] —=ttetp (F—2)=-,2=B,— B
( ) v [Ze] 2|Z Ig P ( p1P2 ) 1 2 1
_ + +
(5.10) §q— Re[£]-78 +( ﬂ)2 +p (B 10 gy + 9,0 =B, + B
4| Z,| P1P2

Eliminating p from (5.9), (5.10), the resulting equation is

(1 + 8y

1 By? q -
+A‘(ﬁ7Re[ZBI- Z,F — g —2-9y)

22,2

(5.11) y- Re[%] -
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Here A = 8722 is the Atwood number. Equation (5.11) is defined on 9D and the right hand
side of (5.11) is a constant, which we denote by B, since 3 is constant along the streamline.

Note that 8 = 1 means the particles on the boundary follow the motion of the outside
flow, while # = —1 means they follow that of the inside flow. Specific choices of # might
facilitate the numerical computation for some problems. We take 8 = 0 in our calculation;

thus (5.11) is expressed as

(5.12) - Re[+]—A-(

2 +gg+2-gy) = B.

w2
41Z,/?
5.1.2 Equation for u + v

The equation for the stationary velocity field ¢ = (u +i0)(2),Z = = + iy, is derived
by adding the velocity field due to the vorticity inside and the velocity field due to the
circulation outside to the Birkoff-Rott formulation for this droplet problem, then correcting

the integrand so that the resulting formula when restricted to the boundary has jumps in

the tangential direction only.

The velocity field due to the constant-vorticity rotational flow centered at a complex

point Zy = X, + Y, satisfies

Vi = =L
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There exists a particular solution of ¥;:

Q

1
P = —'é"'z = ""2"'("‘5:3!) - (XOaYO)P

S (0,0)(2) = (O, —0uth) = —5 y = Yo~z + Xo)

PUSRI—

(5.13) = q(Z) = (u-iw)(2)= -%i(z ~ 7).

The velocity field due to the circulation surrounding 8D centered at the same Z; also

has a particular solution:

r
=]
Py o ogr

r
2rr?

= (u,0)(2)=

(y - 1’6,”33 + XO)
1

_ \
(5.14) > (D) =5-5-7

Now, we include the sheet strength due to the difference of the tangential velocities from
the} inner vorticity and outer circulation in the numerator of the Birkoff-Rott equation, which
is derived from the Biot-Savart law. Note that the velocity field given in (5.13) is in the
counterclockwise direction (2 > 0), while in (5.14), it’s in the clockwise direction (' > 0).

So the jump in their tangential components at ¢’ is
Qi_—_rm_’_ ¢ . ' t
~5 (2000 - 20)2,(0) + 5 TZ(0 W(Z(8') = Zo)-

Therefore, we have the following equations,

_ 1 om v =827 =20) 24+ 2T 2L /(2! - Zo)
(Z)=sa ks — 7 — do’

_%i(Z—ZO)—u Z inside 8D
+iT v 7 outside 8D.

(Z-Z0)
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Here the far field uniform velocity field -u is included and the above equation is for any
7. away from OD. Here all terms with prime in the integrand are functionsof 6’ defined along
aD. By using the Plemelj formula, we can obtain g(Z ) on the boundary by approaching

Z € 8D from inside and outside of the droplet:

O = PV [ L AL Gt i TANE o) g

(19 - }i ;_((% " ﬂim 2F z(e)l J- 93(—2‘(@7“—“)_ u
WOloaer = 5PV [ v - %7 -%) Zgé) + ;FZ;/<Z' ~ %)

(516 ¥ ; ;:3) %im" %z(a)i— zo] + g%z(e)i— Zs

(5.16)-(5.15) shows that jump of the velocities across the boundary is purely tangential since

[G(0)]- Z5(8) = tangential velocity+:i- normal velocity
= (0),
which is a real number.

WLOG, we can let Zg be the origin. On 8D, we take the velocity to be the average from

inner and outer fluids. Thus

=27 i 70N
(5.17) 7(6) = L PV [2r L=RTATAIT gy B — 7(0) -

Here Z(0) = z(6) + iy(6),0 < 8 < 27, lies on the boundary of the droplet.
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The boundary condition in (5.4) can be written as
(5.18) Im[-g—] = 0, ¢=U+iV.
¢
Thus (5.12), (5.17) and (5.18) are the final equations without non-dimensionalization.

5.1.3 Setting up the Well-posed System

In order to reduce the number of independent parameters, we non-dimensionalize the

o] )

associated quantities in (5.12), (5.17) and (5.18) by setting t = Ti, Z = LZ, ¢ = kg,

v = L%"i, Q= %Q, u= %’:ﬁ, B = %fﬁ’ and choosing the time scale T = l;—;}';— and the length

213
scale L = %,—;3,-.

The resulting non-dimensionalized form becomes (leaving “out)

- r =BT 22 i T
(5.19) §(6) = PV [ LAt 7 4 4 g — BT(0) —u
(5.20) YRe[£] — A (%p + 94 +2) = B-

The non-dimensionalized equation for (5.18) is the same. Notice that the Boussinesq approx-
imation of the non-dimensionalized system (5.18)-(5.20), which is the same except A- :l—l%%
and A - ¢g terms in (5.20) are dropped, still allows similar solutions. More specifically, if
(Z,7v,q,u, B,Q, A) is a solution, then (CZ,7, 3, & £, &, 4) is also a solution for any real

C. To remove this arbitrariness, we require the area of the droplet to be 7.

27

(5.21) A yde = .

Thus (5.18)-(5.21) form a well-posed problem.
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(In the Boussinesq approximation, any solution of the dimensional equations (5.12),
(5.17), (5.18) can be expressed through a scaling of the non-dimensionalized equations (5.18),
(5.19), (5.20), by a proper.choice of L, T and C. In the subsequent computational study, we
show that there is a two parameter family of solutions corresponding to choice of A and ()
(within certain limits). Note that for the full equations, however, the scaling with respect to
C is not valid, so that the solution depends on a third parameter. This dependence will not
be explored in the present study.)

There exists a simple solution to this problem, which satisfies (5.18) - (5.21}, i.e.,

Zs(8) = sin(f) + icos(d)

g 1
W0 = 35
1 1
By = —-(Q—-)
. = —x@-1)
UO = 0-

5.2 Numerical Iterative Scheme

To solve the nonlinear system (5.18)-(5.21), we use the collocation method. We expand

Z(#) and ~(8) in Fourier expansion around the known solution for A= 0;i.e.

N-1
Z(9) = sin(0)(1+ X;)+icos(f) +1 ; Y; cos() - 6)

(5.22) = z+iy
0 1 =
(5.23) y(#) = 5 o + 3 C;cos(1+8).

j=1
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Implicitly we assume that the droplet is symmetric about the imaginary axis 2 =0 in (5.22},
as was assumed in using the collocation method for steady fiows m {16}, {17], {18] and [26].
Plug (5.22) and (5.23) into (5.18)-(5.21). There are 2N+1 unknowns {Y;,7 = 1,..., N —
;C;i=1,.,N~- 1; X;, B,u}. Evaluate (5.19), (5.20) at N points, Ok-1p2 = (k )£ for
k=1,..,N, plus (5.21) totally 2N+1 equations. The principal integral in (5.1'8) is done
by summing over 0; =j % j=12.,2N, for each 84_y/p, s0 it is symmetric about
the singularity. Newton’s iterative scheme is used to solve this closed 2N+1 linear system
for various values of A and . Solutions are sought with N=128 for each A and {0, and
the iteration stops as the absolute value of the difference between two successive iterative
solutions is less then 10~7, The Newton’s iteration scheme converges quadratically and it
takes usually 3 to 4 iterations to reach the 10~7 error bound. For some sets of A and 2, the
solutions at N=64 {or N=96) and N=256 are sought to check the convergence, which we will

show in section 5.3.

5.3 Test of Consistency

We check that our numerical results provide consistent solutions to the nonlinear system
by the following two ways: First of all, we show the numerical solutions converge as the mesh
size shrinks. We decide to study the case {8 = 0 in more detail so that other researchers
can later on have a comparison. Table 5.1-5.3 list the first 10 Fourier coefficients at three

Atwood numbers A=-0.0075, -0.0150, and -0.02, which is the most extreme case that our
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method can reach. In Table 5.1, the solutions obtained with finer mesh points make no
significant difference. We define the error to be the L, norm of the difference between the
computed Fourier coefficients with two different mesh points, E = En, N, = max{[T; (Y™ -
YV2)2ju/e, DI (Sri C*)2)1/2}, where the superscript Ny, N; means the solutions computed
at the total number of mesh points N=N;, or N=N,, respectively. On the bottom of Table
5.1,it shows that they are much less then the iteration error bound 10-7 at A=-0.0075. In
Table 5.2, we find that doubling the mesh points does give less error and the convergence
is faster then quadrature convergence. In Table 5.3, we use the solution at N=96 instead
of N=64, since the iteration does not converge at N=64 in this case, because there are
not enough points to describe the two near angle corners. However, it still shows that the
error tends to zero as N increases. For the cases where {1 is nonzero, we can also observe
that the errors are smaller as the Atwood number is closer to zero with the same N, since
the associated functions are smoother, and are larger when it is close to the most extreme
solution. But the error always decreases as N increases, which shows convergence.
Secondly, we linearize the equations (5.19), (5.20) around A=0 by letting A = é, v =
Yo+, Z=2Zo+2y,q=G+q, B=Bg+ By, u = ug+ u,. The Oth-order equations are

satisfied by the basic solution at A = 0, which can be checked easily:

4
’Yo'Re{'é__z%] -B, = 0

a8
9o
Im[,a,_z&' = 0
a8
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The 1st-order linearized equations are

to= g — 4§
o, Pz B g
(5.24) tov1 + Yo Reln a¢ 4o 2Zg 50 =6 (T 41+ 2cos(f)) — B; =0
— 87y
(5.25) Im{q, %% — 908 %7 =0

We obtain the errors by plugging into (5.24) and (5.25) the perturbation parts of our nu-
merical solutions. The error, which is denoted by E,, also converges quadratically as A is
decreased and is shown in Table 5.4. Note that the linear equations are not yet solved due

to the complexity of the form involved in the integral equation of ¢.

5.4 Results and Discussion

For a fixed Q, we picture the stationary profile of the droplet at various A (the Atwood
number) and the corresponding velocity field up to the last A, beyond which the iteration
scheme fails to converge. We shall denote this A by Ayy,,. The velocity on the boundary is
the average of the velocities inside and outside the droplet.

In our formulation, the far field uniform velocity is in the positive x direction and the
circulation surrounding the droplet (T’ =1 after non-dimensionalization) is in the clockwise
direction. In addition, positive § inside the droplet will describe counterclockwise rotational
flows and negative Q will describe clockwise rotational flows (fig.5.2).

In fig.5.3, 5.5, 5.6, 5.9, 5.11, we show the plots of 2=-0.5, -1.0, -1.5, 0.0, 0.025, 0.050, and

0.075 at different Atwood numbers. (The symbol “W” above the plots is the same as “§”
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here.) Only the most left profile is at the correct x coordinate, while the other profiles are
successively displaced by 0.5 units in the positive x direction. Also note that the plots for
Atwood number near 0 are close to a unit circle although they look like an ellipse because
of the different scales of the x and y axes.

At Q@ = —0.5, fig.5.3 and fig.5.4 together indicate that the vorticity supports the upper
boundary, where the direction of the inner flow agrees with the outside flow, and did the
opposite on the lower boundary, where the direction of the inner flow is against the outside
fow. Examination of the velocity field shows that the two corners on the profile of
A=-0.0975 are the stagnation points, where the velocities on the boundary (the average of
the limiting velocities from inside and outside) vanish. Similar results are found for = —1.0
and Q = —1.5 in fig.5.5, and for = 0.0 in fig.5.6. Indeed, fig.5.7 and fig.5.8 indicate that
there exists a stagnation point in the external flow as |A] is small. It moves to the boundary
as |A| increases, splits into two stagnation points, then the two reaches the two corners at
A=A,

Such observation has a similarity to the result that Pullin and Grimshaw [16] found for
nonlinear interfacial gravity waves in a two-layer Boussinesq fluid, in which the basic flow
consists of a constant vorticity upper layer bounded by a rigid surface (denote by “Dist”
the distance between the wall and the unperturbed flat interface) and an irrotational lower
layer of infinite depth with continuous normal velocity at the density interface. They found
that the most extreme wave, which has the highest amplitude at a given set of (Dist, (1),

was consistent with the appearance of one or more stagnation points on the wave profile.
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However, their further study about the same problem of interfacial gravity waves showed
that there are solutions beyond this one, since the uniform far-field velocity -u is a multi-
valued function of one of the parameters (wave amplitude in their problem). Such solutions
are nonphysical and unstable, but this might suggest the possibility of a profile beyond the
appearance of the two corners, for example, fig.5.12, and need further research. Fig. 5.3 and
fig. 5.5 also show that as 0 < 0, the larger || is, the better the inner vorticity can support
the upper boundary, so |A,| increases as |2} increases.

At Q = 0.025, fig.5.9 and fig.5.10 show that the inner vorticity is against the outside flow
on the upper boundary, and the same for 2 = 0.03 and = 0.075 in fig.5.11. In such cases,
| Atim| decreases as §} increases.

The most extreme solution fér © = 0.0 is the one we have special interest in. The two
singularities at the corners are the stagnation points, as is mentioned above, of which one
is the separating point while the other is the reattaching point of the separating streamline,
which meets the droplet at the front face at the left corner, then breaks itself to enclose the
droplet, and the two reattach at the right corner. The semicircular shape of the solution is
similar to the cap of the “mushroom” solution in the steady wave problem that Pullin and
Grimshaw studied [17] [18], where larger vorticities agreeing with the outside flow allow the

existence of steady waves with higher amplitude was also found.
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5.5 Conclusion

We have set up the PDE system describing the stationary “flying droplet” subject to
inner vorticity and outside circulation in a uniform flow. We have also computed symmetric
solutions to this problem with different values of the parameters. The most visible obser-
vation is the appearance of a semicircular shape in the cases with £ < 0, A — Apm- We
find the outgoing (ingoing) part of the stationary droplet is associated with the place where
the inside and outside flows agree (disagree), and the two singularities on the boundary are
the stagnation points. However, we need further analysis for the stability of such solutions,
which has not been done in our current work. And whether there are solutions beyond the
most extreme shapes reached by our method or whether there exist nonsymmetric solutions

remains a challenging problem.
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Table 5.1: Q = 0, A = —0.0075.

Y, | —rs067-10-2 | —7moe7.10-7 | —7.8067 107 C —1.0113 -10-1 | —r.0138.20% | w1013 1071

1 1
}’2 4.1546 - 1077 4.1546 - 1077 4.1546 - 1077 02 —7.3682 - 10~% | —7.3681.107% | —7.3692 -107°
Y;; —1.5467 -10=7 | —1.8467 2077 | —1.3467 -107? 03 —14172 -10=% | —1a372.107¢ | —14171 1071
1/4 4.6688 - 10~ 3 1.6688 - 10~ * 4.6688 - 1073 C4 9.8538 - 1075 9.8518 - 30~ 9.8516 - 1075
Y, | -16201.107% | —1.6201-207% | 18201 2077 Cs —~4.4338 - 1075 | —4.4338.107% | —44339 -107°
YS 5.5005 -10~4 5.5005 « 1074 5.5006 - 104 CG 1.3713 - 1075 1.3713 . 1078 13717 -10%
Y, | <ammi10mt | —imimoemt ) —1mar2 107 Cy | ~s7583-1077 | —8.7583. 1077 | —~8.8080 s~
YB 4.5162 - 10™5 45162 - 107 % 45173 . 107F CB 2.0033 .10-% | —2.9037 .10”% | —2.8081.107%
Y;, —6.6149 -10~% | ~6,8146-30~% | —6.8243.107° 09 a.o686 - 107° 3.0686 - 107° 3.0632 «10~¢

Yio | —2460¢ -107% | —2.4604.207% | -2.4527.207° Cm 22186 -10~% | —2.2181-107% | —2.2185.367°

E64,128 EI‘ZS,ZSS

A=-0.0075

3.7247 -10-°

5.1607 - 108
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Table 5.2: 2 =0, A = ~0.0150.

N=64 N=128 N=256 N=64 N=128 N=256
i Y;|-0.238573 | -0.238577 | -0.238576 ¢, | -0.220206 | -0.220207 | -0.220207
Y, | 0.178393 | 0.178393 | 0.178393 C, | -0.018526 | -0.018530 | -0.018529
Y, | -0.048880 | -0.048870 | -0.048871 Cs | 0.009416 | 0.009415 | 0.009415
Y, { 0.000015 | 0.000017 | 0.000017 C, 1-0.003031 | -0.003024 | -0.003025
Y, | 0.011315 | 0.011303 | 0.011305 C, | -0.000513 | -0.000513 | -0.000513
Y, | -0.007410 | -0.007411 | -0.007411 Cs | 0.001592 | 0.001581 | 0.001583
Y, | 0.001009 | 0.001021 | 0.001019 C, | -0.001127 | -0.001127 | -0.001127
Yy | 0.002396 | 0.002396 | 0.002396 Cg | 0.000201 | 0.000214 | 0.000212
Y, | -0.002357 | -0.002369 | -0.002367 C, | 0.000409 | 0.000410 | 0.000410
Yo | 0.000725 | 0.000725 | 0.000725 Cyo | -0.000484 | -0.000501 | -0.000498

E(l) = E64,128 E(2) = Eus.zss g(;}

A=-0.0150 | 1.4235.10-* 2.0112-10-% | 7.0777
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Table 5.3: 1 =0, A = —0.0200.

=96 N=128 N=256 N=96 N=128 N=256
Y, | -0.345313 | -0.345600 | -0.345555 C, {-0.311016 | -0.311197 | -0.311172
Y, | 0.253923 | 0.254297 | 0.254270 C, | -0.048804 | -0.049085 | -0.049054
Y, | -0.023963 | -0.023180 | -0.023268 C, | 0.014631 | 0.014754 | 0.014748
Y, | -0.034751 | -0.034838 | -0.034843 C, | 0.005604 { 0.006062 | 0.006018
Y, | 0.017215 | 0.016284 | 0.016382 C; | -0.008024 | -0.008174 | -0.008171
Y, | 0.007839 | 0.007896 | 0.007903 Ce | 0.001324 | 0.000664 | 0.000726
Y, | -0.011048 | -0.010015 | -0.010119 C, | 0.003949 | 0.004120 | 0.004122
Y; | -0.000268 | -0.000380 | -0.000381 Cs | -0.003071 | -0.002204 | -0.002286
Y, | 0.006782 | 0.005707 | 0.005811 C, | -0.001414 | -0.001608 | -0.001616
Y, | -0.002205 | -0.002005 | -0.002012 Cio | 0.003250 | 0.002179 | 0.002283

Eg6,128 Ey28,256

A=-0.020 | 1.2582-10-2 | 1.5756 - 10~3
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Table 5.4

=-15

E,

=-1.0

A=-0.0025

2.7736 - 10-%

A=-0.0025

4.1522 -

A=-0.005

1.1145 .10

A=-0.005

1.6720 -

A=-0.001

4.4993 - 104

A=-0.001

6.7792 -

A=-0.002

1.8338 - 10-3

A=-0.002

2.7885 -

=-05

E,

=200

A=-0.0025

8.8302 - 10-5

A=-0.005

3.5814 - 104

A=-0.0025

5.2381 -

A=-0.005

2.0810 -

A=-0.001

1.4737-10-3

A=-0.001

2.2667 -

A=-0.002

6.2618 - 103

=-0.002

8.2868 -
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Figure 5.3: § = —0.5
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Figure 5.4: @ = —0.5. The upper plot is the velocity field inside the droplet , including the

boundary. The lower plot is the velocity field outside the droplet.
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Figure 5.5: Upper : § = —1.0,lower : {} = —1.5
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Q = 0.0. The upper plot is the velocity field inside the droplet, including the

Figure 5.7

boundary. The lower plot is the velocity field outside the droplet.
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Figure 5.10

boundary. The lower plot is the velocity field outside the droplet.
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CHAPTER 6

Appendix—Proof of Theorem 2.1

Here we prove the uniform boundedness of the desingularized integrand of I,,,,. That is,

nle,t) _ Ta(at)
Zy(e, t) - Zz(a’a t)  Zya, t) - Zy(e, t) + 0.Z(a, t)(a - a’) .

f(as o, t) =

is uniformly bounded if the condition and the assumptions (Al), (A2),(A3) and (A4) in
Theorem 2.1 are true.

The proof procedes as follows: Since Z; (o, 1) — Zy(e,t) # O except at o/ = = 0,1 =1,
there is no singularity in ﬁ%’%ﬁ%ﬁ,—n when (a, 1) is away from (0,¢*). In this case, we show
that both terms in f are bounded and hence f is bounded. On the other hand, when (e, )
is close to (0,1*), the denominators of both terms in f tend to zero as o/ — . We locate
the singularity of each term and find that they are nearly at the same point, so these two

terms get cancelled on the real line.

6.1 For (o,t) away from (0,1*)

Let d be a positive real number, then we have |Z;(a,t} — Z;(o/,t)] > d > 0, Vo/. And by

(A1), there exists a constant M,

(6.1) 10 Zo(er, )] < M, & <t*,
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Let 6 = -2%;.

(a)If |« — o] > &, then

62 1Zed) - o) 48, Ze a2 [RelduZae e~ o)
pure :'ma.gi—'r::fy by (A3)
_

(b)If | — &'} < 6, then

|Zl(°~'?t) — Zy(e, t) + aazz(a:t)(a -ao)| 2 “ZI(aa t) ~ Zz(a,t)I - laazz(aat)”a — o'f|

(6.3) > d—-Mé= g by (6.1), ().
Define d = min[2, 4], then
(6.4) 1Z4 (0, 8) = Zo(a,8) + Bu Zy(a,t)(a — )| = d

(A1) implies that }v,| € c, where ¢ is some constant. Hence from definition of f and (6.4),

o) € 7+
6.2 For (a,t) close to (0,#*)
In this case,
1Z1(a,t) ~ Zy(e )] = |Zy{a,t) = Z,(0,1") + Z5(0,8%) — Zy(a, 1))

(6.5)

IA

1Zy (e, 1) = Z3(0,2%)] + | 25(0,27) — Zy(e1)] < 1
Define 8, , 8,, which satisfy

Zi(a:t) - Zz(ﬂnt) =0

Zl(a$t) - ZZ(O‘? t) + aaZ2(aat)(a - )62) =0
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Expand f, around « to obtain

Z (a,t) — Zy(a, 1 02 _Zy(m,t
(6:6) ho= ( 3 “)Zn(rx,t(\a Jta- 29, zz((z t)) (8 — @)’
_ Zyleyt) = Zap(ant)
(60 ¥ AP
Also,
(6.8) Zi(a,t) = Zy(o, 1) = \Zﬂa,t) ‘;Zz(ﬁntl“*‘zz(ﬂnt) = Zy(/, 1)
=0
= 8aZy(1,t)(6r — o)
(6.9) Zi(ayt) = Zy{ent) + 8,Zx(ast)(a—ef) = 8, Z,(0, ) (B, — o)

Here n, € (e, B,) and 5, € (B, o) are found by the mean value theorem. From (6.8), (6.9),

f(a, o', t) can be rewritten as

o _ Y2(e', %) _ Yoo, 1)
(6-10) f(a7 ,t) — aaz2(n2:t)(ﬂ1 - G.”) 6022(0.’, t)(ﬂg _ O.")
Define
(6.11) g = 2oy t) o)

0uZo(nnt) T BuZy(ant)
By (6.10), (6.11), we need to bound

g2 _ Ba— B
ol = e TG )
B2 — By
> lﬁl - 0-"' * lgz”(m - o)(B; — )

R S
=152

(6.12)

By continuity,

| ¥2(0,2*)

o2l <13, 2,00,

+1
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It suffices to show that

|g1-g'2I l ﬂ2“161 |
e U Ry )

are uniformly bounded. We show these in (6.2.1) and (6.2.2) individually.

g1=83
6.2.1 |24

. _ 12((1",t) . ‘)(2(01,t)
g-h = 3azz(’72a t) aorZ2(a1t)
Y2(0")8, Za(a) — ()8, Z(n,)

= , leavingt oul

aozZZ(Tf?)aaZ?(a)
_ (e)8.2i(0) = 0uZa(m)] + 0 ()0 2o = @) o
82Z2(12)0a Z2(0) o
_ 1@, Ao =)+ fanmdaZa(@e ma)
00 Z2(12)00 23 () , ! T
So,
12()2 , Za(n4) 8aY2(n3)
_ < o da—m| 4+ l—r=| ¢ —
o=l < 1 a1 oz 1
Consequently,
91— 92 ()22, Z2(n) || | e=m 3a72(1s) Lo
(6.13) Iﬂl—a"“‘ |3uzz(ﬂ2)3azz(°f)! |f31‘°"| +|3.,Zz(ﬂz)l ‘ﬁl—a'l
12 € (o, ;) from (6.8),
n =€ + (1- §of, E€ [0,1]
ammy | — ja=fhi-a’tlaly a-of — £l < a—o
(6.14) 52| = 12525 =l dlz—gl+!

98



(e, 8) — (0,%)] < 1, s0 |8; — a| < 1 by (6.6). Define

_ L—2
(6.15) K = (-~-~~—*-3mz2 e, t)
(6.16) B, = k+a+e by (6.6),
(6.17) B, = £+a, by(6.7).

Here and in the following, € denotes the term which is negligible compared to other terms
in the equation. For example, if [Z;(«,t) — Z;(, )| is of order ¢ (from (6.5)), we get € ~ (?
by (6.6), hence is negligible in (6.16).

(1a)If |& — o’| > 2|«| , then (6.16) implies

1
Bi—o] =leteta—o|2|la—o/|=sll+e2Sla—ol+e

; ja — o]
6.18 = e ~
( ) |ﬁl—a - %|a—a"|+6

(1b)If |& — o] < 2|k , then

k+e+a—a| = \/[Im(f:-%-e)]2+[Re(n‘+e)+a-—-a’]2
(6.19) > m(s+ ] 2 |[Im(x)| + ¢,

but by definition (6.15},

pure imaginary
Y

er(a, t) - Zz(a, t)\

20 _ _
(6.20) o = (BTN - i+
N, s’
of order 1
so (6.19), (6.20) and (1b) give
1
(6.21) |k +et+ta—d| 2 {Im[n]|+e=|n|+e>Elawa’|+e
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Therefore,

a—o a-—-ao la—o|
(6.22) !51 a"' |n+e+a—a'15%1aua’|+e 2
By (1a), (1b), (6.14) and (6.22}, (6.13) becomes
91— 9 72(“)62 Zz(’h) aa"fz('?s)
6.23 < oo 241 1.2
( ) ‘ﬂ1 - a’* laazz('?z)aazz(a)i( * )I + laazz(ﬂ2)|

Evaluate Imn,], Im[ns], Im[n,] as follows:

n, =B+ (1= &) & e0,1] = Im(ny) = &Im{f)
s =&+ (1 &) &el0,1] = Im() =0

na=Em+(1—&)a &el0,1] = Im(y,) =Edm(n) = &8I (By)
Since by (A1), Z;, 7; are analytic in a strip {{Im(a)] < p} and

|72l: Iaa'hla Iaiazzi S M*

laaZ2| 2 b o ac Ra te [tﬂ?t*]
As (a,t) — (0,%), |[Im(B)] < 1 (6.6), so

laiazz(%t)l,Ianz(ns,t)l < M*+e¢

|3a22(7?2at)| 2 pte

This shows that |£7%| is uniformly bounded , by (6.23).
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182=5:1
6.2.2 B ofliGe—o]

WLOG, we may assume that (o, ) is so close to (0,%*) that

1 [210.2,(0,1%)]
£\ 182_Z,(0,4%)|

(6.24) k] <

(2a)If |8y — | > 34/182 - Bil

82 7,(0, %)

- < oy
Iﬁ? ﬂl' —_ 230,22(0,#")
92 Z,(0,t%)
20,2,(0,1*)

1
< 76 + €, by(6.24)

18, — ] + ¢, by(6.6),(6.7)

Ikl + ¢, by(6.16)

Hence

(6.25) BBl < 3. =A< 7VIB- Al
(6.26) 1B, — | = |Bo— B+ B — <

1
> b= =B —Bll > 2V 182 — Bl — |82~ Bl

(6.26) is seen by (2a) and (6.25). Thus (2a), (6.26) imply

B-Bl 182 — |
18— elifz— o'l = 118, - Bl - 118, - Bl

4 4
<T=38 by (6.25
1“2\ﬂﬂz—511 2 v (6:29)

(6.27)

(2b)|8, — | £ l\/ |85 — Bl

B -] = |sta—d|+e

(6.28) = JUIm(x) + [Re(x) + & — /]2 + € > [Im()] + € = |«]
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by (6.16, (6.21).(2b) implies that

1 | 102 Z,(0,¢t
Y 1B — By] < 5\‘ Jﬁﬁ%ﬁ_%"lnl +¢ by (6.6), (6.7}, (6.16).
y SV 2LV

¥

Ity | ek

|8 — e} <

2|8, Z,(0, )|
(6.29) = x| = Iﬂz-ﬂll'\]m

Thus (6.28), (6.29) combine as

2|8,2,(0,t*
(6.30) 18— | = \/lﬁz-ﬁll-dﬁtlz—zgﬂ,;%*{-

We also have

B—¢'| = |Bp—ata—o|=|c+a—d|
N 216,730, 0)
m(9l= Iel2 VIA = Al J 02, 2,(0,8)]

The last inequality is by (6.29). (6.30), (6.31) give that

(6.31)

v

|82 — Bl < 1By — Bl _ |02 Z,(0,1*)]
b= B =T 7 (fig— pil- ey MOS0

(6.27) and (6.32) imply that

(6.32)

18 = Bl 102220, 7)]
(6.33) “5:1 _ a:“ﬁ2 - a'| < ma,X[& Ziaazz(g,t*)‘].
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