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POLE DYNAMICS AND OSCILLATIONS FOR COMPLEX BURGERS
EQUATION IN THE SMALL DISPERSION LIMIT

D. SENOUF!YR. CAFLISCH'" AND N. ERCOLANI#**

Abstract. A meromorphic solution to Burgers’ equation with complex viscosity is analyzed. The
equation is linearized via the Cole-Hopf transform which allows for a careful study of the behavior of
the singularities of the solution. The asymptotic behavior of the solution as the dispersion coefficient
tends to zero is derived, For small dispersion, the time evolution of the poles is found by numerically
solving a truncated infinite dimensional Calogero type dynamical system. This system represents a
set of compatibility conditions derived from the PDE and a Mittag-Lefller {pole) expansion of the
solution. The initial data is provided by high order asymptotic approximations of the poles ai the
critical time t. for the dispersionless solution via the method of steepest descents. The solution is
re-constructed using the pole expansion and the location of the poles. The oscillations observed via
the singularities are compared to those obtained by a classical stationary phase analysis of the solution
as the dispersion parameter ¢ — 0%. A uniform asymptotic expansion as ¢ — 0% of the dispersive
solution is derived in terms of the Pearcey integral in a neighborhood of the caunstic. A continuwum
limit of the pole expansion and the Calogero system is obtained, yielding a new integral representation
of the solution to the inviscid Burgers' equation.

AMS subject classifications. 35A20, 35A40, 35B40, 35Q53, 41A60

1. Introduction. Many nonlinear dispersive systems exhibit rapid oscillations
in their spatial-temporal dependence in the regime of small dispersion. Examples
include PDEs such as the Korteweg-de Vries (KdV) equation, the nonlinear Schrodinger
equation [16, 17, 24], and finite difference equations such as the Lax-Wendroff method
(see also [25]). Although a fascinating mathematical phenomena, these oscillations are
generally quite difficult to describe and control and are an obstacle to the efliciency of
numerical and analytical methods. A complete analysis of oscillations would include a
slowly-varying description of their shape, amplitude, wavelength and phase. However,
these features have been successfully analyzed only for a few completely integrable
systems such as the KdV equation.

Burgers equation with an imaginary “viscosity” coefficient v = e, given by

(11) /lobt + '(p”,b,; = ifqp:nm, € 2 0

was first described by Dobrokhotov et altriin [15]. It is perhaps the simplest example
of a non linear dispersive equation, but has received surprisingly little attention. This
equation has the same linear part (1, — detf,,) as the Schrédinger equation, and as
such can be referred to as the Schrédinger equation with convective nonlinearity. We
do not know of any applications in which this equation arises, and it does not seem to
have a Hamiltonian structure. Moreover, the system is nonlinearly ill-posed at least for
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certain complex values of v, since singularities can occur in finite time. Nevertheless,
we believe that this equation is an interesting mathematical prototype for dispersive
(imaginary ») or mixed dissipative-dispersive systems {(complex v).

In this paper, we present a numerical and analytic study of solutions to (1.1) for
complex values of ». The solution to equation (1.1} can be solved using the Cole-
Hopf non linear transform which yields an integral representation involving the heat
kernel. For small |v] = ¢, the resulting formula for 1, can be approximated using the
stationary phase method. A new method used to compute the solution is found through
pole dynamics. This method is based on obtaining the time dependent locations of the
complex poles of the function %, by solving an infinite system of coupled ODEs. The
solution 4, is then found by computing its Mittag-Leffler expansion which involves
the position of the poles. One can also compute 9, directly through a finite difference
method, at least for times before a pole hits the real axis. Finally, in the zero-dispersion
(or zero-viscosity limit) » — 0, the poles coalesce onto a branch-cut, and the zero-
dispersion solution is described by branch-cut dynamics. This method may be of
general interest as a new (to the best of our knowledge) method for solving the inviscid
Burgers equation.

These methods will be formulated in general, but they will be numerically evalu-
ated for a special choice of initial data, namely the cubic polynomial

(1.2) P(z,0) = 4z° — z/t,

which is chosen for its generic features for the inviscid equation (see 3, 18, 28]). In this
initial data, t, is positive and corresponds to the time of first singularity formation for
the inviscid problem. The cube root singularity found at the origin at ¢ = 2, is known
to be a generic singularity for the inviscid Burgers equation. It is due to the coalescence
of two conjugate branch points of order two in the complex plane. For further details,
see [3, 4, 8, 18]. Moreover both cases ¥ = 0 and v # 0 can be completely analyzed,
and in the case v # 0, there is an instantaneous generation at t > 0 of a countable set
of complex spatial simple poles. For this initial data, the small dispersion (¢ — 07F)
stationary phase approximation of the solution and its zeroes can be evaluated rather
explicitly, at least for ¢ = i,.

There are three main points to this work: First, in the purely dispersive case in
which » is imaginary and small, the solution 1, of (1.1) develops rapid oscillations.
Second, these oscillations are caused by the presence of complex poles in ¥ which have
moved close to the real axis. This result, which is clearly demonstrated below through
comparison of the pole dynamics with the solution on the real axis, is important in
providing a tangible cause for the formation of the oscillations. Third, the branch cut
dynamics provide a slowly varying but incomplete description of the pole locations.
Although, we have not yet succeeded in deriving a slowly varying description of the
oscillations themselves, we believe that the branch cut dynamics represents a promising
start.

In order to investigate the positions of the poles, we derive a Calogero-type infinite
dimensional dynamical system by replacing the pole-expansion of the solution into the
PDE. We then solve numerically a truncated version of this system, where the initial
data is generated by asymptotic and numerical approximations of the poles at the
inviscid pre-shock time ?,. The numerical resolution of the stationary solution of
Calogero dynamical system has previously been used in [32] to obtain the stationary
positions of the poles of the solution to a flame front equation. In the case v > 0, the
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poles are fixed to the imaginary axis and move towards the origin until ¢ ~ t,, after
which they turn around and move away as ¢ increases (see [29]). When dispersion is
added, i.e. § = argy # 0, the poles are no longer confined to the imaginary axis and
evolve in the complex plane describing intricate motions. When v = e (¢ > 0) is a
purely dispersive coefficient, the poles spiral around the real axis. The proximity of
the poles to the real axis generates oscillations which are observed by reconstructing
the solution numerically via the pole expansion and the pole dynamics.

2. Integral representation, pole expansion and pole dynamics for v > 0.
We recall some results that are derived in [29]. In this case we let 1), = u, to be
consistent with the familiar notation that is used in the classical Burgers equation.
For v > 0, the Cole-Hopf transform u, = ~2v 8, log(4, ) linearizes equation (3.1} into
the diffusion equation for ¢,. Thus the solution is given by

', 1
(2'13) U,,(:B,t) = ﬁ_ 2v amlog(Eu(w,i)) = % - UU(:J, )a
o= [ R 2 _
(2.1b) . Eu(lat)wf_wexp{gy(ty+ay -y )}dy,
where a = 4§+ € R. The function E,(z,t) has the following properties for fixed
v >0

¢ It is an even entire function of z.

o Its order A = 4/3.

o Its genus A = 1.

o It has infinitely many conjugate and opposite zeros on the imaginary axis.

e The order of convergence of the zeros is the order A = 4/3,

iLe. 3, 1/]a, 2t < +oo, Ve > 0.

The fact that the zeros are imaginary is proved by Pélya in [27]. Combining these
properties, £,(2,t) has an infinite product representation in terms of its zeros which
we denote by z = *a, = +if,:

00 L2
(220) By(a,8)= () ] (1 + W) Y=t L <o

n=1

teo 3 2 4 o? 2

(2.2b) G, () = B, (0,8) = /_ ) ez (0¥ — ") gy = %e_ K4 (1‘;—”) ,

where C,(t.) = v1/4273/41(1/4), K,(2) is the modified Bessel function of the second
kind, and K4(2) = O(z~1/*) as z — 0. After logarithmic differentiation of E,, using
(2.1a) and (2.2a), the singular part of the solution being the ratio of two entire functions
with zeros is meromorphic. Thus we find an infinite pole expansion of Mittag-Leffler
type for the solution which converges uniformly on compact sets for & away from the
poles z = +if,:

Lz U)oz & dyx
(23) we === =37 nZ:l @+ B3(t, v)’

where U,(2,t) is the spatially singular part of the viscous solution defined by

= 4z
2.4 Uiz, )=z ~tufz,t)=1- e,
(2.4 (2,1) (o) =1 2, T gt )
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Note that 1, can be expressed in a more symmetric way as

z > 1
(25) 'U.y(m,t) = }"‘ - Qlln;m m“y—),
n#El
where we use the convention that f_,, = —f,. Let
. d
(2:6) Vne N = N0}, =,

then we replace the full Mittag-Lefller/pole expansion found in (2.3) in the PDE u, +
WU, = Vg, Using partial fraction expansions, we find (see [29] for more details)

; B, ¥ had 1
2.7 =+ — — 4B, Y e
( ) ﬁ t ﬁn ﬁ ; 1612 - fgrza
i#n
Similarly to (2.5), there is a more symmetric formulation to the dynamical system
(2.7) given by

1
ﬁf_ﬁn.

(2.8) b=t gy i
" ¢ =00
1#n,0
Note that the pole expansion (2.5) and the dynamical system (2.8) represent a general
solution to Burgers’ equation which is independent of the initial data.
Multiplying (2.7) by 8, and introducing the variable

Ba(t,v
(29) ’Yn(ta V) = (V )a
we have 3, 7' < +o0, and system (2.7) becomes independent of v:
R . S
2.10 Yne N, —=-—+1-47v, .
(2:10) 2t ! ; N e
I#n

3. Integral representation, pole expansion and pole dynamics for v € C*.
In the analysis that follows, we take advantage of the complete integrability of Burgers’
model of a one-dimensional fluid, and allow for the viscosity coefficient » to take
complex values of the form v = e¢”, € > 0 and }f] < 7 /2. Then ¢ = 1, (2, t) satisfies

Z
81/)_1_1/)%%:”3_1{{ zeR,t>0,veCt,

(3.1) at Oz?’

where
(32) Cr={reCst |v|>0and |argy|<7/2} = {v|Rv 2 0,r#0}

We can express this complex PDE as a system of 2 real coupled PDEs: Let ¢ = 9p+itPr
where ¥z = R and 9; = S, then (3.1) becomes

¥R Yr —Vr Yr \ [ cos@ —sind g
(3-3)&("/)1 )+(¢I Yr )éiw(’%)“e(sm@ cos 6 )8””(¢I)'
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When this coefficient is purely imaginary, v = ¢, € > 0, (3.3) can be thought of as the
nonlinear Schrédinger equation with convective nonlinearity:

. %

oY 0% _
(3.4) 3‘+¢3x_%€31:3’ z€C,t>0,¢e>0.

From the integral definition of E,(z,t) in (2.1b), one can extend the v-domain of
validity to complex values of v: Let v = e’ € Ct, then

—id

(3.5) E,(z,t) = Ei(z,1) = f exp {625 (?{y +ay’ - y‘!)} dy.

1t is straightforward that in order for the integral (3.5) to remain convergent, we must
have ®v > 0, i.e. || < 7/2. This can be verified by using Jordan’s lemma and
deforming the contour of integration along the ray argy = #/4for 0 << /2 so that
E,(z,t) can be written as

: o 1 €T ; )
_ i8f4 et —i%,2 .4
(3.6) E (z,t)=¢ [_m exp {26 (t'ye +aetryt —y )}dy.

Thus in the range 0 < 8 < 7/2, the function E,(w,1) is again an entire function of x of

order A = 4/3, and as such it also has infinitely many zeros [5]. Noticing the symmetry
relation

(3.7) E{z,t) = E,(%,1),

we can extend the domain of validity of representation (3.6) to the range 8] < 7/2.
The even parity of E,(z,t) as a function of z is preserved so that

(3.8) E(-2,t) = E,(z,1).

The zeros of E,(z,t) therefore come in opposite pairs @, = +ay(t, v), with the property
that for each fixed t > 0 and fixed » € C*,

1 1
Dl =T Lifap <t
n n

The infinite product representation of F, is now

(3.9) E,(z,t) =C, (t)H ( _ (tz V))

so that the Mittag-Leffler/pole expansion becomes

(3.10) ¥, (z,t) = ?.E_ E—(;’_t) = icf Z — a2 (t v)’

where the spatially singular part of the pole expansion is given by

(3.11) Y, (2,t) =z —t,(z,t) =1 Z—'—xzmaz(t )
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As in (2.5), ¥, can be expressed in a more symimetric way as

z d 1
(312) TJJV(:B,t) = ? — 2 n;w m.
Letting 8, = —ta, in (2.7), one finds the associated Calogero dynamical system for
arbitrary v € C*: Let
_ da,
aﬂ- - dt ¥ a’-—ﬂ a’ﬂ’
then
. a, v > 1 "
(3.13) an =~ wan_‘iya"g;aﬁ—af’ ¥n € N*.
i#n

As in (2.8), one can express (3.13) in a more symmetric way as

. Gy = 1 .
(3.14) b, = ?—2:z!§ pa— ¥n € N*.
l—#n,O

Note finally that the pole expansion (3.12) and the dynamical system (3.14) represent
a general solution to Burgers’ equation which is independent of the initial data.

One can further simplify (3.13) by multiplying both sides by a, and introducing
the variable

(3.15) g = —.

The corresponding system of ordinary differential equations (3.13} becomes free of v
so that

il

1dk, FAn K > 1 .
(3.16) 5 T = —1~4n,,§ o Vn € N*.

I+#n

4. Exact pole locations at ¢, for » € Ct. Att=1,, since @ = 0, we have for
|2} < o0

. oo 1 ,
(4.1) Bat) = [ e {5 (T s vt o

Thus using Pélya’s theorem once more (cf. [27}), the zeros of E,(x,1,} denoted by
+a,(t,,v) are located on the ray argz = 36/4 + 7 /2, with absolute value |a,(t,, )] =
Ba(t.,€) > 0, where £48,(t,,¢) is the n-th ordered zero of E(z,t,) on the imaginary
axis. For v = ee!? € C*, the zeros of B, (z,t) are thus located at the complex positicns

(4.2) z = ta,(t,,v =) = +&3%14 48 (., €), Vn € N*.

See Fig. 4.1 for the positions of the poles at ¢ = .. Thus, in order to describe the
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A
LImx
. )
v=e exp(1 9) :a} O(v) fork~1/v

¥

0\\\ é

e, :

e i

& i

s @
-..““. a\‘\
a“‘gh__‘s &

e \’ Re x
"o
Inviscid branch cut: =-----

Inviscid branch point: x; ©
Viscous poles: e

F1g. 4.1. Inviscid branch point, branch cuts and viscous poles at t = £, for v = |v]e’® (8] < =/2)

asymptotic behavior of the zeros of E,(z,t,), we place ourselves on the ray argz =
30/4 + /2, so that at the pre-shock time ¢, letting v = ee'?,

/s s [ 1 /i
E.o(e®/*ip,t,) = ¢ ”4/ exp {E (tﬁy - ?/4)} dy
= eigﬂEe(iﬂat*)

(@) (3 (8)")

where we have used the change of variable

(4.3) y — ( ﬁ)llaz,

and the function F(u) is defined as

(4.4) \ Fp) = f et gy,

Once the zeros {u; )52, of F(u) are found, the magnitude 3, of the zeros +if, of
E.(i8,t,) are given by the relation

(4.5) 8 =Pt e) = 4t (26, )",
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Thus from (4.2), the zeros of E,(x,t,) are located at
(4.6) z = dag(t,,v) = £, (L., €) = £ 441, (2ep, )31,

Tt is shown in [28] that the k-th ordered latge zero gy of F(u) is given as follows:
ProPERTY 4.1. Let

2
O _ = _(k—-1/3 E>1
MHE 3\/5( /): Z 1y

7 1 7 (5 53143
G =1+ 335, (1 ~ 6 (1 + T2 (1 T 12 (l + 18900,&))>) ’

1
pr =G (,UJSGU)) +0 (k_"') as k — +oo.

and

then

5. Asymptotic analysis of ¥, (z,1) for v = i¢, as € — 0*f, t > t,. When
v = ie, € > 0, we evaluate the asymptotic behavior of E, as € — 0t using the method
of stationary phase. We find that all three saddle points are relevant within the caustic
|z < |&,(t)] — /2, where § > 0 and where =z, (%) are the second order branch points of
the inviscid solution (see [29, §6]). For a discussion on such caustics, cf. {23, 26]. When
t> b, ¢ € (—o0, —x,(t) — §/2) U (z,(t) + 6§/2,00), v = i, € ~ 0F, the same analysis
holds and one recovers the characteristic solution outside of the caustic consisting of
one relevant saddle point. The transition from within the caustic to outside is not
uniform as the asymptotic behavior at the caustic & = a,(t) is degenerate (2 saddle
points have coalesced).

5.1. Asymptotic expansion within the caustic z € (—z,()+6/2,2,(t)~8/2),
6 > 0. The caustic z = z,(t) corresponds to the envelope of the characteristics of the
inviscid Burgers solution, and is also determined by the system of equations

(5.1) 0=w,(z,2) =/t + 20z — 42,
' 0= w,,(zz)=2a—122%

where w(z,z) is the phase function of the integrand in the definition of E, (z,t). This
system represents the conditions for the phase function w to have saddle points of
multiplicity two, thereby yielding a curve in the {z,t) plane on which two saddles of
multiplicity one coalesce into a saddle of multiplicity two. From the second equation
in (5.1), we find Z,qysi.(t) = £1/2/6, and from the first,

200\ %2
(5'2) T = Togustic — t(4zcaustie(t)3 - zazcaustic(t)) =¥t (?) - :Fms(t)7

where #,(1) = 1 (3t.)7%/*(t, - 1)3/%4~%/2 is the second order branch point of the disper-
sionless solution described in [29, §6]. Here we are only concerned with the dominant
behavior of E;,, thus we only retain the first term:

(5.3) Euz,t)= Y —dmie sexp (w(;:’)) (1+0(),

5=0,1,2 w“(z“ :1:
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as € — 01, with

3
(5.4a) w(z,(z,1),2) = f;t,,zs +azt -2 = Z%z, + %zf,
(5.4b) w,(z,(z,1),2) =0, w,(z(z,1),z)=20- 1222,

The values of the saddle points z, = z,(z,t) of (3.6) are determined by the three
roots of the first equation in system (5.1), i.e. the first equation of (5.4b). They are
specifically

=wA+w'B
(5-5) zZ1 :w2./4 “i‘CL’B

2y =./4+B
with w = &*™/% and

(56) { A1) = (8812 3f 1 /i 2

Blz,t) = (882 o — o7 —at

Note that all three saddle points are real when z,z, € R and the discriminant A =
z? — 22 < 0, that is |2| < |z,(t)], and in this case A = B (see [29, Appendix B]).
Therefore we have z, € R, w(z,,z) € R, and w,,(2,,2) = 20 — 1227 € R. Hence
all three terms in the summation signs are oscillatory and equally relevant. Note
however that the expansion derived for Ej, is only valid within [2| < |2,|, and in order
to get an expansion uniformly valid across = £z, one needs to derive a uniform
expansion as presented in [15, 23]. This analysis is similar in spirit to the one of Jin,
Levermore and McLaughlin in [22, §2.2] and that of [15]. The dominant behavior of
the solution 1;.(z,t) is found from the Cole-Hopf representation, so that within the
caustic |#| < |z,| — §/2, following the derivation presented in [29, §3], we find

Es:{m,z 2 i wu(zs ) 3')

IUiZE x
Ea:{),l,?e 2ie /szz(zum)

. EsaO,l,Z zs g 2re "%arg(w::(zhm)) . lwzz(zsa w)‘—l/Z

282011’2 e_L"“lw sm)— Larg(w..(#:,)) . |wzz(z” m)1—1/2

II‘,-E(:E, t) =

+ Ofe)

O(e).

Since w,,(z,,z) € R, we have that arg(w,,(z,,z)) = 2(1 — sgn(w,, (2, x))), and there-
fore the small dispersion behavior of the solution is found from (3.10):

PROPERTY 5.1. Ase— 0% forz € (—z,(t) +6/2,2,(t) - 6/2), 6 > 0, ¢ > 1,, the
spatially singular part of the solution to Burgers’ equation is approzimated by

zsza 19 2y e""2!.2”1”(‘7’;”)"5“%59“{‘”!8(28:‘”)) . |wzz(zs: w)l—i/?

z‘=0,1’2 e—g;w(zg,:::)+-|'dlsyn(w”{z”a:)) . |wzz(zs’ w)|—1/2

‘I’is(;l:’t) = + 0(6)

The asymptotic behavior of the solution is then found from the relation

xr ‘I’,‘ z,t
qu.e(m,t) - = _ _ME(_’)
t t
Thus the presence of three competing oscillatory terms in the asymptotic behavior of
¥, is reminiscent of the oscillations observed in the solution ;.. Such oscillations are
also seen in the pole dynamics in §7.2.
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5.1.1. Long time asymptotics of the stationary phase solution within the
caustic. In this section we approximate the stationary phase formula in Property 5.1
for small values of § = z/t and find the approximate pole positions for large time.
First we claim that the stationary phase formula is valid in a complex neighborhood
of z = 0 independent of € = |v|. A fuil extension of this formula to the complex plane
is difficult to determine because of the possibility of Stokes lines (cf. [26]). Across
a Stokes line a stationary point loses its accessibility; i.e. the ability to deform the
integration contour to the steepest descent path through the stationary point is lost.
The point z = 0 does not lie on a Stokes line, however, so that all three stationary
points are accessible in a neighborhood of z = 0.

Now we can expand the three solutions ¥ = yo,y4,y- of w, = 0, and the corre-
sponding values of w and w,,, in powers of § = &/t for fixed value of @ = (t—t.}/(2t.)
as § - O

d
Yo=-9, T 0(8%)

o § 52 3
« § §* 3
(5.7) y-= _\/;+ + o5z 32\/— + 0(8%)

6‘2
wy =~ + 0(8°%)
wy :E:;+6\/;+%+O(63)
(5.8) w. = 2; - 5\/%"’ g—i + O(6%)
Woyy = 20+ 0(52

Wyyy = —da 35\/- + 0(52

(5.9) wwyy = —4di + 3(5\/7 + 0(52)

The stationary phase formula is much more sensitive to the value of w than to the
value of w,,, and its leading order form is determined by the terms up to O(6) in w
and up to O(1) in wy,. In particular the leading mder form for the denominator D is
(for v = t¢)

D - Z ,'/2[1

i=0,+,— Wiyy

— \/:{{ _ i]wﬂyyrlfze—iwu/ﬂe + |,w |—1/26—iw+/2£ + I‘w—yy|_1/2e—£w_,2€}

YA R——
= 2\/1_]'{ V2 + 2 cos (26 \/§> e—mzlée}_
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The zeros of D, i.e. the poles for the Burgers solution, are solutions § = @ [t of the
equation

W)=
oI5

r

): L giatlbe
s

v

(5.10) cos (

b3

¥

Note that if & is a solution of (5.10) then so is —§ and 6 + ea;n with

2
(5.11) a; = 47rt\/g.

The solutions of (5.10}) are

(5.12) § =6 = +e ((mo + iyo)\/§+ nal)

and (x,,¥p) are a particular solution of the equations

2
\/icos(a;u) coshy, = — sin (%) ,

2
V2sin(z,) sinh g, = — cos (a_) .

8¢

One can easily show that there is a unique solution (p,%) up to translation and
reflection as in (5.12). This shows that to leading order the poles of the dispersive
Burgers equation lie on two staggered, horizontal, linear arrays with spacing eo.

5.2, 2 € (—=,(t) — §/2,2,(t) + 6/2)6, § >0, v ==t ¢ 0" t >t,. The
inviscid limit is found in a straightforward manner in this case: only one saddle point
is relevant, so that the asymptotic limit derived in §5.1 reduces to

Uiz, t) = ¥(z,t) + O(c)  ase— 0T,

where W(z,t) = 2,(z,1) is the spatially singular part of the dispersionless solution (see
[29, §6]). Thus the solution outside the caustic behaves according to the following
property:

PROPERTY 5.2. Asv — 0 forz € (—a,(t) - §/2,2,(t)+6/2)°, 6 >0, t > t., the
solution to Burgers’ equation is given by

;o Wyt .t
ijie(:E:t):%—h(:L—):%—&?l-i-O(E) as € — 0%,

U(z,t) = 2,,(2,1), 2o : Rz, 2) = max Rw(z,,z).

5.3. Uniform asymptotic expansion across the caustic z = +a,(t) via
Pearcey’s integral. Following the notation of Kaminski in [23], we introduce the
Pearcey integral from which one can derive a uniform asymptotic expansion with two
coalescing saddle points: Let

toc ., 2
(5.13) P(X,y) :/ ez(u [4+Xu?{2+Y ) du

-0
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denote the Pearcey integral. In the arbitrary case |f] < /2, one can express E e(z,1)
in terms of P(X,Y) defined by (5.14) as:

vy1/4 a —z [ 1\,
Efeie(m,t) — (;_ P (X = m_/ﬂ_es(wﬁl—G/Z}’Y = — 3) 61(37r/8—39/4) .
\Zi/ \ A€ 2t N\ 28/ /

In particular for 8§ = 0 (v = € € RT), we have

€ 1/4 o . — 1 1/4 ,
Y S — in/4 — i3n/8
E(z,t) = (Qi) P (X = \/2—66 Y = T (2€3> e ) .

From (3.5), we can express E;.(z,1) as
oo L4 2 =
Ei(z,t) = /_oo exp{—g—g (y — ay® - —t-y)} dy
e\1/4 e A ut o u? oz [ 1\ p
:(E) /_00 exp+<l Z_—E?_ﬂ(ﬁg) U i
ey 1/4 e O —z / 1T\
(5.14) = (5) P (X(E,t) =S E,Y(E,ﬂ),t) = E (ﬁ) ) .

Clearly a small € asymptotic of E;, is equivalent to a combined asymptotic expansion of
the Pearcey integral as | X|,|¥] — 400. The caustic of P(X,Y’) and the corresponding
caustic of E;.(z,1) is given by
(5.15) y = \/—22_%)(3/2 > o = ta,(1).
Hence the uniform asymptotic behavior of E;, in a neighborhood of the caustic is
found from the one of P(—X,(2/v/27 — 7)X%?) as X — +oo, where 7 = 0 at the
caustic, and T # 0 away from it (see [23}). This amounts to a uniform expansion
valid in (=|z.] — 6(7), —|z,] + 8(r)) U (|z5] — 6(r), |2, + 6(7)) where é(7) = é(7;1) =
@]ms(tﬂ .7 > 0. Thus it is valid for |2 + z,(t)] < 6(r;t). This expansion is also valid
outside of these intervals centered about £a,(t), however the region of interest is the
neighborhood of the caustic. Indeed one only needs to use the asymptotic expansion
of the Airy function and its derivative to find the results obtained in §5.1 and 5.2.
From (3.11) and (5.14) we have that

U, (x,t) =t 2ie 0, log(Ei(2,1))
=t 2, log [P (X(e;t) = \_/—%,Y(e; z,t) = —_2—;— (2%)1/4)] .
Let
X =X(gt), Y=Y(g)=Y(5z=—o,(t)+5(r:1),1),
where §(7;t) — 0" as 7 — 0%, so that
¥ (o =-a,() + 5(73),t) = t - 2ic 8, 10g (P (X (1), Y (62 = —2,(1) + 6(75), 1))

dé

= t-2ied, log (P (=X, (2/V27 - X)) /5.
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Let P(r)= P (—X, (2/v/27 — T)Xa/z), then since 88/8T = v/272,(t)/2, we have

V(o = —2.(0) + 8(ri0)t) = '\/24725(6%((:))'

Following the notation presented in [29], let

~5/6

po(r) = 31+ 0(r), aolr) =~ (14 O(), () =87or(14 O(r)),

and

f(”):f(”;f):%ing%—(%wf)v,

and the v;,i = 1,2,3 are the saddle points of f(v;7) determined by the equation
Fo(vi37) = 0, so that fv;;7) = —vf /4 + (2/v/27 — 7)3v;/4. The v;’s are specifically

2

vy (1) = w% sin (g + d’("')) , o(r) = /3 sin{¢(7)), wvs(r)= % sin (% B ¢(T)) '

where
b= d(r) = %a,l-csin (1-v2Tj2), TeR, <5
Since
—a iX* o "
X—72—“;“2>—2“—’L4—€“‘—'>X —O(E),

then according to the expansion of the Pearcey integral presented by Kaminski (23],
we have proved that
PROPERTY 5.3. The uniform asymptotic expansion as € — 07 of ;. (z = —z,(t)+

6(T;t),t) in a neighborhood of the caustic @ = —x,(t) is

e 173 .
b = o)+ o(r0,1) = 5 (20) ><[[v2+ua]e*‘1—e“(””+f(“3ﬁ

{par) - o A X)) + nlr) gAY (- X ()}

2 11'2 1+ ;
12227 (v1) il ¢
+2'U36 (3,”12 — 1) X1/2}

P22 if (v vy 2 . 2m ot
et Lo(s). SHm - Ait-X U+ lr) e AT X

% Y2 gq
157 2f(v1) ) N
e (Sv% - 1) X1/2} +O(e) ase— 07,




14 D. SENOUF, R. CAFLISCH anp N. ERCOLANI
5.3.1. Behavior at the caustics z = #z,(t). At the causticz = —=,(t}, 7 =10,

‘?5(0) = W/B? 01(0) = _2/\/?-’5 1)2(0) = v3(0) = 1/‘/§a
f(v:;0) = —vi/4+ v/2V3,  F(vy;0) = flvs;0) = —=2/3, f(v;0) = 1/12.

Since X = @(e™'/?), the dominant term as ¢ — 0% in both the numerator and denomi-
nator of ¥,, is obviously the term containing the factor X -1/6 Therefore the dominant
behavior of W, (—z,(t),t) reduces to the simple form

. 1/3
U, (-, (1), 1) = V3 (ﬁ> - (25(0) + 93(0)) + O(e)

2\ ¢

1/3
= (m—’g)“) + O('®) ase— OF.

6. Continuum limit of the pole expansion and the Calogero dynamical
system. From the equation for the pole dynamics and the Mittag-Lefller expansion
of the non-zero dispersion solution one can obtain a set of equations for the inviscid

limit which give a new representation of the solution to the inviscid burgers equation.
Recall the pole expansion

e v z ad 1
(6.1a) Pul2,t) = ?_Z:mz—aﬁ(t,u) B ?—QV _Z: z —a,
n=1 = — 00
n#0
and the pole dynamics: Vn € N*,
_ay ke I a, i 1
(6.1b) =~ - 4van§ T =Y -2 r; pa—
I#n i#n,0

Define the complex map F({,»,t) as
(6.2) a,(t,v) = F(& = vn,1t) 1 Z* x Rt xRT = C, a_, = —d,.
At 1, we have (cf. [29, §4.1])

ap(te, V) = F(CL = vy, t,) = i - 4L, (2opp,)*0
=i -4, (2v(ec_inteto/nt - -))3/4
=1 4t, (e_;(2vn) + eo2v + ¢ (20)?/(2vn) 4 - - -))3/4.
Then introduce the map
(6.3) FG)=F(G0): RxRY =€, f(=¢1)=-f((1),

where the continuous variable ¢ corresponds to a position on the real axis which can
be thought of as a variable obtained by simultaneously letting v — 0t and n — +o0.
Assume that

(6.4) a, (t,v) = Fn|y|,v,t) = f(n|1/|,t) +e,(t,v)
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in which e, (¢, ) is a small error term that goes to 0 as ¥ — 0. Now let |[v| — 0 so that
n = v/|v| remains constant. Then, at least formally,

21/3-\‘7

i

1 1
— 2 2TV
) S (0 Rk D e B G M
d(’

(65) =ury. | e e

Moreover, this approximation shows that the representation (6.4) is valid for all time if
it is true at ¢ = 0. A rigorous analysis of the approximation (6.5) has been performed
in the context of vortex sheets in [9]. A rigorous justification of this limiting process
is also presented by other means in [30] for the real viscosity case. It is then clear that
the pair of equations (6.1a) and (6.1b) satisfy the following:

PROPERTY 6.1. The continuum lmit of the Calogero dynamical system and the
pole expansion is the system of integro-differential equations defined for any z such that

V¢ ER, = # f((,1), by

of . f(GY > ag’
2O =" 2”P'V‘/_mf(6,t)—f(¢,f)’

_z [T de
Bla,t) = 5~ 20 [_mw_f(c,jt).

This property can also be expressed as

of . _ FG1) > d¢’
o (&= = — i) f 75D = FCH 1)
] m d¢’
(6.62) S L I o =i

and

oo dc:
), R

t
=) de!
(6.6b) :%“”“’f_mW”fi(T,t’S’ z # £(C,1).

The system consisting of equations (6.6a) and (6.6b) provides a slowly-varying, but
incomplete, description of the solution of Burgers’ equation and of the pole dynamics:
Let f((,t) solve the continuum (i.e. slowly-varying) equation (6.6a). Then the ap-
proximate pole positions are given by (6.4) and the solution %, of Burgers’ equation
by the pole expansion (6.1a}. Furthermore, as shown in the next subsection, the corre-
sponding solution 9 of the inviscid Burgers’ equation is given by (6.6b), and the image
of f in C is a branch cut for 9. This is an incomplete description, since it does not
yield a formula for the wavelength, phase and amplitude of the oscillations. Moreover,
when the poles are close to the real line, the oscillations in Burgers’ solution are quite
sensitive to small errors. In fact, computations presented in § 7.3 for v = €i, show that
some of the poles found through this “branch cut dynamics” method lie on the real
axis, which makes the reconstruction of the solution 1, impossible. We believe that
this difficulty could be overcome through improvements in the approximation (6.5).




16 D. SENOUF, R. CAFLISCH anp N. ERCOLANI

6.1. Branch cut dynamies. The branch cut dynamics method, presented in
this section, is a new method for solving the inviscid Burgers equation

(6.7) Y+, =0,

The main interest here in this method is that it represents the continuum limit, as
lv] — 0, of the pole dynamics for the viscous equation. It is also interesting to note
that the resulting integral-differential equation is nearly the same as the Birkhoft-Rott
equation for a vortex sheet, but without the complex conjugation on the right hand
side. The branch cut dynamics has a parametric and a non-parametric formulation.
In the parametric formulation, the solution is described through the dynamics of a
complex-valued function f(¢,t) of a real variable ¢. Let F((,t) satisfy

(6.8) 161 = f_(t@ -2 by. f_o; f(C,t)(ff’f(C’,t)

in which 7 is an arbitrary constant. The integral is a Cauchy principal value integral,
due to the singularity at ' = (, as well as possible singularities at (" = £oo. Next
define 9{x,t) by

_z P A
(6.9) P, b) = 3 _znj_w e et

A straightforward calculation shows that ¥(z,t) is a solution to the inviscid Burgers’
equation

(6.10) o+ PP =0

for any choice of 7. These equations can be rephrased in a second, non-parametric
formulation involving a moving curve T'(t) in the complex plane (which may consist
of several disconnected parts) and a density function p(z,t) defined for z € I'(¢). In
particular T'(t) is the image of f((,t) for { varying over the real line. The density
function p(z,t) is defined by (see [30, §5})

1
(6.11) p(z,1) = AL
in which z = f((,t). Then d{’ = p(#',1) d2" and
_z Pz t)
(6.12) ’gb(ﬂ?,t) = ; - 2’!] - m dz'.

This formula can be extended into the complex z-plane but is discontinuous across the
curve I'(t), i.e. ['(¢) is a branch cut for the function . Variations in the arbitrary
complex parameter 7 correspond to variations in the branch cut I'(t) for 4, without
change in the branch point. An application of the Pleme]l formulas at a point z on
T'(t) shows that limiting values ¥, and ¢_ from the right and left, respectively, are

’
(6.13) Pel(z,t) = i; - ant{ '(;(~z—":,) dz' ¥ 2nmwip(z,1).

Tt follows that the difference of 1. is

(6.14) P_(z,t) — ¥, (2, 1) = dnmip(z,1),
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and the average of v is

U(z,1) = 5 (a2 0) + - (5,0)

—_ O .[l p(Zf,t) .1

= P Aqﬁ‘(t)—“ﬂ”‘—z—_z, Gz

=% ” d¢’ Lo
(6.15) =y aby f,m GO (DTN

Since 0 = b, + ¥, = v, + (34*), for both ¢ = 1, and ¥_, it follows that p satisfies
the conservation equation

(6.16) oo+ (F0), =0,

Therefore the branch cut dynamics equations (6.8) and (6.9) are equivalent to the
motion of I'() by the velocity ¥(z,1), and the evolution of the density p(z,1) through
(6.16).

The usefulness of this method in the present conmtext is its relation to the pole
dynamics for the viscous (or dispersive} Burgers equation. An interesting equivalent
form of the branch cut dynamics equation (6.8) is found by considering the change of
time variable

Tt — 5]

9{¢,7) = t_if((:)t)

for any constant t,. The resulting equation for g is

(6.17)

B9 E—
(6.18) (&)= BV, j_oo g(¢, )~ g(¢s )

If n = 1/(4xi), and if the left hand side was replaced by its complex conjugate g/ or,
this equation would be identical to the Birkhoff-Rott equation for a vortex sheet [9].

7. Numerics. We present numerics which pertain to the analysis previously de-
rived. That is, we use both the stationary phase formula and the pole dynamics as a
means to compute the solution. A third method based on a full finite difference scheme
is also presented initially. For all three methods, we set the parameter vajuet, = 1. In
all the figures describing the behavior of the solution 4, , we only plot the real part of
the solution R4),. Thus whenever there is a label 1, it should be understood as R,

7.1. Finite differences, Runge-Kutta scheme and pole expansion. We
present a numerical scheme which enables us to solve (3.1) for arbitrary values of
arg v for moderately small values of |v| = e. The procedure is sometimes referred to
as the method of lines and consists in using a centered difference operator in space
while time-marching with a Runge-Kutta scheme. The method is implemented on the
interval I = [0,1/2], with boundary conditions 4,(0,¢) = 0 and 9,(1/2,¢) = 0. The
condition that 4, (1/2,%) = 0 is consistent with the value of the dispersionless solution
and as such is consistent for small enough values of . We can use two different initial
conditions:

(7.1a) P(z,0) = 4z — ti

x - 1
(7.1b) Pola,t) = 1. 41/3’"; 2% - al(i.,v)
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If the second condition is used, then the pole positions at ¢t = ¢, are specified by the
asymptotic estimate presented in (4.1). This estimate is used for all values of u, for

10<ng N:
g {1, ) = 304 iat (ep, VB4,

{
bt (A Nk ] 7
(7:2) { Ho = GD), ) = B -1/3), n> 10,

Gy =p+ a1 & (147 (1- 5 (1+ 55))))

For 1 € n < 9, we use the numerical values found in [28, Table 3], under the column
“Numerical roots”:

py = 0.8221037147 o = 2.0226889660 pa = 3.2292915284
By = 44372464748 pg = 5.6457167459 pe = 6.8544374340
pr = 8.0032985369 g = 9.2722462225 pe = 10.4812510479.

Let

%‘ = (7 *Az,t), B = Py, EPdy = Yisps
D, =(E- EO)/Aa:, D_ = (E“ - E‘l)/Aa:, D, = (D, + D_)/2.

One then solves the system of J equations using a Runge-Kutta 4-5 scheme:

dip; '
(7.3) -—;bTJ = —Do(97/2) + vDy D_tb;, =1,

where J + Az = 1/2, ;=9 = 0 and 1, = 0.

7.2. Numerical pole dynamics. We now investigate the motion of the simple
poles of 1, (x,t) for various values of v € ¢+ . The procedure consists in truncating the
Calogero dynamical system and by starting with initial data for the poles at t = ,:
the complex poles of 1, (z,t) are located at z = £a,(t,v) = ++/vk,(t,v), where the
variables k,, satisfy the system

1de, Ky . 1
(7.4) VneN, { 3@ -1 LTAmIEie T,
b (e, ) = ag (b, v) /v

a,(t,,v) is computed as is described in the previous section. The value of a,(f,v) is
recovered using the relation a,(t,v) = \/v&,(t,v). Starting from ¢ = ¢,, we compute
and plot the evolution of the first four poles a, (¢, v),n = —4,---,4 for different values
of v. We use N poles in the computations, i.e. a; through ay where N x 107 is either
1,2.5,5,10. That is, we consider the truncated system

fﬁn Ky N 1

Bn _Bn 94k, N
Vn:l,---,N, { 2 1 zﬂnzi{gﬁfaﬁnfgﬁé;

kin (e, v) = (48)2(25) Vee' /

where the integer N is appropriately chosen. In order to accelerate the computation
of the slowly converging pole expansions

N1

“_-1... N
ZKI‘_K.”, Vn 3 ?

i=1
I#n
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we use the Multipole algorithm developed by Greengard and Rokhlin (see [20]) and
implemented by Greengard, which reduces the number of operations from O(N?) to
O(Nlog N). A fourth/fifth order Runge-Kutta-Fehlberg scheme with automatic step-
size control is used. Since the initial data is specified at ¢ = ¢, = 1, we can solve the
system forward and backwards in time starting from ¢ = 1. The typical tolerance in
the computation is 1078 < |24=25] < 10~* where z, and x are respectively the fourth
and fifth order estimates of &,(¢,7). Once the tolerance criterion is met, we recover
the pole location via the relation a,(t,v) = \/v,(t,v). The difference between the
complex v case and the real v case is that the variables are all real for v real, thus
system (7.4) is a system of real ODEs, whereas for v € C*, system (7.4) is a genuinely
complex ODE system. The justification of the numerics is the most difficult aspect of
this simulation because one must justify the convergence of the method both as the
number of poles increases and as the time step is refined. The time-step control is
automatically determined by the relative tolerance (R.T.} test on the 4-th and 5-th
order approximations of the first ordered pole (the one closest to the origin). Thus one
cannot fix the time stepping, rather one can have a subtle control on it by reducing this
tolerance. Typically, we fix the number of poles to 50,000 and vary the tolerance on the
successive intervals 1072 < R.T. < 10-%, 108 < R.T. < 107%, 10"°% < R.T. < 107~
Then we fix the tolerance at the highest reasonable level 107 < R.T. < 10~*%, and vary
the number of poles where N x 10~* vazies from 1,2.5,5,10. Another test of accuracy
is performed on an exactly solvable 2-pair pole dynamics (see [29, §5]). A discussion
of the convergence of the pole dynamics method for the case v € R can be found in
[29]. The convergence of the (truncated) pole dynamics to the true solution of the
(infinite) Calogero dynamical system as the number of poles N increases and as the
time stepping of the Runge-Kutta scheme is decreased improves as the argument 8 of
v increases to 7/2, and worsens as the magnitude € of v decreases. The convergence
improves with increasing @ because the position of the poles at 1, gets closer to the
real axis. The closer the poles are to the real axis, the better the convergence in the
tails of the solution becomes. Indeed, the most difficult case (computationally) occurs
when argv = 0, as discussed in [29].

When v > 0, the behavior of the pole 8;(¢,v) displayed in [29] describes the
evolution of the width of the analyticity strip of the viscous solution (see [29]).

When v € iR, the behavior of the poles is studied as € = || decreases to 0. One
can observe a structuring of the pole behavior into a spiraling motion at the end of
which they end close to the real axis for t = ,,t > &.. It is the presence of these
poles close to the real axis which gives rise to rapid oscillations which are observed
both in the pole expansion reconstruction and the stationary phase approximation,
We describe many cases for ¢ ranging from ¢ = 1072 to ¢ = 107° due to the drastic
difference in the behavior of the poles displayed in Figs. B.1, B.2, B.5, B.6, B.11, B.15.
In many of these figures, we do not display the full height of the oscillations in order to
compare the pole dynamics with the stationary phase approximation. The agreement
between the two methods is remarkable (Figs. B.9, B.14, B.17). The few discrepencies
which can be observed in these figures occur in the amplitude of the peaks of certain
oscillations. They are due to the extreme sensitivity of the pole reconstruction to the
pole positions. The accuracy of the match between the stationary phase approximation
and the pole dynamics also serves as a justification for the pole dynamics.

Finally, only the case ¢ = 1072 is treated for argy = = /4 to llustrate the behavior
of a mixed dissipative-dispersive system (see (3.3)). In this case (argy = m/4), the di-
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versity in the behavior of the poles is much less rich than that observed for argy = 7 /2.
Moreover, the number of oscillations is fixed to one, and as such is less interesting to
observe. However it is included to provide a comparison with the (full) finite difference
scheme (method of lines).

7.3. Numerical branch cut dynamics. Finally we present the results of nu-
merical computations for the branch cut dynamics equation. Rather than solving (6.8)
directly, we move points X (¢) on the branch cut through the equation

(7.5) X(1) = 50y + ) (X)),

in which ¥, and t_ are the limits from the right and left, respectively, of the cor-
responding solution of the inviscid Burgers equation. For the initial data P(z,0) =
4z® — x/t,, the positions of the poles are prescribed at ¢ =1, to be the pole positions
for Burgers equation with viscosity v = ee? | as described in §4 and [28]. In particular
they lie on the line arg(z) = 38/4. Their location for ¢ > %, is found by solving the
ODE (7.5). Moreover the solution values

(7.6) Pz, t) = tho(o) = 4z — 2y /1,

are found through the inversion of the cubic equation (see [29, §6])
(7.7) T =g+t P(ze) = 48zl + 2o (t, — 1)/1..

At a complex point 2 on the branch cut we have

(7'8) '(!"-i-(mat) = ¢0($+($,i),t), 'l,b_(ﬂ:,t) = 1/)0(:1:_(50,15),1‘),

in which z, and @_ are the limiting values of 2, from the right and left at the point
z. For large positive or negative values of @ on the real line, the cubic equation (7.7}
has a single real value 2y = z¢(x,t). The value z,(x,t) is the analytic continuation of
this real value of zo(z,t) from the positive real axis; the value z_(z,t) is the analytic
continuation of zq(x, ) from the negative real axis.

Results of numerical solution of the branch cut dynamics equation in the form
(7.5) corresponding to initial data (7.6) are presented in Figs. B.4, B.8, B.13, B.20, for
v = 10~%, 10~*i, 1073 and 10~°v/i. As described in §6.1, the equation for the branch
cut depends only on 0 = arg(v); the value of ¢ is only used to determine the positions
of the poles at t = t, corresponding to that value of v. In each of these figures, as well
as in similar computations for other values of v, we see that the branch cut is a line of
angle 36/4 at t = t,, and that as ¢ increases, the branch cut again approaches a line
but with a small angle, For § = 7/2 (i.e. v = ci) the branch cut moves onto the real
line as t increases.

Next we compare the pole positions computed by the branch cut dynamies method
with those obtained from the Calogero equations. The Calogero system is exact, except
for discretization in t and a cutoff in the number N of poles. In the case v = 10734/5,
there is excellent agreement between the results from the branch cut dynamics (Fig.
B.20) and those from the Calogero system (Fig. B.19). The cases with v = €1 are
more interesting, since there are oscillations in the corresponding Burgers’ solution.
The branch cut dynamics results of Figs. B.4, B.8, B.13 are in excellent agreement
with the Calogero results of Figs. B.3, B.7, B.12 for poles that are outside the caustic



POLE DYNAMICS AND OSCILLATIONS FOR COMPLEX BURGERS EQUATION 21

points of the inviscid Burgers solution. Within the caustic region, the poles from the
branch cut dynamics lie on the real axis, while those from Calogero lie slightly oft. On
the other hand, the real parts of the pole positions from the two methods are in good
agreement.

This shows that the branch cut dynamics does a very good job of describing the
pole dynamics for Burgers equation with complex viscosity, except within the caustic
region for imaginary viscosity.

A. Generalization of the initial data to #(z) = 2nz™~! — 2 /t,. Using a
result in [29] concerning the asymptotic behavior of the &-th zero jy, of Fulp) =
[ e (2niz=2") 12 we can prove the following:

PROPERTY A.1. Letn € N, n 2 2, and let v = ce® € Ct = {e > 0,|0] < 7 /2}.
The k—th ordered pole of the solution at t = t, arising from the initiel data Polz) =
Inz® Y — x/t, 1s located at

ar n(te, v = €€) = ¢ 555 ont, (2€#k,n)£%:_l 7

where the coefficients py , are asymptotically given by

T T n-1 1
“k'”:msec(éln——?) (2n—1+1+2k)+0(g) G.Sk-**)-I—DO.
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