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Abstract. Spatial analyticity properties of the solution to Burgers’ equation with generic initial
data are presented, following the work of Bessis and Fournier [Research Reports in Physics - Nonlinear
Physics, Springer Verlag Berlin, Heidelberg 1399, pp. 252-257}. The positive viscosity solution is a
meromorphic function with a countable set of conjugate simple poles whose motion on the imaginary
axis is governed by an infinite dimensional Calogero type dynamical sytem. The inviscid solution is a
three-sheeted Riemann surface with three branch point singularities.

Exact pole locations are found independently of the viscosity at the inviscid shock time .. Addi-
tionally, the small viscosity behavior of the poles is shown to be a perturbation of the inviscid branch
point singularities for t § t.. A small viscosity asymptotic expansion of the solution uniformly valid
in a neighborhood of the inviscid branch points is found in terms of the Pearcey integral.

The solution is computed for small viscosity using pole dynamics, finite differences and asymptotic
methods, and numerical agreement is established. The method of pole dynamics consists in finding the
evolution of a large set of poles by solving numerically a truncated version of the Calogero dynamical
sytem. This system is adjoined with initial data consisting of the exact pole locations at t.. A
Runge-Kutta scheme is used together with a “Multipole” algorithm to deal with the computationally
intensive nonlinear interaction of the poles. The solation is reconstructed from the pole positions
and the Mittag-Lefler (pole) expansion of the solution. From this procedure, the evolution of the
width of the analyticity strip is shown to remain uniformly bounded away from zero, agreeing with
the asymptotic predictions.
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1. Introduction. In this article we investigate the spatial analyticity properties
of a solution to Burgers’ equation

Ou Ou 0*u
(11) *8'—t+u-6;:b’"a"w'—2,

where the parameter v is a viscosity coefficient, and u = u,(z, t) represents the velocity
field of a fluid particle at position z in space and time ¢, Burgers’ equation is a model
for the statistical theory of turbulence [8, 9] which can be thought of as a simplified one-
dimensional scalar analog of the Navier-Stokes equations of fluid dynamics. Although
it does not exhibit the complexity of the Navier-Stokes equations, it does illustrate
the interaction between a non-linear first order convective term and a second order
diffusive one. This feature which is shared with the Navier-Stokes equations may
help understand the questions of regularity of so complicated a system. Bardos and
Benachour have shown [4] that the loss of analyticity for the incompressible Euler
equations in R" has to follow a blowup in the vorticity w = V X u, in analogy with the
blowup of the solution of the inviscid Burgers equation (v = 0) which is driven by the
blowup of the gradient of the solution du/dz, .

We focus on a particular initial value problem for (1.1) where the initial condition
is given by

zeR,t>0,v 320,

(1.2) u(z,0) = uolz) = 42° — z/t., Tz €R,

and t, is a fixed positive parameter. This particular initial value problem was intro-
duced by Bessis and Fournier in [5, 6] following a study by Fournier and Frisch [17].
The inviscid equation is a hyperbolic quasi-linear PDE whose solution develops a cube
root singularity at the origin at the time ¢ = —(inf; uh(z))~! > 0, which, for (1.2)
equals t,. This is known to be a generic singularity for the inviscid Burgers equation
which is due to the coalescence at the origin (z = 0) of two complex conjugate branch
points +z,(¢) of order two. The cubic initial data is considered to be generic due to
the local cube root shape of the shock of the inviscid solution at ¢ = £, and the associ-
ated cube root singularity (for further details, see Appendix A and {6, 10, 17]). When
v > 0, this data generates a (countable) infinite number of complex poles at positive
time. Although a higher order polynomial of the form us(z) = Ongint — 2 /t, would
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COMPLEX SINGULARITIES FOR BURGERS’ EQUATION 3

also have this property, it would no longer be generic for the inviscid equation (see
Appendix A). Another compelling reason for which we choose 2 cubic polynomial is
that its solution can be completely analyzed for both ¥ > 0 and v = 0, unlike a higher
order polynomial.

In the inviscid case, a classical solution u € O'(R x R, ) ceases to exist al ¢ = 1,.
For ¢ > t,, the solution has three real values within the interval (-z,,z,) C R, and
in the complement (—z,,z,)° it has one real value and two complex values (see Fig.
6.1 and [10]). Thus a natural setting for the analysis of the multi-valuedness of the
inviscid Burgers equation is found by extending (for all ¢ > 0) the domain of the spatial
variable z and the range of the solution u into the complex plane. Bessis and Fournier
have shown in [5, 6] that for » = 0, the analytic structure {topology) of the solution
is a three-sheeted Riemann surface with three branch points, one at infinity and two
of which come down the imaginary axis as a conjugate pair and coalesce at the origin
at the so-called shock time t, to form a third order branch point. The inviscid shock
in the real plane is interpreted as the permutation of the physical Riemann sheets
which make up the Riemann surface. More precisely, it appears to be the connecting
path between the two sides of the physical Riemann sheet which are seperated by
non-physical ones (see [5] for more details).

The positive viscosity solution (¢ > 0) is a meromorphic function with a countable
set of conjugate pairs of simple poles for all ¢ > 0. These poles move towards the
origin along the imaginary axis, then turn around after a finite time and start moving
away from the origin (see Figs. 6.2 and 6.3). In the same way that the dynamics of the
branch points of the inviscid solution help in understanding the formation of a shock
in the real (physical) plane, we intend to illustrate the preservation of regularity of the
viscous solution by further analyzing the dynamics of the simple poles. In turn, this
will shed some light on the interaction between the non-linear convective term and the
diffusive one present in the (viscous) Burgers equation. Furthermore, we clarify the
limiting process which describes the vanishing viscosity limit by focusing on the small
v asymptotic behavior of the poles. As v — 0%, the poles condense on the imaginary
axis, yielding an asymptotic pole density. The inviscid limit can be recovered by
introducing an integral representation of the Mittag-Leffler expansion which involves
this density. These results are presented in [26]. It should be noted that the analysis of
a meromorphic solution to Burgers’ equation was first described by Frisch and Morfin
[18, section IV]. Recent work has also been done on complex time and space analysis
of Burgers’ equation with a periodic initial data by Kimura [22].

The structure of this article is as follows: For v > 0, the solution is explicitly
given by the Cole-Hopf transform. From a careful analysis of the Cole-Hopf variable,
the solution is expressed in terms of its polar singularities by means of a Mittag-
Leffler (pole) expansion. A Calogero-type infinite dimensional dynamical system which
governs the time evolution of the poles is found by replacing the pole expansion of the
solution into the PDE. This system represents compatibility conditions for the existence
of such a pole expansion. From the integral representation obtained via the Cole-Hopf
analysis, by means of the saddle point method, we derive an asymptotic formula for
the solution u,(z,t) for small v. However, for any ¢ > t,, there is a degencracy in
the asymptotic formula at the caustic 2 = *z,(t) where two saddle points coalesce;
thus we derive both the regular saddle point analysis within and outside the caustic,
and a uniformly valid expansion via Pearcey’s integral which correctly describes the
transition between the two regions. The asymptotic behavior of the solution at the
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caustic u,(z,,t) is obtained from the Pearcey representation. As expected, it is shown
to match the behavior obtained from the classical saddle point analysis.

For small ¥ > 0 and 0 < t < t,, we show that the poles are a perturbation
of the inviscid branch point singularities of the form B(t,v) = |z,(2)] + O ((kv)*/*).
For t > t., their asymptotic behavior no longer depends on the inviscid branch point
singularities and it is given by B, (t,v) = O ((kv)**). The actual location of the poles
in the non-zero viscosity case has not been described. Thus, we attempt to analyze
their time evolution more explicitly by solving numerically a truncated version of the
Calogero ODE system. The “initial data” which is adjoined to this truncated system
is generated by asymptotic and numerical approximations of the poles at t,. In [25],
the asymptotic expansion of a related Fourier integral is determined by the method of
steepest descents which allows for a highly accurate analysis of the pole locations at
t = t,, independently of the size of the viscosity. A Runge-Kutta-Fehlberg 4-5 time
marching scheme is used in combination with the “Multipole” algorithm designed by
Greengard and Rokhlin [19]. This Multipole algorithm reduces the computational
complexity of the nonlinear interaction of the poles in the Calogero ODE system from
O(N?) to O(N log N) particles (poles), thereby allowing us to carry out very large
simulations with up to N = 50,000 poles. The analytical solution to a two-pair pole
dynamics is obtained and serves as a test case for the Multipole simulation. The time
evolution of the width of the strip of analyticity of the viscous solution is governed by
the pole closest to the real axis which can be tracked numerically according to this
method. The poles are fixed to the imaginary axis and move towards the origin until a
time ¢ = t,; time at which they turn around and move away from the origin. This turn
around time f, occurs before ¢, for v 5 .01, and after ¢, for v g .01 During this process,
the poles never reach the real axis, thereby preserving the uniform analyticity of the
solution (in agreement with the results of Sulem et altrs in [29]). It is also observed
that f, increases with decreasing v, in accordance with the fact that the time at which
the solution starts decaying increases with decreasing v. Additionally, one can use the
pole dynamics to compute the solution via the pole expansion and the pole positions at
various times. These predictions are compared to those obtained independently from
the saddle point analysis and from finite difference approximations. The difference
scheme we use is the method of lines consisting of the same Runge-Kutta-Fehlberg 4-5
scheme in time combined with central differencing in space.

2. Integral representation, pole expansion and pole dynamics for v > 0.
2.1. Cole-Hopf solution and Mittag-Lefller expansion. For vt > 0, the

Cole-Hopf solution to (1.1) can be represented by a Mittag-Leffler expansion as follows:
THEOREM 2.1. Let v,i > 0, then

u,(2,1) = -:— - 208, 10g(E,,(a:,t)),

b 1 sz
E,(z,t) = f exp {53 (;y +ay’ - y4)} dy,

where 2a = 1/t, — 1/t € R. For fized v,t, E,(x,t) is an even entire function of x of
order 4/3 with countably many simple zeros which come in pure tmaginary opposite
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and conjugate pairs. Moreover, E,(z,1) has the infinite product representation

oG 2 oo oo
Eu(:cﬁt)ncv(t)n (1+;62_Ectu175) ) 231“ = +00, Z;—E<+OO,
n=1 AL n=1"7 n=1 "

0!2

@ g2 -
C, (1) = ——gemu K4 (m) L C,(t) = v A2m3T(1/4),

where I, (2) is the modified Bessel function of the second kind. Thus the solution
u,{z,t) has an alternate representation in terms of a Mitiag-Leffler (pole} ezpansion

T e dyz
He o oS
w(@l) = 3= L T

which converges uniformly on compact sets for x away from the poles a,, = i, .
Proof. The solution to system (1.1) is constructed using the Cole-Hopf nonlinear
transform © = —2v 8,log(s,) [15, 20] which was first introduced by Forsyth (cf.
[16, §207,p. 100]). This nonlinear dependent variable transformation maps Burg-
ers’ equation into the diffusion equation for ¢,(z,) with corresponding initial data
do(z) = exp{—3 Jy wo(t)dy}. The solution is therefore represented by means of a
convolution:

(}5,,(51:,1‘,) = (K,, * 9‘50) (m7t)
= (4rpt)=H? f e R o o Mgy — K (3, 1)E,(2,1),

where K, (z,1) = K(z,vt) = (4rvt)"Y2exp(—2’/4vt) is the fundamental solution of
the diffusion equation, and

oe 1 fx 2 v
E,(z,t)= exp {5; (Ty - g—t — ]o uo(n)dn) } dy.

Since 9, log(K,(x,t)} = —2/2vt, the solution of the original problem is given by
(2.1) u, (2,1} = —:E- - 2v 8, log(E,(z,1)).

For ug(x) = 42® — z/t,, v, > 0, we obtain the following solution:

o —_

(2.2) E,(z,t)= /_w exp {21—1/ (%y +ay? — y4)} dy, o= E%Tt: € R.

It is clear that E, is an even, real analytic function of z, and therefore satisfies the
conjugacy relation E,(%,t) = E,(,t) (the analyticity of E, can be verified using
Morera's Theorem). The positive order A of an entire function f(2) is defined as A =
lim sup,_, .o, loglog M(r)/logr, where M(r) = max, =, | f(2})|- For a fixed time ¢ > 0,
the order of E, is the smallest number A € R, such that M, (r) = maxi|=r |E,(z,t)] <
exp(r*t*) for any ¢ > 0 as soon as r is sufficiently large. From the asymptotic behavior
of E, for |z] = 7 — 400, we find in (4.3) that M,(r) = O(rM3 exp(—r(t) r¥/3/20))
where x(t)/2v is the “type” of the entire function E,. Thus it is clear that its order is
A = 4/3. It is known that entire functions of fractional order have infinitely many zeros
(see [3, 7]), thus E, has infinitely many zeros that come in opposite and conjugate pairs.




6 DAVID SENOUF

Since the fractional order of the entire function E, is also the exponent of convergence
of its zeros a, (see again [3, 7]}, we have

ad 1
(2.3) Ye > 0, E W < 400,
nzl 70

Using a Hadamard decomposition, we construct the solution u, by factorization of the
zeros of E,. The canonical infinite product expansion of E, is (see [3])

o0
E,(z,t) = Cz™es™) I (1 - ‘m‘) olant3lany ot be/an)
=1

Oy

where g(2) is a polynomial of degree ¢. The integer h = max(p, ¢) which is called
the genus of the product representation of the entire function F, satisfies the bound
h<A<h+1=h=1= pqg< 1l Moreover since £, is an even function of z,
we must have ¢ = degg(z) = 0, and therefore p = 1 (since p +1 > A,p € N). Since
C = C,(1) = E,(0,t) # 0 (see (2.6a)), we must also set m = 0, so that the canonical
product must be of the form

=01 =1

o0 - .
E,(z,ty=C]] (1 - a—) erlon, N ] +o0, . o < +o0.
n=1 n n=1 "1 n=t "

Due to the even parity of E,, its zeros come in opposite pairs ¢ = *a,, thus the
product Tepresentation reduces to the simple form

B (z,t) = C,(t)ﬁ (1 - g;) :

In [24], Pélya showed that functions of the form
(2.4) / e~ HT YL p > 10> 0,b€ER,

have only real zeros. Using this property it is straightforward that the zeros of E,
come in pure imaginary conjugate pairs; thus we let a, = i83,, B, > 0 and obtain an
infinite product expansion of E, valid for all ¢, > O

0o o © 1 < q
(2.5) E,(z,t)= C,,(t)};_[l (1 + W) s ; —ﬂ_n = 400, ; —;2;‘ < 400,

where C,(t) is a constant depending on ¢ which can be found explicitly: Let K ,(2) be
the modified Bessel function of the second kind, then

50 2
_ _ (ovyyya gy _ VO g il
(262)  C=EOY=[ e dy="g¢ 1{1,4(161/),

OO

(2.6b) C,(t) = E,(0,t,) = / eV W dy = yH12734(1/4),

— 0

with Kj4(2) = O{z"*) as z — 0. After logarithmic differentiation of ,, using
(2.1) and (2.5), the spatially singular part of the solution being the ratio of two entire
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functions is meromorphic. Thus we obtain a Mittag-Leffler expansion of the solution
which we refer to as the (infinite) pole expansion:

oo

xT dpz
(2.7) u(@:0) =3~ L T m )

n=

Since T, fn? < oo, for any fixed t,v > 0, the series defining u, in (2.7) converges
absolutely and uniformly on any strip 0 < B < & < |S#] € 31 < Bprs K € N* =
N\{0}. Therefore v, is analytic in the strip [Sz| < §, where ¢5; is the first ordered
pole on the imaginary axis. From (2.7), u, conserves the odd parity of the initial data
as expected from the PDE: u,(~2,t) = —u,(z,t). In order for this pole expansion
to make sense, the behavior of the spatially singular part of the expansion should be
unbounded as t — 0% in order to balance with the term z/1. 0.

2.1.1. Observation on E,(z,t). Let ' denote 8/8z and E(z) = E,(z,t), then
for fixed v,t > 0, E,(x,t) satisfies a third order linear homogeneous ODE in 2 given
by

PROPERTY 2.2.

(83 E,, T

HiT —_
E Ru22 R E=0

Let A, {(z,t) be the roots of the corresponding characteristic polynomial, and let U(z,1t)
be the spatially singular part of the solution to the inviscid system (6.1), then

Az, t) = Uz, t)/ (2vt).

Proof. One can differentiate under the integral sign arbitrarily many times due to the
factor exp{—y*/2v) which preserves the convergence of the integrals

o0 k
EO@) = 8B() = [ (5%) 0 dy, wly,z) = 2y/i+ar’ ~ o'
oo V208
Since
— wiy,x}f 2 - I _ 3y wly.=)/2v

0—/_006‘5,6 dy—-[_m2y(t—§—2ay 4y)e dy,

we have
w9 L z —

(2:8) E 8V2t2E 32u3t4E =0

Expressing (2.8) as a first order system , we find

8’: SZME.

QOO
= e I ]
[ =]

32¢814 8p3i?

where € = (E, E', E"Y . The eigenvalues A = A, (#,t) of the matrix M given by the
equation 0 = det (M — AT) are the roots of the characteristic polynomial

8] T

T A =0

3
A 320544
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Let A, = A/(2vt), then ) satisfies the same cubic equation as U(z,t), namely
S G
Noghog =0

where U{z,1) is the spatially singular component of the inviscid solution {see (6.5)).
Using Cardan’s formula (see Appendix B), we find that

(2.9) X=U(e,t)= (8::)‘1/3{{’/ —-a -zl {/;+ Vi — a:z}

where &, = t (2a/3)%/% is defined in §4.2. a.

2.2. Calogero dynamical system for the poles 3,(f,v). We describe the time
evolution of the poles §,(%,v) according to an infinite dimensional dynamical system
which is found as a compatibility condition for the existence of the pole expansion
(2.7). We prove the following:

PROPERTY 2.3. The imaginary part B, = B.(t,v) : Ry x Ry — Ry of the simple
poles © = +if, of u,(z,t) satisfy the Calogero-type infinite dimensional dynamical
system

Vn € N, ﬁnmgi*%—- 41%2

i';én

B o, %
_t Zﬁ! ﬁn

l=—co
0

I#n,

Moreover, the variables 4,(t,v) = Bi(t,v)/v satisfying 3, 71 < +oo are solution to
the v-independent infinite system of ODEs

P e (1 ~
Yne N, —=-—+41-—47, .
2 i 7;71"—’)5

i#n

Proof. The usual pole expansion that is sought in [1, pp. 203-209] and [11, 14, 18] is
of the form

N
2v
(2.10) u"";w—iﬁn’

however as N — -4oo this series diverges for any fixed z,t,». Since we have more
information about the exact form of the solution, and ¥, f5 % < oo from (2.5), instead
of using u,(z,1) = z/t—%", 2v/(x—if,) as in [5], we replace the full Mittag-Lefller/pole
expansion u,(z,1) = &/t — Yoo, dve/(2? + fa(t,v)) found in (2.7) in the PDE u;, +
Wi, = VU,, Although we are not in the setting of a finite pole-expansion, as it is
formulated in the references mentioned above, we can still follow this process to obtain
an ODE which governs the motion of the poles B,.(t,v) as they evolve with time for
t > 0. We introduce the following notations:

N R
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Combining (1.1) and (2.7) we get
2 48z E C ﬂ+ﬁ52)2 (% - dvg zﬂ: E?i_ﬁ)
- (? —4uz":;~§-i—@% +8V“’2¥(m_2'+1[3—3)2)
—-v (24” ;Ffw — 32:/3:3; (5*7—2_;{*—3)5) =0.

After distributing the factors, cancelling the terms +2/t?, and regrouping terms to-
gether in powers of (z? + f2)™%, we divide by 8vz to obtain

S Bufaa + B - L ) 4 D )
n +2v 2}32(m2 +nﬁ?)“1(a:2 +Ba)7 - v D (e + B

- dve® (2; S+ Bt + B - ) (et + ﬁi)‘a) =0

Since
DGR e AR =~ AR A

we regroup the terms in powers of (22 + 82)7" to get
(2.11) Z (ﬁnﬂn éﬁ - v) (2% + B)7

+2v (Z 2(3:2 S ANCEY IR G, ﬁﬁ)‘z)

- dve’ (Z 2 Aoy (et + B - D (e + ﬂﬁ)‘s) =0

Using partial fraction expansion we have for I # n

(2.12a) 1 — = L 2.( 12_ 1 )
(22 + B2)(e2+ BF)  Bi-Bi e+ 47 2+ 03

1 1 ( 11 )
@+ B2)(e?+ 677 ~ (7 - B2 \e*+B2 o+

(2.12b) 1 1
MY
Since
1 1
(213) Zz(ﬁn ﬁ2)2'(m2+ﬁg—a}2+ﬁf2) :{)3

n I#n
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combining (2.12b} and (2.13), we obtain

1
LG ThRCET WY i T
(2.14) 1
=LA @A
Since we can interchange [ and n in (2.12a), we have
1
(215) ;,;,(w”ﬁz ) (= +ﬁ) R 3'(m2+ﬁ3)'
We replace (2.14) and (2.15) in {2.11) to get
B 1 1
Eﬂ:(ﬁnﬁn“ V) (m2+ﬂ2)2 +4V;!¢Znﬂz ﬁ2 ($2+ﬁ2)
1
— 4qua? ;; 5:; (w2+ﬁ2)2 =0,

Replacing (2% + 82)7! by (2* + 82)/(2* 4+ B2)° in the second summation we get

s L
(216) Z(ﬂnﬁn T ﬁn)'(muﬂz)?“o‘

n i£n

Since (2.16) has to be satisfied for all z € C\ Upen- {7 = i8,}, it yields the desired
system of ordinary differential equations governing the time evolution of the poles 3,:

(2.17) WEW,Q=—+W 4@2
Bn - B7 - B

This system may be re-written as

(2.18) Vn € N*, Bn_ — 2 2:
If;nog

ﬁ[ ﬁn

where the sum must be understood as a symmetric “principal value” sum. This sys-
tem may be thought of as a set of compatibility conditions that a,compa.ny the pole
expansion. Introducing the variable v,(t, v} = §5(t,v)/v, we have 32, 7 1 < 400, and
system (2.17) becomes independent of

Y % 1
2.19 Yne N, — +1—4dy, .
( ) b 2 7 ;Pﬁ—'ht

3. Asymptotic analysis of u,(z,t) as v — 0%, ¢ > &,. When v — 0t, we
evaluate the asymptotic behavior of E, using the saddle point method. The caustic
g = x,(t) correponds to the envelope of the characteristics of the inviscid Burgers
solution, and is also determined by the system of equations

(3.1)

0=w,(z2) =2/t + 20z —42°
0=w,,(z2)=2a—122°
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where w(z,z) is the phase function of the integrand in the definition of E,(z,t). This
system represents the conditions for the phase function w to have saddle points of
multiplicity two, thereby yielding a curve in the (z,t) plane on which two saddle
points of multiplicity one coalesce into a saddle point of multiplicity two. From the
second equation in (3.1), we find Z.ausuc(t) = +./a /6, and from the first,

5 20:' 3/2
(3'2) T = Teoqustic — t(4zcaustic(t) - 2azcauat£c(t)) = '—‘Ft ('—é—) = :Fm.s(t)a

where z,(t) = i(3t,)7%*(t, —)**~"/* is the second order branch point of the inviscid
solution described in § 6. We find that all three saddle points may be relevant within
the caustic |&] < |z,(t)] — 6/2, where § > 0. For a discussion on such caustics, cf,
[21, 23]. When t > ¢,, & € {—o0,—z,(t) — §/2) U (2,(t) + 6/2,00), v — 0%, the same
analysis holds and one recovers the characteristic solution outside the caustic consisting
of only one relevant saddle point. The transition from within the caustic to outside
is not uniform as the asymptotic behavior at the caustic z = +z,(t) is degenerate
(2 saddle points have coalesced). The transitionary regime from one relevant saddle
point to two at and around the caustic is therefore described by means of the Pearcey
integral which allows for a uniformly valid description.

3.1. Inner expansion: z € (—2,(t) + 8/2,2,(t) ~ §/2), § > 0, t > .. In the
analysis that follows, we are only concerned with the dominant behavior of E,, thus
we only retain the first term:

(3.3) E,(z,t)= L exp (w(;:/, :1:)) (1 + O(V)),

s=0,1,2 wzz(z‘,,fﬂ)

as v — 01, with

(3.4) w,(z,(z,1),2) =0, w,,(z(z,1),2)=2a— 1222
Since
) _ Tz X a 4
G_ 411?2(23,:5)— 4t +2zs Zs)
we have that
_z 2 4 _ 3z @ 4
(3.5) w(z,(z,t),2) = S 7tz = A= T + 5%

The values of the saddle points z, = z,(=z,t) of (3.3) are determined by the three roots
of the first equation in system (3.1), i.e. the first equation of (3.4). They are specifically

Zn :WA+W28
(3.6) zn=w'A+wB
Zgﬁvt{‘l'B

with w = €**¥/3 is a cube root of unity, and

{ Alz,t) = (8t) 3. o + Va? — 2l

(3.7) B(z,t) = (St)_l"‘s . {’/3:_;__— V2 — z?
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Note that all three saddle points are real when z,z, € R and the discriminant A =
z? — 22 < 0, that is |2| < |z,(f)], and in this case 4 = B (see Appendix B). Therefore
we have 2, € R, w(2,,2) € R, and w,,(2,,7) = 2 — 1222 € R. Hence all three terms
in the summation signs may be relevant. Note however that the expansion derived for
E, is only valid within |z] < {z,], and in order to get an expansion uniformly vali

across ¢ = %, one needs to derive a uniform expansion as presented in §3.3. The
dominant behavior of the solution u,(z,t) is found from the Cole-Hopf representation,

so that within the caustic jz| < |z,| — 6/2 we have
= 21§, log(E,(z,1))

= v 0. log ( z --ﬂl-}——)ei%’ﬂl(l + O(V)))

5220,1,2 wz"'(z”w

U,(z,t)
t

—4 wilzy, T
Sucon2 e (\/omtome ™ #%)

o 2
= 2v ST + O(v*).

2=0,1,2 w“(z.,m)

Since w(z,,z) € R and v > 0, and since

dw Z,
(38) 'ég(zs} L= ?7
we find
(3.9) TR pRELL M AR )

2os=0,1,2€ [V W, (2, @)

The z-differentiation of the asymptotic formula of E, (z,t) is justified due to the ana-
lytic dependency in z. Often one of the three saddle points is such that w(z,,z) <0
and as such its contribution is exponentially smaller than that of the other two. In
terms of numerical computation that are carried out in § 5, leaving this term in (3.1)
does not affect the value of u,. Thus we can simplify the expression (3.9) to a two-
term asymptotic expansion which is similar to the one in [32, §4.2]. Clearly the further
we are away from the caustic, the more dominant one of the saddle points becomes.
However, since there is a point where the dominance of one over the other changes (i.e.
where they are equally relevant), we must leave both in the asymptotic formula:

PROPERTY 3.1. Asv — 0t for z € (—z,(t)+6/2,2,(t)—6/2), 6 > 0, ¢ > 1,, the
solution to Burgers’ equation is given by

w(zs,x)
U (m t) e E - M U (:E t) _ Z{s:w(z,,a:);»()} Zyr€ @ /\/ wu(z,,m)
v ’ - ’ ¥ ? - wizy, T}
! ‘ z:‘[5=1l?(h,-'l?)>l'.l} € w /V wzz(zum)

+ O(v).

3.2. Outer expansion: z € (—2,(t) — 6/2,2,(f) + §/2)°, 6§ > 0, t > t.. The
inviscid limit is found in a straightforward manner in this case: only one saddle point
is relevant, so that the asymptotic limit derived in §3.1 reduces to

Uz, t) = Uz, 1)+ O(v)  asv— 0F,
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where U(z,t) = z,.(z,t) is the spatially singular part of the inviscid solution (see §
6). The particular saddle point z,, that is chosen at every is the one for which
W(Zyy, &) = MaX,=p,1,2 W(Z, ). Hence we have outside of the caustic

PROPERTY 3.2. Asv — 0% forz € (—z,(t)—-6/2, () +8/2)°, 6> 0,1 > t,, the
solution to Burgers’ equalion is given by

uy(m,t)z%wgi%m-lt—) + Ow),

Uz, t) = z,.(2,1), 2, w(z“,a:) = max w(z,,z )}

U(a: 1)

T
Tt

where U(z,1) is the Lagrangian characteristic variable of the inviscid solution.

3.3. Uniform asymptotic expansion in a neighborhood of the caustics
z = +z,(t) via Pearcey’s integral. Following the notation of Kaminski in [21],
we introduce the Pearcey integral from which one can derive a uniform asymptotic
expansion with two coalescing saddle points: Let

+OO : 4 2
(310) P(X,Y) - / ez(v [4+Xu /2+Yu) dv
denote the Pearcey integral. Introducing the change of variable y — (—iv/ 2)1/ *» and
deforming the path of integration back to the real axis using Jordan’s lemma, we can
express E,(z,1) as

00 -1
E,,(:c,t)zj_oo exp{ (y - ay —;y)}dJ
B (ﬂ)lh f+w ) ?j_ aes‘ﬂ-ﬁ zet e (_1_)1/4 i
=\73 L EPNYNT T/ 2 T T 28 !
~ip\ M4 ae's et (1 \ V4
o =(F) r(x=-Tr=- () )

Clearly a small » asymptotic of E, is equivalent to a combined asymptotic expansion of
the Pearcey integral as | X[,|Y| — +co. The caustic of P(X,Y’) and the corresponding
caustic of E,{z,t) is given by

(3.12) Y = Jiﬁxsfﬂ = o = +z,(t).

Hence the uniform asymptotic behavior of E, in a neighborhood of the caustic is found
from the one of P(—X,(2/v/27 - 7)X%?) as X — o0, where 7 = 0 at the caustic,
and 7 # 0 away from it (see [21]). This amounts to a uniformly valid expansion in
the interval |z + z,(t)] < 16(7;1)] where 6(7) = 8(r;t) = V27z,(t) - 7/2 € R. This
expansion is also valid outside of this interval, however the region of interest is a close
neighborhood of the caustic. Indeed one only needs to use the asymptotic expansion
of the Airy function and its derivative to find the results obtained in § 3.1 and §3.2.
From (3.11) we have that

U,(x,t) =t 2v 0, log(E,(z,1))
PR L L __mpi3T/8 1 1/4
=1-2v0,log {P (X(v;t):%m,}’(u;a:,t):-%—<ﬁ> )]
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Let

X = X(v;t), Y = Y(v;t) = Y(v;z = —a,(t) + 6(7; 1), t),
where 8§(7;t) — 0F as 7 — 0%, so that

U, (:c = —z,(t) + 6(7; t),t) =t 208, log (P(X(v;1),Y(viz = —a,(t) + (75 1),1)))
6

= 1200, log (P (-X,(2/v27 - 7)X%?)) g

Let P(r)=P (—X, (2//27 — T)Xafz), then since 88/01 = v/27z,(t)/2, we have

The following Property is found in [21]:
PROPERTY 3.3. The uniform asymplotic expansion of P(—X, (77 — T)X3?) as
X — 400 in a neighborhood of T = 0 is given by

2 - s ‘
P (-—X, (\/-7_7 — T‘) X3/2) - [e’x {(va)+f(vallf2 | {Po(f) . X}/s . Aﬁ(_X‘l/sC(T))

2 ) X2l T 1/2 1 +2 1
o) g AT X |+ () XW] (1ro(s)):

with

—~5/6

po(r) = (14 O()), ao(r) = = s (1+0(r)), (1) =37"*r(1+O()),

and
4 2
= =22 (e

and the v;,i = 1,2,3 are the saddle points of f(v;T) determined by the equation
fu(vi37) = 0, so that f(v;7) = —vf [4 + (2/\/2_7 — 7)3v;/4. The v;’s are specifically

2

2 g7 . 2 T
n(r)= —w\/-—gsm (3 + qﬁ('r)) , vaT)= ﬁsm(qﬁ(f)), va(T) = \/gsm (3 qb(r)) ,
where
¢=d(r)= %a,rcsin (1 - T\/2_7/2) , TER, |# < %
In order to derive the uniform asymptotic expansion of the derivative Pr, on can

differentiate termwise the expression in Property 3.3 due to the analytic dependency
of P(X,Y) in both its arguments X, Y (see [21] and [31, p. 52]). Therefore since

_ o pupiTf4 Y2 2
ae X _ o o x-? = O@v),

X:\/§;:>2 4
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and
af af df
5‘;(”;;7) = -, ‘3“5(”;';7') =0 = E_‘(”i("')?"") = —1;(T),

and using the fact that 2a/3 = (z,/t)*/?, we find that
PROPERTY 3.4. The uniform asymptotic ezpansion as v — 0% of U,(z = —z,(t)+ -
§(r; t),t) in a neighborhood of the caustic z = —x,(t) 4s

1/3 ,
0, (s = o) + 8(ry 1), 1) = L2 (249) " x [[vz 1 vglem BUEHIE)

x {PD(T) - %‘g - Ai(=XY3((T)) + qo(T)i—)%Ai'(-X'*’SC(T))}

2 1/2 1 :
—s2apen) [T e
t2o e (3@?— 1) Xz

23t £ (Vs 2T ) 2 v
/[6 tolrtvarhil )]'{PD(T)'W'AE(WXMSC(T))ME(T)WA%(—X4/3C(T))}

2 1/2 1 N
—2Zapmy [T Tt +
+e (31)12_1) X1/2} + O(v) asv — 07,

3.3.1. Behavior at the caustics z = £a,(t). At the caustic z = —z,(t), 7 =0,
$(0) = 7/6, v:(0) = —2/+/3, v,(0) = v5(0) = 1/v/3. Moreover f(v;;0} = —vi/4 +
v;/2+/3, so that f(v,;0) = f(v5;0) = —2/3 and f(v;;0) = 1/12. Since f(v;;0) < 0 and
f(v1;0) > 0, the dominant term as v — 0t in both the numerator and denominator of
U, is obviously the one containing the exponentially increasing factor exp —%j-[ flva)+
f(v3)]). Therefore the dominant behavior of U,{—=,(t),t) reduces to the simple form

m /3
(200 = 2 (2D) 7 (0x0) + (0)) + O0)

= (%ﬁym +0(v) asv— 0t

Thus since u,(z,t) = &/t — U,(z,t)/t, and from the odd parity of u,, it follows that

PROPERTY 3.5. The asymptotic behavior of the solution u,(x,t) as v — 0% at the
caustic z = kz,(t) fort > i, is

) 1 AN\ B
uy (£2,(1),t) = :tf—t(—t—) F (%l) + O(v).

This matches the solution found from a classical saddle point analysis obtained by
combining (3.2) and (3.6): when « = z,(t), both saddle points z, 2 coalesce into
z, = (2,(t)/t)*/®. From the asymptotic formula

u, (7, 8) = -j- - f'-ﬁ-:—t) + O(v),
derived in Section 3.2, Property 3.5 is verified. Note that this expression is valid only
fort>2t.+e,e>0
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4. Pole locations.

4.1. Exact pole location at ¢t = ¢,. From the integral representation (2.2), a
Taylor expansion about & = 0 can be obtained when ¢ = ,:
ProPERTY 4.1. Let

Sy(2) = a2y D) a5 oo
g fperd F(2n+1)" ° ’
which converges absolutely and uniformly on compact sets for z. Then

Bot) =S, (1@ ™),  lel<+oo

Let z = 483, B € R, |8 < +oo, then if we introduce the scaling

(4'1) B = ﬁ(t*: ‘U) = 4t*(2yﬁ)3/4’
we have
(4.2) E,(if,t.) = S, ("),

Following this scaling, we transform the integral representation of E, (48, t,} to simplify
its analysis. At the inviscid shock time {,,

Bty = [ ew{s (Fv-v)} @

the change of variable

{(4.3) y— (42*)1/33

introduces the scaling factor (4.1) between the imaginary part 8, of the zeros ¢, and
the viscosity v. This allows us to express E,(if,1,) in terms of a new function F(p)
which has the advantage that its saddle points are fixed to the unit disc (thereby
making the asymptotic analysis simpler):

(44)  E,(iB,t.) = (fﬁ)l/slﬂ (% (fa)m), Fp) = /_ Z ehis=2 g

Once the zeros {11, }52, of F(u) are found (independently of v), the poles +a; (t,,v) =
40 (L., v) of u,(=,t.) are given by the relation

(4.5) Bi(te, v) = 42, (20 ),

which was introduced in (4.1). It is important to see that this relation is valid regardless
of whether v is small or 8 is large. Thus if we can desbcribe the p’s accurately, then the
pole locations are known with great precision at ¢, (independently of v). Furthermore
the expansion of E,(i8,1,) as v — 0% or as § — 400 is determined by that of F(u} as
it — 400. The following theorem is proved in [25]:
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est dy

tIm

e,
b2

=i steepest path
—————— level curve

F1G. 4.1. Hills, valleys, level curves and steepest paths of the saddle points zo = eI gy = g5T/E

relevant to the expansion of F(p) = ffom eriz=1 g, g4 p— 400,

o0

THEOREM 4.2. The asymptotic expansion of F(u) = [7_ eriz=="dy qs g — 400
centered about the sector [argpu} < /2 is

F(p)= \/ge“%“ [cos (3%{2 - g—) +0 (;1;)] as fi — +00.

Moreover, the k-th ordered positive zero p, of F'(u) is given by (fork 2 1)

2r 1
O _ 20 (k— = (@) —_ =
w = 3\/§(k 1/3), ,u,,,_G(,uk )+O(k6) as k — 400,

7 1 7 5 53143
g(p)—ﬂ‘f'm(l"a; (1+7_2ﬁ(1"_m(1+ 18900#)))).

Additionally to this asymptotic description, the first 9 values of y; are computed
numerically in [25] and are listed in §5. The accuracy of this asymptotic approximation
is discussed in [25]; the necessity for such high accuracy will be apparent in § 5.

4.2, Asymptotic analysis of the pole locations as v — 0t for t # t,. The
saddle point analysis of E,(i8,t) as v — 0% in the case ¢ # 1, is very similar to the
one that is described in [25]. There are again two equally relevant saddle points which
come in a syminetric pair, and the steepest descent paths are very similar to those
displayed in Fig. 4.1, except that the saddle points are either closer together or further
apart depending on whether t <1, ori > {,.

Let w(z, ) = ifz/t + az® — 2%, 2a = 1/t, — 1/t < 0 for 0 < ¢ < t,. The saddle
points z,{f;t) are the roots of

_ 0w _ B, 3
(4.6} 0= E(Z,ﬁ)w tz+2az—4z .

Throughout the remainder of the analysis, we write (;t) as in z,(f ;1) to denote that
¢ is to be considered as a parameter. We let 2 = —iu, then u satisfies a cubic equation
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with real coefficients, namely

s, o B
U+ E‘u. T 0.
In order to have some cancellation in the expansion of E, to obtain zeros, we need two
equally relevant saddle points. Let z,(t) = t(2a/3)? = i (3t,)~%/(t, —t)¥*1~ 2 then
for t < t,, we find that two of the saddle points come in conjugate pairs only when
|81 > |z, (t)], where 8 = +|z,(#)] is the boundary of analyticity of the inviscid solution
up to 1 = t, (see §6). From Cardan’s formula for the roots of a cubic polynomial (see

(B.3)), we find
up = wA+wB = -1 (A+B)+iL (4 -B)

4.7 u =Tg=wA+wB= —1(A+B)—i2(4A-B)
= A+ B
where w = €2™/3, Since 22 = —|2?| < 0 for t < &,, we find

for B > |z (2)] A1) = ()7 B+ P FaT > 0
P B =8 BV T et > 0

(4.8)
Y= -1/8 af /BZ T 22
for B < —|z,(t)], { A1) = (St)ul/s Vb VBT e <0
B(B;t) = — (80 /=B ~ VBT + 2 <0
so that
(4'9) Zs(_ﬂ;t) = —Z‘,(ﬁ;t)-

Here we are taking the real positive branches of the square roots and cube roots in A
and B. We have also used the relation

(4.10) lz, ()| =t (%‘Il)m =1 (_%a)a/z > 0,

where we are taking the positive branch of 2% for z > 0. Moreover when choosing
the branches of the rational functions A and B, one must make sure that they satisly
the relation A - B = —a/6 > 0 (see Appendix B). In terms of the original variable

z = —iu, after separation of the real and imaginary parts, we have
2 = (A - B)+ {(A+B)

(4.11) 7= %= L(B - A)+ i(A+B)
Zy = ""l'a(A + B)

Since we are only looking at values of [8] > |z,|, the steepest paths and level curves
look almost like the case { = ¢, described in Fig. 4.1, except that the saddle points have
moved closer together, yet preserving the symmetry of Fig. 4.1. The path deformation
is justified in the same way (see [25] for more details). The saddle-points come in
symmetric pairs that satisfy z, = —%7 for all ¢ > 0. We have

(4.12a) 0= %(z,(ﬁ;t),ﬁ) = gi + 20z, — 42}
(4.12b) 0= ?i-z,g—f(z,(ﬁ;t),ﬂ) = %ﬂgz, + g»zf -2

(4.12¢c) w(z,(8;1),8) = Etézs + oz~ 2z}



COMPLEX SINGULARITIES FOR BURGERS' EQUATION 19

(4.12a) gives (4.12b), which combined with (4.12c) gives

(4.13) w(z,(8;1),8) = %qz, + g—zf.

Since for s = 4,1

(4.14a) z,(Bit) = (ul)"%—é(}l -B)+ %(A + B),

(4.14b) w,.(z,8) = 2a — 1227,  w(z, B) = w(2,H),

so that

(4.15a) Rw(z(8:1),8) = -‘}(A2 + B%) ~ %‘-?-(A +B)- 3;-
(4'15b) %w(zs(ﬁ;tL /6) = (_1)8_\?}“ ‘ (A = B) ' (3ﬁ/t + Qa(‘A + B)) 3
(4.15¢) 8(z,(B; 1), 1) = arg(~w,,(z,, B)) = (—1) arg(62f — ).

Using a standard steepest descents analysis (see [25, 33] for example}, we find that

E(if,0) = 37 |~ e (14 O(1)  as v - OF.

S5 Y w2, )

We can further simplify the expansion using the actual value of /627 — c. Indeed,
since z,(8;1) = (=1 L(A - B) + §(A + B) = €"/®A + &7/°B, and A - B = —a/6,

(4.16a) 6z —a= 3\/(.;12 + B2 — a)? + 3(A? - B2) B0,

(4.16b) 6(z,(B;t),t) = arg(67F — a) = (-1)" tan™"* (\/g A—Zé—ﬁu&"ﬁ) ’

where in (4.16b) we are taking the branch of tan™'x for which ftanlz| < #/2.
Reproducing a similar analysis for ¢ > t,, we have the following result:
THEOREM 4.3. The asymptotic ezpansion of E,(if,1) as v — 0t is

B(i6,1) = | [y o {5, Rl (850, o)}

i [eos (g S0l 8500, ) = 500(850),0) + O )]

where

7,(B;t) = (—1)“?(.}1 -B)+ %(A +B) fors=0,1,

end A and B are given by

A1) = (8 /6 + VBT o

B =1 Ot )V Y- VFTE >0 >
| >t @) B /FEEE<O >0
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For 8 < 0, z,{B;t) is defined by the odd parity condition z, (8;1) = —z,(—3;t). Letting
t — 1, in Theorem 4.3, we obtain 8(z,(8;t.),t.) = (—1)"1/3, and

R (10,0 =3 (£)"

4/3
Su(s(st).0) = (02 (£

For small v the poles §; are approximated by the roots of the equation
1 1 1
(4.17) 3 S w(z(B;t), 8) — EG(ZO(ﬂ;t),t) = (k - E) 7w, keN',

with the convention that S_p = —f. Since [#(20(Bi;1),1)| < 7, VB, € R, the limiting
behavior of the poles is given by Sw(z(8;1), 8) = 0. Recall from (4.15b) that

Fw, = Sw(z,(B;1),0) = (—1)’? (A= B)-(38/t+2a(A + B)),

so that

either 4 = B,or

(4.18) Sw, =06 { 38/t +2a(A+B)=0,

ForO0<t<t,a<0: 18> |z, then A > 0,8 > 0,andif § < |z,| then A <0, B <0.
We re-write the second equation as (A + B)® = — (38 /2at)?, which, after expanding
the Lh.s. and using the fact that A4 - B = —a/6, reduces to § = +{z,(t)|. The same
conclusion is reached from the first equation A = B. Thus for 0 < t < ¢,, Sw, =0
only if 8 = %|=z,|. Let 3 < B, then re-substituting 8 = |z,(t)} + § into the expansion
for E,(i8,t) in Theorem 4.3, and reproducing an analysis which is similar to the one
described in [25] (i.e. inverting the asymptotic series expansion}, we find that the error
term is © ((kv)*%). Thus we can write that B4,(¢t,v) = £|z,|+ O ((kr)¥*) as v — 0%
for fixed k. Similarly for t 2 ¢, a2 0,8>0=>A-B>0,and < 0= A8 <0,
hence Sw, = 0 & B = 0 as a result of setting 38/t + 2a(A + B) = 0. Since Sz,(t) =0
for t > t,, we have proved the following (see Fig. 5.12):

COROLLARY 4.4. For allt > 0, the small viscosity (v — 07 ) behavior of the poles
x = tap(t,v) = £if,(t,v) is

Bi(t,v) = Sz, (1) + O ((;w)sm) _

Of particular interest is the modulus of the first ordered pole By(t,v) which governs the
time evolution of the width of the analyticity strip of the viscous solution.

5. Numerics.

5.1. Finite difference approximation, asymptotic approximation and pole
expansion. We present a numerical scheme which enables us to solve (1.1) for mod-
erately small values of ». The procedure is sometimes referred to as the method of
lines and consists in using a centered difference operator in space while time-marching
with a Runge-Kutta scheme. The method is implemented on the interval I = [0,1/2],
with boundary conditions

(5.1) u,(0,1) = u,(1/2,£) = 0.
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The boundary condition u,(1/2,t) = 0 is chosen so as to be consistent with the zero
value of the inviscid solution u(1/2,f). Thus we can expect the difference approxi-
mation to be consistent with the initial {boundary) value problem for small ». Two
different initial conditions are also used:

(5.22) u(z,0) = u,(z,0) = 42° — -t"'i
— 4y
(5:20) wlot) = 3 L T )

Throughout the numerics we use the parameter value ¢, = 1. If the second condition
is used, then the pole positions at ¢ = ¢, are specified by the asymptotic estimate
presented in Theorem 4.2. This estimate is used for all values of p, for 10 € » < N:

ﬂn(tu V) - 4t,‘(2!}pn)3/4,
(5.3) po = G, B = B=(n—1/3), n 210,
G =pt ok (1- & (147 (1- 5 (1 + £552))))

For 1 < » < 9, we use the numerical values found in [25, Table 3], under the column
“Numerical roots”:

py = 0.8221037147  py = 2.0226889660 i = 3.2292915284
(5.4) {1y = 4.4372464748 ps = 56457167459 pg = 6.8544374340
{17 = 8.0632085360 pg = 9.2722462225 py = 10.4812510479.

Let

'LLJ s 'U-,,(] * Am,t), E'UJ = Vit1, Ep’Uj e vj-{—p'.\
D+:(E—EO)/A$, D_ =(EG_E_1)/A$, DU Z(D++DM)/2.

Onme then solves the system of N, — 1 equations using a Runge-Kutta 4-5 scheme (which
we refer to as RK45):

(5 5) du_,/dt Z—DQ(U?/2)+VD+D_ﬂj, jzl,"',Nx—l,
) Uj=p = HU(O,t) - (}, Ui=N, = 'U;y(l/g, t) =0

where N, is the number of gridpoints (and grid-functions), and N, * Az = 1/2. Typ-
ically the mesh size we use is Az = .25 X 10~% and N, = 200 gridpoints. The time
stepping restrictions depend on the size of v and on how far in time one wants to go.
For example if the final time is t = ¢, = 1, whether » = 1072 or » = 107, it suffices
to use At = .25 x 10~2, N, = 400 RK45 steps. However, for v = 107, if one wants to
go as far as ¢t = 2, for reasons of stability one needs to use a smaller time step such as
At = 102, N, = 2,000. The domain of integration is (z,t) € [0,1/2] x [0,T], where
T =1or T = 2. Then due to the odd parity of the solution we reflect symmetrically
for ¢ € [~1/2,0] according to the rule u,(~z,t) = —u,(=,{). This finite difference
scheme is used in order to compare the predictions obtained from the pole expansion
and the pole dynamics in §5.2.
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5.2. Numerical pole dynamics. We investigate the motion of the simple poles
of u,(,t) by solving the truncated Calogero dynamical system, and by starting with
initial data for the poles at ¢ = f,. The poles of u,(z,t) are located at +a,(t,v) =
+i/v7. (1, v}, where the variables v, (2, ) > 0 satisfy the system (cf. Property 2.2)

Yo Mooy 1
(5.6) Vn e N, 2 =3 T L= 4% Lign L
Y (b ) = (48.)2 (20 )2 V¥

In order to solve this system we use the asymptotic estimate for g, presented in (5.3)
and the numerical values of (5.4). We are mainly interested in describing the motion
of the first pole a,(¢,v) = iB,(t,v) € iR; this amounts to describe the time evolution
of the width of the strip of analyticity of the solution u,(t,%). The imaginary part of
the poles B.(t,v) is recovered using the relation §,(t,¥) = \/¥7,(t,v). We plot the
evolution of 3,(t,v),n = 1, ,4 for different values of ». We use N poles in the
computations, i.e. §; through 8y where N x 10~* varies from .1,.5,1,2.5, 5. That is,
we consider the truncated system

Yo In N
Yn=1,---,N, { 5 =3 1 4"’"25;1

TN —Tn
talte, 1) = (48,)2(20,)* 20

In order to accelerate the computation of the slowly converging pole expansions which
require O(N?) operations

1

LA
b.7 s
( ) ; Tt Tn
i#n

Yn=1,---,N,

we use a Multipole algorithm developped and implemented by Greengard and Rokhlin
[19] which reduces the computational complexity to O(Nlog N). A fourth/fifth order
Runge-Kutta-Fehlberg scheme with automatic step-size control is used (the same one
that is used for the finite difference scheme/method of lines computations of the pre-
vious section). Since the initial data is specified at ¢ = ¢, = 1, we can solve the system
forward and backwards in time starting from ¢ = 1. The typical bound on the relative
error in the computation is 107 < [24=%5| < 10~* where x4 and zg are respectively
the fourth and fifth order estimates of y,(t,v). Once this error criterion is met, we
recover the pole location via the relation a,(t,v) = iv/v7,(t,v). The justification of
the numerics is the most difficult aspect of this simulation because one must justify
the convergence of the method both as the number of poles increases and as the time
step is refined. The time-step control is automatically determined by the local relative
tolerance (L.R.T. = |24=22]) test on the 4-th and 5-th order approximations of the first
ordered pole (the one closest to the origin). Thus one cannot fix the time stepping,
rather ane can have a subtle control on it by reducing this tolerance. Typically, we fix
the number of poles to N = 50,000 and vary the tolerance on the successive intervals
107 < L.R.T. < 1075, 10-® < L.RT. < 1074, 107 < L.R.T. < 107%. Then we
fix the tolerance at the highest reasonable level 1078 < L.R.T. < 107*%, and vary the
number of poles where N x 10~% is either .1,.5,1,2.5 or 5. We see that the time step
barely affects the convergence of the method. Thus the main difficulty in this proce-
dure arises from the slow convergence of the pole interaction (5.7) that is present in
the Calogero dynamical system,
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5.2.1. 2-pair pole-dynamics test. In order to verify the accuracy of the nu-
merical pole dynamics, we implement the numerical method described in the previ-
ous section for the case where there are only four poles (2 pairs). In this case, one
can explicitly solve the resulting system as follows: Let a, = i8,, that is replace
B. by —ia, in system {2.17) so that the two pairs of poles {(—a;,a;),{—as,4,)} and
{(=#1, K1), (—Fg, K3)} satisfy, under the transformation , = a2 /v, the equivalent sys-
tems

4y = a,/t — v/a, — dva,/(a} — af) £if2 = Ky ft — 1~ 4k /(K1 — Kp)
by = ay/t — v]ay + dvay/(af ~ af) Fip[2 = Kot — 14 4K,/ (Ky — K3)

Introduce a set of new variables {©,,08,} defined by

0, =Ky + Ky Ky = (01 + 0,)/2
{ @23—“51""}‘52 <=>{ 51:(91"'@2)/2

Then it is easy to show that {©;,0,} satisfy the coupled system of nonlinear ODEs

0, — 20,/t = 12
(58) { 0, — 20,/t = —80,/6,

We further introduce a new variable denoted by ¢, = ©% which in turn satisfies the
linear ODE

(5.9) by — 4/t = —160);.

We use as initial data the position of the poles a,(t,,v) = if:(t., ) and ay(t,,v) =
i1 (%, v), where By(t,,v) and By(t.,v) are given in (5.3) and (5.4). Thus we have

(5.10) 0f = 01(t, ) = Ky (s, ¥) + Ka(ts,v) = af{ts, v) /v + ai(t,, v}/v
' $3 = Go(l.,v) = O3(t.,v) = (ai(t.,v)/v - aj(t., v)/v)

Solving the initia] value problem consisiting of the first equation in system (5.8), equa-
tions (5.9) and (5.10), we find that

5.11 0,(t,v) = (t/1.)0F — 12t(t — t.) /L.
( ' ) ¢2(t: V) = (t/t*)4 (963 - 16t*(t - t*)(tez — 6, + StE)/tg)

Taking t, = 1, » = .001, we use {5.11), a straightforward numerical integration scheme
using Runge-Kutta 4-5, and Runge-Kutta 4-5 together with the Multipole algoritm in
which we set to zero all coefficients pertaining to a,,n > 3. We find common values
for all three methods at ¢ = 1.25:

(5.12) { a;(t = 1.25,» = .001) = 0.0408023705 * ¢

ay(t = 1.25,1 = .001) = 0.1009178717 « 4

Computing the differences between the exact values of e, and @, and the predictions
obtained from the Runge-Kutta schemes (with and without the Multipole algorithm),
we find that these predictions are of the order of (¥(10~'°) which is consistent with the
expected 4-th order accuracy of such numerical schemes.
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5.3. Figures, descriptions and comparisons. All the numerics that are de-
scribed in this section are done in DOUBLE PRECISION Fortran on a Sun Sparcsta-
tion 1,000 (Scorpion).

In Fig. 5.1, we illustrate the “slow” convergence of the pole expansion as the
viscosity decreases. In particular, for v = 107* and 10~%, we can compare the inviscid

solution given by (see (6.4) and (6.8))
=5 _(Eys
(5.13) wet) = = ()"

to the pole expansion, and expect good agreement between the two. For v very small,
we see that even for a very large number of poles (N = 10°) the tails of the pole
expansion still do not match the true solution which is expected to be very close to the
inviscid one. In each of these figures, there are five curves, four of which are computed
from the pole expansion for increasing number of poles N = 10%,10%,10°%,10°. The
fifth (dotted curve) is the inviscid solution at 4,.

In Figs. 5.2 and 5.3 we present comparisons between the finite difference gcheme
and the pole expansion (N = 10° poles) at the fixed time ¢,. For the finite difference
scheme, we use N, = 200 points, Az = .25 + 1072, Ny = 400 RK45 steps with At =
25 %1072,

In Figs. 5.4 and 5.5 we present comparisons between the finite difference scheme
and the saddle point approximation at the successive times ¢ = 1,1.5,2. The mesh size
is the same as the one for Figs. 5.2 and 5.3. One can observe that the saddle point
approximation overshoots the true value of the solution which is best captured by the
difference scheme. This overshoot is due to the degeneracy of the saddle point formula
at the caustic and innacuracies around it, The correct behavior in a neighborhood of
this caustic can only be correctly deseribed by the uniform asymptotic expansion of §
3.3.

In Figs. 5.6 and 5.7, we compare the difference method and the pole dynamics for
v = 10~3 with N = 50,000 poles at the times ¢ = .5,1,1.5,2. The pole dynamics is
run forward and backwards in time starting from ¢ = ¢, = L until ¢ = 5 and ¢ = 2.
The solution is then re-constructed from the pole expansion and the pole locations at
these specific times, and is compared to the finite difference approximations with mesh
size N, = 200 points, Az = .25 1072, N, = 2,000 RK45 time steps with At = 1073,
The agreement between the finite difference and the pole dynamics close to the shock
region is very good as opposed to the tails. Since the pole dynamies simulation involved
only 50,000 poles in Fig. 5.6, the mismatch in the tail is characteristic of the slow
convergence of the pole expansion in the tails that is displayed in Fig. 5.1 for v = 1073
There is also a small source of error in the difference scheme where the boundary
condition at ¢ = 1/2 is set to the inviscid value (u(1/2,t) = 0). This error in the
difference approximation increases for larger ». Thus the discrepancy observed in the
tails of the solution in Fig. 5.16 is more likely to arise from errors in the difference
scheme than the pole dynamics. Indeed, it suffices to look at the convergence of the
pole expansion at ¢ = ¢, in Fig. 5.1, v = 1072, to establish confidence in the pole
dynamics.

However, one can notice that regardless of the size of » (whether » = 1072 or 107%),
within the shock region of width O(v), the agreement between the pole dynamics and
the difference approximation is very good (see Figs. 5.3, 5.17). This shows that the
dynamics of the first few poles is accurately captured by the pole dynamics. This also
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F1a. 5.1. Convergence of the pole expansion as N — -too of the solution (T, te) = ofte —
Ef__,l dvz /(2% + B2(ts, v}) with varying number of poles ranging from N = 10%, 10%,10%, 108 poles for
v = 10~2,107%,107%,107%, The dotted curve is computed from the tnuviscid solution at 1 = 1, =1
by u(z,te) = zfte — (z/4t. )13, For v = 1072, the inviscid solution and the pole ezpansion wn{z, tx)
do not agree because the viscosity is large enough that the solution has started decaying earlier {see
comments on the turn around time of the poles and their relation to the decay of the aolution).

V=001

Reu(x,))

Fic. 5.2. Comparison of the solution reconstruction at t = t. = 1 from the pole expansion
(T, b} = @ty - ZnNﬂ 4vz/(z? + P2(1.,v)) with N = 10° poles, and the finite difference scheme
(method of lines) for v = 107°. Mesh size: N» = 200 poinis, Az = .25+ 1072, N, = 400 RK45 time

steps with At = .25+ 10™%, Pole expansion (+) at t = 1 overlaps finite difference approzimalion in
solid curve.
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F1G. 5.3. Closeup of Fig. 5.2 in [—.1,.1].
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Fi¢. 5.4, Comparison of finile difference scheme and saddle point method for v = 1072 at
t=1,1.5,2. Solid curves: Finite difference scheme with Ny = 200 points, Az =.25%1072, N, = 800
RK45 time steps with At = .25 % 1072, Dotted curves: Saddle point approzimation overshooting the
finite difference approzimation.

V=001

Reux.f

L 1 1 N : \
=01 ~0.08 -0.06 ~0.04 -002 [¢] 0.02 0.04 0.06 0.08 o.1

F1G. 5.5. Closeup of Fig. 5.4 in[—.1,.1].
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FIG. 5.6, Comparison of the finite difference approvimation (solid} and the pole dynamics {dotted)
for v =10"% att = .5,1,1.5,2. Finite difference mesh size: N. = 200 points, Az = .25 % 1072,
N = 2,000 RK45 steps with At = 51072, Pole dynamics: N = 5+10* poles, 10~% < L.R.T. < 107*,
typical timestep At = .05, Ny = 45 RK45 time steps (25 steps backwards and 20 steps forward from
t =t ).
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F16. 5.7. Closeup of Fig. 5.6 in [~.1,.1].

- becomes apparent when comparing the simulations done with varying number of poles
(see Figs. 5.10 and 5.11). Finally it should be noted that increasing the step-size
of the time increment (in a reasonable way) in the pole dynamics barely affects the
computations (see Figs. 5.8 and 5.9).

We plot the evolution of the first four {(ordered) poles on the imaginary axis (8, k =
1,---,4), and focus on the “turn around” times ¢,, and the position of the first ordered
pole fB; which determines the width of the analyticity strip. One can see that the
behavior of the pole 8, displayed in Figs. 5.8 and 5.14 is qualitatively similar to the
one obtained by Sulem et altri in {29, 1II-B,Figure 3] using spectral methods for the
initial data us(z) = sin(z) with » = .05. The most important feature in the behavior
of the first ordered pole is clearly the fact that it turns around before crossing the
real axis, thus preserving the uniform analyticity of the viscous solution within the
strip |Sz| € 6, < B where §;(f,v) > 0, V& > 0. Moreover it is interesting to notice
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FIG. 5.8. Ai(t,v)vs. t. Time evolution in R of the widih of the analyticity strip S (t,v), for
p=10"2 and N = 5 x 10* poles. tinitiat = t« = 1 and t € (.5,2]. (+): At = .05, dots (): At = .01
Both curves are indistinguishable,
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T'1G. 5.9. Closeup of Fig. 5.8 fort € [1,2]..
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F16. 5.10. Bi(t,v)vs.t. Compuarison of pole number simulations forv = 167 and N =
1,.5,1,2.5,5 x 10* poles. (+): N = 5 x 10* poles; (solid): N = .1,.5,1,2.5 x 10* poles. Differ-
ences appear more clearly in the closeup in Fig. 5.11.
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. F1g. 5.11. Closeup of Fig. 5.10 fort € {1,2]. Turnaround time at i, = 1.62.

v=.00%
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Fi¢, 5.12. Comparison of the time evolutions of pi(t,v = 107%) (+), and z,(t) () for t €
[.35,¢, = 1]. The pole dynamics is the same as Fig. 5.8 with N =5 x 10* poles. This illustrates the
asymptotic relation Bi(t,v) = S,(t) + O@**) as v — 07 when t < tu (see Cor. 4.4).

that the turn arcund times t, for the poles §; decrease as the index k increases. In
this respect, the last pole to turn around is the first ordered pole f,, i.e. the one
closest to the real axis. For » = 1072, the turnaround times for 3;,7 = 1,.--,4
are at t = 1.62,1.51,1.39, 1.27 respectively. For v = 1072, the turnaround times for
Biyj=1,--,4 are at t = 1.05, .55, .42, .325 respectively. Thus, comparing Figs. 5.13
and 5.15, one can see that the turn around times t, increase with decreasing v. That
is, one can relate the time of initial decay of the solution to the turn around times ¢, by
comparing the evolution of the poles (Figs. 5.13, 5.15) to the correponding evolution
of the solution (Figs. 5.6, 5.16).

6. Inviscid solution (¥ = 0). The inviscid Burger’s equation (v = 0)

(6.1)

U, +uvu, =0
u(z,0) = up(z) = 42° — z /1,
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Fia. 5.13. 8;(t,¥)vs. t for j=1,--- 4. v =10"" and N =5 x 10% poles. Same parameters as
in Fig. 5.8. Turn around times at 1, & 1.62, . = 1.51, tu & 1.39, tu & 1.27 for g;(t,v),i=1,- 4

v=,014
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0321
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T

Fic. 5.14. fi(t,¥) vs. t. Time evolution in R of the widih of the analyticity strip Bilt,v), for
p =102 and N = 5 x 10* poles. tinitial = ts = 1 and ¢ € [.25,2]. Nateps = 32 (20 steps backwards
and 12 steps forward from t =1.). Local relative tolerance: 107*° < L.RT < 107°.

states that the velocity of a fluid particle is conserved along certain trajectories, namely
the characteristic lines

(6.2) ¢ = 4) = u(a(t), ) = volaof, 1)

in the (x,t) plane. The implicit solution obtained by the method of characteristics
reflects the conservation of the velocity along these special curves:

{ u = ulz,t) = ug(ze(z,1))

(63) z=xIy+ tUn(m{)(mst))

A fluid particle originally at a (Lagrangian) position z, in space will be at a new
(Eulerian) position x after a certain time ¢ with the same velocity along this line. We

can express (6.3) as

(6.4)

{ u(z,t) = 2/t — U(z,t)/t
U(:E,t) = mo(m,t)
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Fia. 5.15. Bi(t,v}vs. t for t €[.25,2] and j=1,-+ ,4. =102 and N =5 x 10* poles. Same
parameters as in Fig. 5.14. Turn around times at tu = 1.05, t, = 55, tu =& 425, tu = .325 for
ﬂj(tsu)lj = 15"' 34-
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FIG. 5.16. Comparison of the finite difference approzimation {solid) and the pole dynamics {dot-
ted) for v = 10~? at t = .5,1,1.5,2. Finite difference mesh size: N; = 100 points, Az = .5 * 1072,
Ne = 2,000 RK45 time steps with At = 10~2%, Pole dynamics: same as Fig. 5.1}
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FIG. 5.17. Closeup of Fig. 5.6 in [—.2,.2].
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t=t* u(3¢,t) — u({0-,t)

/ - %.(1)

¢, (1)

TN u(o+,1)

FIG. 6.1. Shock, mulli-valuedness, branch points and Mazwell’s equal area rule for t > L.

Substituting uy(z) in {6.3), we find that U satisfies the cubic equation

t—1,
24,

(6.5) —U —— =0, o=

This defines a three-sheeted Riemann surface for the solution with a third order branch
point at infinity and two opposite second order branch points at ,(t) defined by

; —3/204 _ $\3/2p~1/2 o 7
= sz | 4(8t) (L — PP e iR 0<t<
(6.6) (1) =t(2a/3) —{ (L)%t — 1,512 € R 131,

The envelope of the characteristic lines is given by the branch point:

67) o:%waxéao—%(ﬂ \/:; f \/d

=T (-’*"'o (1) = =3 (t) + 1o (mu (1)) = £a,(t).

and the solution is

(St)_lfa{'\s/ﬂ? + m-}— \3/587'— Vi — 33} t '_I'£ iy
NE® t=t

Note the particular (real) values of u(z,t) on both sides of the shock at z = 0%:

(68) U(:’B,t) -

_ 1/2t—3/2t—1/2 t>t
9 Oi 1)y = — + Y/t = :F2 (t t ) = by
(6 ) 'U( ’ ) U(O ’ )/ { 0 i< t*

The topology of the three-sheeted Riemann surface given by (6.8) and the interpreta-
tion of the shock as the permutation of two Riemann sheets has been fully explained
by Bessis and Fournier in [5].
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F1a. 6.2, Inviscid branch points, branch cuts and viscous poles for v > 0 and ¢ < 1 < b
The poles are located above the inviscid branch point singularities according to the asymptotic formula
Br(t, v) = So.(1)+ 0 ((kv)a“) . Moreover the distance separating two succesive poles is asymptotically

given by Afy = O(v) as v — 0% for k large (k ~1/r).
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Fi¢. 6.3. [Inviscid branch points, branch cuts and viscous poles for v > 0 and t > &, The
inviscid branch points have coalesced at t = t, at the origin, and are now moving sway from cach
other on the real axis, However the poles are fized to the imaginary axis and are asymptotically given
by Br(t, v) = O ((kv)*/*) asv — 0%, and APy = O(v) as v — 0t for k large (k ~ 1fv}. They turn
around and move away from the origin at a time ty > t, if v is small enough (if v 2 .01, 1. < te ).

A. On the generic nature of the initial data. Caflisch et altri character-
ize geometrically generic singularities for nonlinear hyperbolic systems in [10] in the
following way: given a PDE and its initial data, a singularity is generic if, under per-
turbation of the “initial data”, the singularity is of one of the stable types, namely a
fold corresponding to a square-root branch point in z for each ¢, or a cusp correspond-
ing to a cube root branch point which occurs when the two square root branch-points
collide. They show that these are the only stable singularity types for the inviscid
Burgers’ equation. Loosely, they define stability as the property that under pertur-
bation of the initial data, the perturbed solution will have the same singularity type
as the original problem, i.e. either a a fold or a cusp. Note that the formation of a
cube root singularity must stem from a “tangential” collision of the square root branch
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points, i.e. one where the branch points travel at the same characteristic speed. In
case of a “non-tangential” collision of square root branch points travelling at different
characteristic speeds, the resulting singularity remains a square root branch point. For
more details see [10].

Fournier and Frisch characterized generic singularities and corresponding generic
initial data for the inviscid Burgers’ equation in [17]. This description is based on
a local analysis of the singularity and takes into account the Gallilean invariance of
the PDE, and its invariance under translation of the reference frame. This was re-
formulated in Bessis and Fournier’s first paper [6]. For the reader’s convenience we
will recall this analysis: the shock time t, at which the velocity u(z,?) has an infinite
gradient is given by t, = —(inf,, ub(z,))~", after setting 14tus(z,) = 0. This condition
arises from the invertibility of equation (6.3). Geometrically it reflects the crossing of
two characteristics in the (2, ) plane. Let z;, be the point in space where the gradient
of the velocity field first reaches its lowest bound, and z, its corresponding Eulerian

coordinate:

inf,, ub(zo) = ub(os)
CL‘,,(t) = mn* + tuo(mo,’).

It is then easy to see that

Oz uo(Zoa) 1

ou du
%(m*(t),t) = 3_3%;(%*"&)/ (_3_:1—:;(3*) T T+ tuplzon) >

One can place the shock at the origin (2o, = 0) by coordinate translation & — 2 — o,,
and we can also set ug(zg,) = u(0) = 0 by virtue of the Gallilean invariance of the
PDE. Indeed, setting u — % — ¢, @ —  + ¢t leaves the PDE unchanged. We also set
w4(0) = 0 in order to have an inflexion point where the velocity field has an infinite
gradient at ¢ = #,. ug{®y) therefore has the form

uo{zg) = —:—: + bay + O(z}).
The Eulerian coordinate z is locally given by
z(zg,t) = (1 - %) zg + btzs + O(23).
The Lagrangian coordinate z, is correspondingly

S+ 0% 0<i<t,

1—t
mo(w, t) ==
=+ 0= t=1t,

In a neighborhood of the origin, the solution is locally given by

2 +0(z%) 0<t<t,
u(z,t) = i1
— &+ O t=1t,

This analysis clearly shows the formation of the cube-root singularity at the shock time
t, (for more details see {6, 17]).
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B. Cardan’s formula. The roots of a cubic polynomial are given by the well
known formula of Cardan (cf. [2, §3.8.2]). We state this formula to clarify the choices
that are made in choosing the branches of the algebraic functions which define the
saddle points in the expansions: Let Aa,b,c € C, then the roots of the equation

(B.1} MtaX+bd+e=0
are obtained by setting
A=a/3, B=b/3, a=A'-B, ¢ =24%-3AB +ec.
Let A = z — A, then (B.1) becomes
(B.2) 2® —3az+ (=0

Let w = €?™/3 be a cube root of unity, then the three roots of (B.2) are:

T = wA + w*B A:(% —a®
92 3
{B.3) T, :c:i A;—wB where A=-$+VA
Tqe = + B: 3/_%_@

After choosing a branch for A, one must choose the corresponding branch for B so that
A-B = a® If @ and ¢ are real, then there are three possibilities depending on the sign
of the real discriminant A:

(HA<0 (1)A=0 (711) A > 0
ABeC A=8 A=BeR A,BeR
Zg,21,%2 ER zo=a=—-F €R g, =7, €C, z R

When v > 0 (see §4.2), case (iii) which yields two conjugate roots is the only instance
when we can expect to have two equally relevant saddle points, thus allowing for
some cancellation in the asymptotic expansion. The relevant roots z, and x,, after
separation of real and imaginary parts, are given by

(B.4) Ty =T = —%(,4 + B) + i?(.ﬁi - B).
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