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Absiract

We present a new system of modulation equations that approximate the focusing of the
nonlinear Schrédinger equation in the presence of small normal time dispersion (TDNLS).
Since the modulation equations are much easier for analysis and for numerical simulations,
they can be used to get a general picture of the TDNLS focusing. Analytical and numerical
agreement between the modulation equations and the TDNLS is established.

Introduction

The nonlinear Schrodinger equation with time dispersion ( TDNLS)

i, + A — ey |¢%2¢ =0, P(z=0,r, t) = thy(r, 1)

(1)

arises in the study of the propagation of ultrashort laser pulses in media with a Kerr nonlinearity.
Here 4 is the rescaled amplitude of the electric field, z is the axial coordinate in the direction
of the beam, A, = 8,, + 8,/r is the Laplacian in the transverse r = (2,y) plane, ¢ is the time
dispersion coefficient and t is the time in a coordinate system moving with the group velocity.
Initial conditions are given at z = 0 for all z, y and ¢. Thus, z plays the role of time and ¢ the
role of a third spatial variable in this problem.
The time dispersion parameter ¢ depends on the optical properties of the medium. In the
case of ultrashort laser-tissue interactions, where pulses in the visible regime propagate through
aqueous media, its value is given by [9]

=(a)



where a is the beam width, ¢ is the speed of light and 7' is the pulse duration. Hence, € is positive
(normal time dispersion) and is proportional to the ratio of the radial pulse width to its axial
length, indicating that time dispersion is still small for ‘cigar-like’ pulses (i.e. long and narrow)
but is dominant for ‘disc-like’ pulses.

When time dispersion is negligible each ¢ cross-section of the pulse (i.e. the plane ¢ = constant
in (x,y,t) space) evolves independently according to the Schrédinger equation with a cubic non-
linearity (CNLS):

W, + A+ [ = 0 (2)

In that case, CNLS theory predicts that sufficiently intense beams undergo self-focusing and blow
up in a finite propagation distance.

The experimental evidence that ulirashort laser interactions depend on the pulse duration
[4, 22, 25] is related to the increasing importance of time dispersion. Numerical simulations have
shown that even a small amount of normal time dispersion in the TDNLS can have a substantial
effect on the focusing and lead to the temporal splitting of the pulse into two peaks [5, 17, 20, 24].
The peak splitting phenomenon has attracted attention because it delays the focusing and may
provide a mechanism for its arrest. Although the onset of pulse splitting was explained based
on a local analysis of self similar solutions very near the point of peak intensity [17, 24], this
analysis is not valid past the onset of pulse splitting. In addition, numerical simulation of the
TDNLS cannot continue very far after the peak splitting, at present. Thus, the general question
of whether normal time dispersion arrests collapse or not is still open.

In this paper we analyze the TDNLS focusing when time dispersion is small using a new
system of modulation equations [19]. This provides a theoretical understanding of the focus-
ing behavior well past the onset of pulse splitting. We start by reviewing the CNLS focusing
(section 2). In section 3 we derive the modulation equations by treating the TDNLS as a small
perturbation of the CNLS. We establish the validity of the modulation equations by demonstrat-
ing a correspondence between their analytical properties and those of TDNLS (section 3.3) and
by extensive numerical computations (section 5), We analyze special solutions of the modulation
equations in section 3.4.

Vysloukh and Matveeva [23] have analyzed the effects of time dispersion on the propagation
of planar waveguides (a single transverse dimension CNLS) and have shown that normal time
dispersion suppresses its modulation instability and slows the self-focusing rate considerably. As
a result, the pulse splitting into 1D solitons is delayed. One cannot, however, extend this results
to higher dimensions: Self-focusing is always balanced by radial dispersion in 1D but not in
higher dimensions where it can result in wave collapse. Indeed, the sensitivity of self-focusing to
small perturbations in 2D has to do with it being the eritical dimension for blowup.

In several papers it is argued that the paraxial approximation used to derive nonlinear
Schrodinger equations may be inappropriate when intense self-focusing occurs [6, 21]. Animpor-
tant issue in understanding experimental results is whether time dispersion is the reason coliapse
is not observed or whether it is the breakdown of the paraxial approximation of the wave equa-
tion. The answer to this question depends on the initial pulse shape, since nonparaxiality arrests
focusing when the beam width becomes comparable to a few wavelengths [7). The beam width
at which the effects of time dispersion become important depends also on the initial conditions.
Other interesting phenomena have been observed in simulations of perturbed CNLS equations.



While some of these perturbations have a direct physical origin (e.g. anomalous dispersion [3]),
others (e.g. saturable nonlinearity [18]) have a general, mathematical form.

2 Review of the CNLS Focusing

Since we will derive the modulation equations by considering TDNLS as a perturbation of CNLS5,
we start by giving a brief review of the CNLS focusing. For more comprehensive presentations
see [7, 14, 16, 18). We cousider only radially symmetric solutions in this paper.
Two important invariants of the CNLS (2) are mass
(e8]
N(y) = ] j9|* rdr = constant
0

and energy

H{p) = f‘” |4, 1% rdr — %/w 1|* rdr = constant
0 4]

The variance identity

ng:SH V:fwrzlwlzrdr

dz2 ’ o
can be used to show the existence of solutions that blow up, because when H{3y) < 0 there is a
finite 2 for which V = 0, if the solution existed up to that point.

The CNLS has waveguide solutions
¥ = e R(r)

where R(r) satisfies
ALR-R+R=0, R(0)=0, R(c0)=0 (3)

The unique positive solution of this equation is monotonically decreasing and is called the Townes
soliton. A necessary condition for blowup is that the initial mass be above a critical value

N > N,

which is equal to the mass of the Townes soliton
[ee]
N, = f R*rdr ~ 1.86 .
o

The CNLS has a similarity transformation where a linear function L(z) is used to rescale the
solution as well as the independent variables:

P — %¢(C,§)63P (’iLL‘;fz) » &= % » (= /oz L‘Q(S) ds, L=Z,—2, 2<Z,

Based on this transformation and on the waveguide solution, one can construct an exact CNLS
solution that blows up in a finite distance Z,:

1 P a4+l
=g g e (““z”:—)

3



This solution is unstable and has not been observed in numerical simulations because it has
exactly the critical mass for blowup. However, it motivates loocking for blowup solutions that
have a quasi self-similar structure in the vicinity of the singularity

b= TV, Eeap (icﬂL‘i"‘f) =1, (= [ 19

Here V approaches the Townes soliton R and L is not necessarily linear in z. The equation for
Vis )
iV, + A V=V +|V[V+ Egzﬁv =0

where

ﬁ = —Lstz (4)

is an important parameter in this problem.
As the pulse focuses, 8 N\, 0 and V can be expanded in an asymptotic series of the form

Ve Vot Vgt (5)

where the leading order term V; depends on ¢ only through 8 and satisfies [14, 16]
s, Lo : _ —7!/\/5
A%—V0+Ve+zﬁ5%—w(ﬁ)%—0, v(B)~e (6)

Although »(8) is exponentially small compared with the other terms, it has to be included in
(6) to insure the right behavior for £ > 1, since in its absence the solution would have large
oscillations Vi ~ €79/ ENCS

When 8 < 1, it is related to the excess mass above critical of the focusing part of the solution

(18]

N,ot — Neo oo 1 [
B 228 Tt N =f |Vol*rdr , M = ~f R*r® dr = 0.55 (7)
M 0 4 4]
The rate of radial mass loss becomes very slow compared with the focusing rate:
8 ~s
&Nsol = —MV(ﬁ) (8)
which can be also written as
Be ~ —v(f). (9)

In [14, 16] and in {17], B is written in the form 8 = a® + a¢ so that @ = —L¢/ L. If we then regard
a; as small compared to a?, (9) becomes

}' —-nfa
o~ g€ / (10}

which appeared first in [14] without the exact exponential factor 7. This equation can be solved
asymptotically, leading to the loglog law [10, 14, 16]

LN( 91(Z, — 2) )

Inln1/(Z. - 2)
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One can, however, consider (10) or better yet (9) directly and note that changes in 3 are ex-
ponentially slow compared with changes in L. This then leads to the adiabatic law [18] for the
variation of the beam amplitude L~}

L =/201%2, - 2)

Asymptotic analysis and numerical simulations show that the adiabatic law, with 3 evaluated
from (7) rather than from (9), is valid even in the early stages of self focusing, while the loglog
asymptotics is reached only at huge focusing factors [7].

3 Modulation Theory for the TDNLS

Self-focusing in the CNLS depends on the initial mass and is also sensitive to perturbations of
the power of the nonlinearity: If the power is less than 2 (subcritical case) the solution exists
for all z, while if it is greater than 2 (supercritical case) the solution blows up in general. Asa
result, even a small time dispersion term can have an important effect on the TDNLS focusing.
Focusing is much easier to understand in the case of anomalous time dispersion (e < 0) because
this case is supercritical for self-focusing as the dimension of the transverse variables is 3. It is
- the difference in signs between the Laplacian and the normal time dispersion that complicates
the TDNLS analysis.

3.1 Derivation of the Modulation Equations

At the initial stages of the TDNLS focusing the effect of small time dispersion is negligible and
each ¢ cross-section follows the adiabatic law

L =28V Z,(t) — 2) (11)
where Z,(t) is the location of blowup. As a result, the relative size the time dispersion term

wtt

A~ H
increases, indicating that the TDNLS solution is eventually not a small perturbation of (11}.
In addition, as the pulse is focusing according to (11), V approaches R and the nonlinearity
and the Laplacian almost cancel each other. Hence, time dispersive effects become important
when ey, becomes comparable to (A 9+ [9[*). Since in this regime €y, is still a small term,
for each ¢ the solution is a small perturbation the CNLS and it is natural to look for it in the
form

r

1 . -Lz 2 z 1
P(z,7,t) = MV((,ﬁ,t)emp(zC-}- zf%), £E= 11 (z./0 mds (12)




where now the radial scale L{z,?) depends also on t. We call this the generalized Talanov
transformation. Using this in (1) we get the following equation for V

2 Lz T2

’ v L, o
WV, + O V-V + VPV + ﬁ% V —e¢l® (wfea:p(iC + zf%) exp(—i( — wi—z) =0 (13)
it

As in the stationary case, § is defined by (4) and we assume that the cross-sectional mass is

slightly above critical
0<f<1 (14)

The modulation equation can be derived from the mass balance between nearby t cross-
sections of the solution. From (1) we get the conservation relation

% /:, [[2r dr = 2¢ Im faw Dby r dr (15)
For 1 of the form (12) the rate of the cross-sectional mass change is computed as in (7, 8)

o [ g dr = M8, + (B (16)
To estimate the right side of (15) we use (12) and (14) to approximate the time dispersive term
Im ((-}f—ewp(ic + -‘%%)) cap(~i - eﬂf—)) Tet2 () @ an

Using (16), (17} and the identity
[ Rexerede = o (18)

the mass balance (15) reduces to:
.+ v(6) = 2250 (19)

The exponentially small mass radiation effect had to be retained in the analysis of CNLS
focusing because it is the only mass-reducing mechanism. However, radial mass losses are now
negligible compared with the temporal mass flux so the term v(f) can be omitted in (19). The
equations (4,19) and the ¢, L relation in (12) form a closed system, the modulation equations

B, = 2c N Cﬁ (20)
L, = —ﬁL‘ (21)
¢ = L7 (22)

The variables in the modulation system for the TDNLS focusing are the pulse width (L),
the excess mass above critical (8) and the local axial phase (). When ¢ = 0 we recover the
adiabatic law (11) and ¢ has its maximum at the peak mass cross-section. Hence, normal time
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dispersion results in mass loss to the neighboring cross-sections leading to the pulse splitting,
while anomalous time dispersion (e < 0) tends to enhance the focusing.
To leading order in # equation (20) can be written as a conservation law

ON, 0
a7 = gi N
where
u = 2€(,

is the velocity in the ¢ direction. The modulation equation can also be derived from energy
balance arguments and from the solvability condition for linearized CNLS operator about the
Townes soliton (appendix A).

3.2 Linear Stability Analysis

To check the linear stability of uniform solutions of the modulation system we express it as a

single equation in L:
2N,
— 3 frrrd
(B =5 (35),

We look for solutions of the form [ = Lq + 6L where Ly = constant, and the perturbation 6L is
small compared to Ly. The linearized equation for 8L is

4N 1
(6L)zzzz = Ls (5L)!t

Substituting 6L = exp(ikt — iwz) we get the dispersion relation
2
W = *"*L*“g"nlv

which shows that the system is linearly unstable for all k. However, it should be remembered
the Ly = constant corresponds to the waveguide solution

v=gn (1)

which is unstable in the radial direction as well.

3.3 Lagrangian Formulation

We can use the Lagrangian of the TDNLS

I= fﬁdﬂ.‘ dz ’ L= Im("tb":b:)_ hbr]? +€|"1th2 + %|¢l4 y = (ﬂﬁ,y,t}



to derive a Lagrangian for the modulation equations, by following the same approach used in
deriving the modulation equations, namely, using (12) and (14) and averaging in the radial
direction (see the upper part of figure 1)

- N 2
E:fﬁrdrm iﬂ—f(ct)%%

The modulation Lagrangian £ can be written as a constrained one using only first derivatives:
— 1
E = ML) + NG+ MB (3= )

with M 3 being the Lagrange multiplier.

3.3.1 Conservation Laws

Based on Noether’s theorem [11], we can use the transformation groups that leave the action
integral

4C )

invariant to derive conservation laws for the modulation system. Invariance to phase (i.e. the
identity), time and space translations leads to mass, energy and momentum conservation:

1= [Eﬁ"(m? ; (C“)Z] dz dt (23)

/ﬁdt = Const

€

f[m%(Lz)zz + ﬁ%g})?] dt = Const

/[ﬁ(t —2L,L,}dt = Const

These conservation laws could also be derived from the corresponding conservation laws for the
TDNLS (figure 1).

A symmetry group for (23) that does not exist in the TDNLS is the dilation transformation
((z,t) = A{(Az,t/A). The resulting conservation law is:

€

S0 480 0+ G — B~ 2810 o =

Const + K(Lz)2 _ %(g)z)]:j




3.4 Special Solutions of the Modulation Equations

Let us look for solutions of the modulation equations (20-22) under the assumptions that there
is a singularity curve Z.(¢) of the solution in the (z,t) plane and that in the neighborhood of
this curve the solution depends only on distance from the curve. In this case solutions of the
modulation equations have the form

Lizt)= L(Z(t) — 2), B(z,1)=B(Zt)—2), ((2,1)=((Z.(t) - z) . (24)

Therefore ) s
Cﬁ = “""Zch + Zc sz (25)

where dot stands for differentiation with respect to time. Equation (20) reduces to

. L9 2N,
ﬂz = 7("”Zc(:z + Z, sz) s 7= M €

Integrating the last equation gives

B = Bo+y(~Zul + Z. C.) (26)
where

.2 1
ﬂ[}(t) = /G(Oat)'— 7Zc W s

and Ly(t) = L(0,t) is the width of the beam at z = 0. It is convenient to make a change of
variable to the reciprocal of the radial width of the beam

A=7. (27)

Then f = A /A and (26) can be rewritten in the form

Ace = (Bo— 120 A+ 2, A® (28)

Introduce also a new independent variable by

s .
§= —= — (yZ )
AL (7Z:) "¢
Then equation (28) becomes
A,, = sA+ 29" A° (29)
where s
72Z,
7= YRS (30)
The initial condition at z = 0 or { = 0 is now at
B
RIRCIARS
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and we note that for sufficiently small time dispersion
S0~ B> 1

The focusing of each ¢ cross section is described by equation (29) which defines the second
Painlevé transcendent function [13]. When analyzing blowup in (29) we have to distinguish
between three cases, depending on the relative size of the terms in (29).

At the time ¢, where Z.{t) attains its minimum we have

Z(t) =0, Ze(ts)>0. (31)

At this ¢ cross-section (29) reduces to the Airy equation A,, = sA and its solution is

Ai(s), Ag=— (32)
The asymptotic form of the Airy function is (2]

Ai(s) ~ \/T?—rs_ll"ea:p(—%s‘g/z) s> 1 (33)
Using this in (32), we find that for 0 < ¢ <« Bo/¢

A~ AgeVPot (34)

This shows that during the initial stage of self focusing the solution agrees with that of the one
in the dispersion-free case, in which € = 0 in (28)

Age = BoA

To express this dispersion free solution in terms of the original variables we use (12), (27) and
(34) to get
(Lz)z = (Lz)cfz = —2f,

from which the adiabatic law of critical collapse [7, 18] follows

L= Ly26""(Z. - 2) (35)

The effects of time-dispersion become important for { 3> fy/e. In particular, since the Airy
function attains its maximum around s,,., = —1.02 and decreases for 5 < Sa, (2], the collapse
at t, gets arrested at
| fo ]

Zmaz = " L ds = ——— ——ds
max ];n CC (720)1/3 Smas AZ

Using (33) we find that for s¢ > 1

oo 1, o0 A%(so) I3
T T e

¢

Smax
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and hence the collapse is arrested at
o Lt

28,0
which is the location Z, of blowup of the dispersion free solution, as we can see by setting z = 0
in (35) [7]). The maximum amplification factor at ¢y can also be estimated:

zmaw

A(zmar) — A"i(‘sma:ﬂ) o 0.54 ~ 1.08 ﬁé{j‘Mils eﬁi’”M/ZNcﬁc(t;)e
A(0) Ai(sg) — Ai(se) VT (2N Zo(to)e)M*

In addition, from {26) the excess power at g is
ﬁ = ﬁ() - 7zcc (36)

and it goes below critical at s = 0, prior to the arrest of the collapse.
For t cross-sections that are not in the neighborhood of #; the first term on the right side of
(29) becomes negligible. This leads to solutions of the form

1 1
A~ 7_?3 - Sc(t)
and since
2 7
we get by integrating this equation solutions with a one-third power law for self focusing collapse
N 1/2 .
L~ (a(Z— ), a=3 (ﬂ) |Z,]e? (37)

In order to estimate the size of the neighborhood of ¢, where collapse is arrested a more

careful analysis is required. Let
B =nA

so that
B,, = sB + 2B° (38)
The behavior of the solutions of (38) is characterized by the following result [1,12].
Any solution of (38) satisfying
lim B(s) =0

§— 03

is asymptotic to kAi(s) for some k. If k| <1 then as s » —¢
B(s) = O(1s|/")

and if |k| > 1, B(s) has a pole at a finite s,, depending on k.
To apply this result we express k in terms of the parameters of the problem and note that A
should agree with (34) in the domain { < fo/¢, when it is given by (32). Thus,

_ 14
- A?;(SD)

B ~ kAi(s) , k

8~ 8g
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and the solution does not blow up only if
In| < LoAi(se) (39)
;From (30, 31) we see that near to
n e 27— )

or, using (39),
= o] < Loy [ (Zu(10) o e 03 10

which is an exponentially small in ¢ neighborhood of %.

The above analysis of the modulation equations suggests the following picture of self focusing
with small, normal time dispersion. Solutions of the form (24) blowup for nearly all ¢ cross-
sections following the one-third power law (37). However, collapse is arrested in an exponentially
small temporal neighborhood of the cross section #, for which the initial focusing is fastest. Power
will move away form the #, cross-section to the nearby cross-sections and the initial peak at i,
will split into two peaks that will continue to focus.

There are, however, at least two problems with this picture.

- & The arrest of collapse at £, becomes inconsistent with Z.(t;) being the earliest z for which
collapse takes place,

o The one-third power law is not really valid for the TDNLS focusing since it implies that

the corresponding 3 is
ﬂ = '_Lstz ~ (Zc — z)—2/3 — 00

which blows up, violating the basic assumption in the derivation of the modulation equa-
tions requiring that 8 be small.

Regarding the first problem, the initial stage of the self focusing is described by (11) with
Z,(t) the singularity curve in the absence of time dispersion and in the above analysis we assume
that Z,(t) in (24) is this singularity curve, since time dispersion is small. With this interpretation,
1, is the cross-section of fastest initial self focusing. Time djspersive effects, however, make the
power go below critical at #o, followed by temporal peak splitting, arrest of the collapse at &
and a departure from the form (24) of solutions that is based on the dispersion free singularity
curve Z,(t). Away from t, where collapse is arrested there may be a different singularity curve
for solutions of the modulation equations with the one-third power law. So the first problem is
due to the way Z.(t) is defined.

The second problem indicates that solutions that follow the one-third power law ultimately
violate the assumptions for the validity of the modulation equations. In that case, another
theory for the advanced stages of the self-focusing is needed. It is not clear that there are initial
conditions for which the solution will follows the one-third power law, unless 8 is very small
for all time cross sections of the pulse. In our numerical simulations of both TDNLS and the
modulation equations we did not observe the one-third power law.
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4 The Numerical Scheme

We have carried out extensive numerical simulations that compare solutions of the full TDNLS to
those constructed with the modulation equations. In this section we outline briefly the numerical
method used in the simulations. For more details, see [8].

4.1 TDNLS

The TDNLS (1) is solved by a split-step method, using a uniform (in t) dynamic rescaling in the
radial direction. More specifically, under the rescaling transformation

1 = T - z 1
¢(Z?T:t) = Tz)u(gfat) ) E'_— m’ y (;(Z) = /0 ig(s) dss
u(, £,t) satisfies
ug = 4 Ay — el uy + a(uf)e + i|u)*u
where dL 1dL
() =L-= TR

and the bar symbol indicates that &, I and ¢ are independent of ¢.
The split-step method has two stages:

1. Solve for each ¢ cross-section (t = constant)
up =t A w4 a{ué) + i)

by combining a Crank-Nicholson implicit method on the Laplacian term and Adams-
Bashford extrapolation on the others. The main modification to the method used in [15]
for the CNLS focusing is in the way that a is chosen:

() = - [ / " WP Tm(u A, u*)E de
where 0o
%zGWQ,ﬂM:/&L|M%ﬁ

The global smoothness of u is maintained since G(u) = G, . However, since L is averaged
over all # cross-sections it cannot follow the fastest collapse once the temporal variations
increase, which eventually causes the simulation to break down.

2. Solve for each 7 cross-section (r = constant):
'Ulf = —iizuﬁ
using an explicit Crank-Nicholson method.

As 3 consistency check, we monitor the conservation of

M::fdt/ﬂm |2 Edt G::fdt/ow[uflzfdg

and verify the convergence of the radial profile of |u| to a Townes soliton,

13




4.2 Recovering the Modulation Variables

Recovering the modulation variables from the TDNLS simulation results is done using

2\ =2
(=argu(r=0), f= -~—-—N”rﬂ; N , L= (g%) L

These relations are only approximate since they are based on the asymptotic form of the focusing
CNLS solution. In addition, the relation for § is only O(8) accurate. Additional inaccuracy is
caused by the numerical differentiation and by the truncation of the integral when evaluating
Naoi"

4.8 The Modulation Equations

We solve the modulation equations (20-22) using a second order line-method with an adjustable
“time’ step
dz = dz mtin L*

4.4 The One-Third Law

Since with the current code we cannot integrate very far after the peak splitting, we cannot check
directly whether the solution follows the one-third law (37). However, we can detect a power-law
behavior by noting that if L ~ (Z, — 2)™ then  ~ (Z, ~ z)*™~%. and

L™ B ~ constant n=——4 .
m

The value of n is estimated numerically by fitting nln L + In 8 ~ constant.

4.5 Numerical Comparison of the TDNLS and the Modulation Equations

The numerical agreecment between the TDNLS and the modulation equation for the case of
periodic boundary conditions:

'ﬂb(',t = 0) = @b('at = 1)
(and similarly for 8, L and ¢ ) was verified by comparing the modulation variables that were
recovered from the TDNLS simulation with the solution of the modulation equations. The initial
condition for the modulation system was the recovered value of the modulation variables at
%y, and the modulation variables were compared with those recovered from TDNLS for various

Z > Zg.

Since modulation theory is only O(8) accurate, comparing for the same numerical value of z
translates into an O(8) error in the actual value of z, leading to a O(8/ L% error in the modulation
variables. To overcome this difficulty we use the time averaged ‘distance’

(= [ca
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instead of z as the basis for the comparison (since z(f) is a monotonically increasing function,
this is the same as comparing for the same z).

Resolving the increasing ¢ gradients is limited by the grid resolution in the { direction. While
this resolution can be easily refined for the modulation equations, it requires more memory and
slows the computations considerably for the TDNLS (which again demonstrate the advantage of
the modulation equations).

5 Numerical Results

Various initial conditions were used for the comparison, showing good qualitative agreement
between the TDNLS and the modulation equation. However, in order to demonstrate a good
quantitative agreement, the initial condition should be chosen in such a way that the error in
the recovered value of the ‘modulation variables’ (section 4.2) is much smaller than their slow
temporal variation. It should be emphasized that this does not mean that the theory is valid
only for specially constructed initial conditions, but rather reflects the difficulty of recovering the
modulation variables from the TDNLS simulation with sufficient accuracy.
We have integrated the TDNLS with the initial condition

o(r,t) = D) R(r)e VO =DN/MA 1 p(1) = 1,03+ 0.01 # sin(2t) (40)

with € = 0.01 and where R is the Townes soliton (3). The comparison results with modulation
theory are shown in figure 2 and figure 3, with the comparison starting at z, = 0.667 and
2y = 0.886, respectively. The modulation equations capture the temporal distribution before
and after the pulse splitting. Quantitative agreement starts to deteriorates as 18| increases. The
agreement is better in figure 3, since the initial condition for the modulation variables is more
accurate, since it is recovered at a later stage,

Results for the initial condition

Po(r,t) = 3¢~ (1+ 0.001sin(27t)) , (41)

which has 20% mass above critical with € = 1, are presented in figure 4. Although the initial
modulation is very small, large temporal gradients are observed as the pulse is focusing. During
the initial nonadiabatic stage fol Bdt is decreasing because the large excess mass above critical
is removed by radiation. No peak splitting is observed in |4} for a focusing factor of over 2000,
although there is one in 3. The ‘flip’ of the minimum and maximum of § and L is typical for the
nonadiabatic stage of the focusing and was also observed in other simulations. Note that most
of the focusing occurs over a very short distance z while this domain is automatically stretched
by the dynamical rescaling variable ¢, increasing z resolution.
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6 Discussion

6.1 Comparison with Previous Studies

Zharova et al. [24] were the first to predict the peak splitting phenomenon, using arguments based
on asymptotics and on numerical simulations. They went on to suggest that the new peaks would
continue to split, resulting in a fractal collapse. Peak splitting was later observed in numerical
simulations by Rothenberg [20} and by Chernev and Petrov [5].

Luther et al. [17] have considered solutions of the TDNLS of the form

Wz, 7,1) = Y(Z(t) — z,7)

where Z,(t} is the singularity curve of the stationary CNLS. They showed that the evolution of
the , cross-section of the peak mass (i.e. where Z.(t) attains its minimum) is described by

" 2N,
e = —v(8) - 2utto) (G ~ e+ 5) (42)
Using phase plane analysis of (42) and
a,=a" -8, Ly =al (43)

they showed that a becomes negative, leading to a arrest of the focusing at t;. They also
demonstrated a numerical agreement between the TDNLS solution at ¢, and (42-43) in the
regime where the pulse peak intensity has increased by a factor of two up to the peak splitling
and then decreased by a factor of 25%. In this comparison Z"c(tu) was calculated separately, from
CNLS simulations with the same initial condition.

The results of Luther et al. fall within the framework of modulation theory:

¢ Equation (42) corresponds to equation (36) that was derived from the modulation equation
(20) under the same assumption of the special 2D form (24). The terms in (42) that are
missing in (36) were neglected in the derivation of (20), since they are of lower-order.

o The arrest of the focusing at t, was derived from modulation theory in section 3.4.

+ Both equations (42-43) and the modulation equations are in numerical agreement with the
peak splitting of the TDNLS (figures 2 and 3).

The main difference between the approach of Luther et al and ours is that they neglected
the second term on the right side of (25) while we retained both terms. This allowed us to show
that this term in (25) can be neglected only in a region around #, which is exponentially small
in the time dispersion parameter e. Therefore, while the modulation equations are valid for all
t cross-sections, equations (42)(43) are valid only in an exponentially small region around %.
In particular, the arrest of the collapse occurs only in a very small small temporal section of
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the pulse. Moreover, the modulation equations do not depend on the unknown value ﬁc(to) and
continue to be valid for some distance after the onset of peak splitting when the sojution departs
from the 2D form (24).

6.2 'The Emerging Picture of Focusing in the TDNLS

The main stages of the focusing in the presence of small normal time dispersion are:

Non-adiabatic 2D focusing Initially, time dispersion is negligible and each ¢ cross-section un-
dergoes a 2D non-adiabatic collapse, during which the focusing solution at each cross-section
sheds by radiation most of its excess cross-sectional mass above critical while approaching
a Townes profile.

Adiabatic 2D focusing Each cross-section continues to undergo a 2D self-similar collapse ac-
cording to the adiabatic law (equation 11}, where the fastest collapse is at the cross-section
with the peak cross-sectional mass.

3D Modulation focusing As the higher temporal gradients become comparable to the balance
of the Laplacian with the nonlinearity, temporal mass flux becomes important and the
dynamics becomes three dimensional (i.e. (2,9,1)).

Modulation theory covers the Adiabatic 2D focusing stage and the 3D modulation focusing
stage. It is still an open question whether at a certain point e, becomes comparable to the other
terms or 3 becomes large, so that the validity of modulation theory breaks down. Although the
time dispersion term is increasing this does not necessarily mean that modulation theory breaks
down, since the Laplacian and the nonlinearity terms have also increased in the meantime. In
our simulations with periodic boundary conditions and in [20] for short pulses, § does increase
at some cross-sections. It is not clear, however, whether this increase is large enough so as to
invalidate the modulation equations.

6.3 Why Peak Splitting, Why Only One?

Peak splitting received a lot of attention in TDNLS research because it is the most conspicuous
phenomenon that is observed in numerical simulations and also because it may lead to the arrest
of collapse. We have seen in section 3.4 that peak splitting is related to the departure of the
solution from the self-similar 2D structure of the focusing CNLS. Since peak-splitting occurs in
the transition between the Adiabatic 2D focusing stage and the 3D Modulation focusing stage,
the new peaks are unlikely to split again, since by now the dynamics is fully three dimensional.

Numerical simulations of both the TDNLS and of the modulation equation support this
explanation for peak-splitting. In particular, they predict correctly that peak splitting in §
would oceur before peak splitting in L (figure 3 and [20]) and explains why the splitting of new
peaks has not been observed. It also explains why a solution with large initial mass may focus
without peak splitting (figure 4): Since the 20 nonadiabatic focusing stage is longer, the temporal
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gradients will become large by the time the solution approaches a Townes profile, thus skipping
the 2D adiabatic focusing stage.
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A Other Derivations of the modulation Equations

A.1 Energy Balance

Based (1), we can write an equation for the energy balance between the t cross-sections

%H + QGRe/T/);‘v,bﬂrdr -0, H= ]I«!),-Pr dr — %fhpr*r dr (44)

Since in the modulation theory ansatz
2 o _ Mo
12 M(LE = B/17) = 5 () (45)

and

2¢Re f Wity dr d\;% ,

(44) reduces to
4eN, (
2y o A€o bu
(L )22!2’ - M L2 .

This is equivalent to (20), since
Lz(L2)zzz = _zﬂz . (46)

A.2 Solvability Condition

Motivated by the original derivation of the loglog law [14, 16], equation (19) can also be derived
from the equation for the second order term V; (13,5, 6):

3

2
AV, — Vi 2VPVi+ VIV + B3 Vi —i(B)Vi = (47)

2 L, r*
i %—‘gﬁcw(ﬁm] + eL*(C) (%ew(@'i “}f%‘)) (=T
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While the equation for the real part of V; is always solvable ([8]), the solvability condition
for the imaginary part of V; is that R is perpendicular to the RHS of (47):

o0 2 2
fu R [%%}ﬂc + (B, — L Im ((%emp(i( + z%%)) exp(-—-i¢ — z%%))} EdE =0 (48)
1t
From (17) and (18) we get:
Vo oo Lt N 2 [ po
LszIm ((fﬁﬁ}f(ic + z—i—%))“ exp(—i¢ ~ z-f%)) EdE ~ (L ]R £ dE

Using the relations

ﬂ( = Lzﬂz
vy M
wR{df = 3

the solvability condition (48) reduces to (19).
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B Figure Captions

1. A summary of the relations between the TDNLS (1) and the modulation equations (20-22).
T} is the transformation used to derive the modulation equations from the TDNLS, namely,
changing from % to the modulation variables using (12} and (14). Since the Modulation
Lagrangian is derived by applying T to the TDNLS Lagrangian, the operators Ty, and
the variational derivative {8) commute. Likewise, using Noether theorem (N.T.) to derive a
conservation law for the TDNLS based on a symmetry group of the TDNLS Lagrangian and
applying Ty to this law, results in the same conservation law for the modulation system
as if we used the symmetry group for the Modulation Lagrangian.

9. Comparison of the TDNLS (dashed line) and the modulation equations (solid line)., The
initial condition for the TDNLS is (40) with ¢ = 0.01. The comparison was started at
25 = 0.6662 when the peak splitting in § has already formed. The peak splitting in the
field amplitude (1/L) follows later. For each line 2., and 2rpyzs are the recovered values
of z from the modulation equations and from the TDNLS simulation, respectively.

3, Comparison of the TDNLS (dashed line) and the modulation equations (solid line) for the
same conditions as in figure 2. The comparison was started at a later ‘time’ z, = 0.8856,
at which the error in recovering the initial values of the ‘modulation variables’ is smaller,
As a result, the agreement is much better than in figure 2.

4. The evolution in z of |(f,r = 0)] and 4(t) for the initial condition (41). f is a measure of
the excess cross-sectional mass above critical, and is evaluated using (7).
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