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Abstract

The recently introduced circulant block-factorization preconditioners are
studied. The general approach is first formulated for the case of block tridi-
agonal sparse matrices, Then an estimate of the relative condition number for
a model anisotropic Dirichlet boundary value problem is derived in the form
K< \/Q_E(n + 1) + 2, where N = n? is the size of the discrete problem, and ¢
stands for the ratio of the anisotropy. Various numerical tests demonstrating
the behaviour of the circulant block—factorization preconditioners for anisotropic
problems are presented.
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1 Introduction

This paper is concerned with the numerical solution of anisotropic second order elliptic
boundary value problems. Using finite differences or finite elements, such problems
generally are reduced to linear systems of the form Au = b, where A is a sparse matrix.
We consider here symmetric and positive definite problems. We assume also, that A
is a large scale matrix. It is well known, that in this case the iferative solvers based
on the preconditioned conjugate gradient (PCG) method are the best way to solve
the linear algebraic system. The key problem is how to construct the preconditioning
matrix M. The general strategy of the efficient preconditioning can be formulated
by the following goal: to minimize the relative condition number x{M~-1A} on a
given class of preconditioning matrices, for which it is possible to solve efficiently the
preconditioned system of equations Mv = w for given vectors w.

The class of the preconditioning matrices studied in this paper contains block—
tridiagonal matrices, which blocks are circulants. This approach in particular leads to
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the recently introduced (see [16]) circulant block—factorization (CBF) preconditioners.
The CBF preconditioners incorporate some of the advantages of the block-incomplete
LU factorization methods and the block-circulant methods. We study here the ro-
bustness of the CBF preconditioners for anisotropic second order elliptic boundary
value problems.

The incomplete LU factorization of the matrix is one of the most popular classical
preconditioning technique, see e.g. [2], {3}, [9], {11]. The main idea of these methods
is to approximate the exact factors in the Choleski (LU) factorization of the given
sparse matrix such that the resulting approximate (lower and upper) triangular factors
L and U are with a certain sparse structure. The basic results for the incomplete
factorization (ILU) methods are proved for the case of M-matrices. It is known,
e.g., that for some of the pointwise I LU preconditioners (see [11]) holds the estimate
£(C-1A) = O(V/'N), where N is the size of the discrete problem. The basic general
schemes of the block—! LU methods were proposed in [7], [1], [4],]19]. The block-ILU
methods converge slower than the pointwise ones, which is an disadvantage. The
advantage is that they provide highly parallel algorithms.

Another class of preconditioners based on a diagonal by diagonal averaging of
the block entries of a given matrix A to form a block—circulant approximation C' was
proposed in [6] (see also [13], [14] and {20]). This leads to an improper in general
approximation of the original Dirichlet boundary conditions with periodic ones. The
usage of the block—circulant approximations is motivated by their fast inversion based
on the FFT. For the model problem, it is shown that the block—circulant precondi-
tioner can be constructed such that x(C~1A) = O(v/N) which is asymptotically the
same as for certain (modified) ILU type preconditioners. The block—circulant precon-
ditioners are highly parallelizable, see e.g. [15] and [17], but they are substantially
sensitive with respect to possible high variation of the coeflicients of the given ellip-
tic operator. In this respect they do not provide obvious advantages over the more
classical incomplete block-factorization preconditioners.

The sensitivity of the block-circulant approximations with respect to possible high
variation of the problem coefficients was relaxed in the recently proposed ([16]) circu-
lant block—factorization preconditioner. The idea of this preconditioning technique is
to average the coefficients of the given differential operator only along one of the co-
ordinate directions (say, "y” ). Thus we will give reasonable relative condition number
if we have moderately varying coefficients in the y—direction. This preconditioning
technique incorporates the circulant approximations into the framework of the LU
block—factorization. The computational efliciency and parallelization of the resulting
algorithm is as high as of the block circulant one ([6], [17]). It is proved in [16],
that for the model problem (Au = f) in a rectangle, the relative condition number
k(M-1A) = O(v/N), i.e, we have the same estimate as for the methods mentioned
above.

The goal of the present paper is to study the convergence of the circulant block—
factorization preconditioners for Dirichlet boundary value problems with {possibly
strong) anisotropy. This is one of the important benchmark problems for the robust-
ness of the iterative methods (see, e.g., in [5], [8], [12], {18]). Here we will consider
the case of anisotropy with a fixed dominating direction (e.g., e < 1).

2



The remainder of this paper is organized as follows. In section §2 we describe the
general form of the circulant block-factorization method. A model analysis of the
relative condition number based on exact spectral analysis is presented in §3. In §4
we show numerical tests illustrating various aspects of the behaviour of the circulant
block—factorization preconditioners.

2 Circulant block-factorization preconditioner

We consider the following anisotropic 2D elliptic problem,

0 Ou d du
- 3 (enge) - 5 (enF) = £ ¥@mer W

0 < dlni]l S a(m?T )’ b(ﬂ:?’t ) g Jlnax?
u(z,y) =0, Y(z,y) el = 01},

It

where 2 = (0,1) x (0,1) is covered by a uniform square mesh wy, with a size A =
1/(n + 1) for a given integer n > 1. Problem (1) is approximated by the standard 5-
point finite difference stencil {the finite element method for linear triangular elements
results to a similar result). This discretization leads to a system of linear algebraic
equations

Au = f. (2)

If the grid points are ordered along, e.g., the y-grid lines, the matrix A admits a block-
tridiagonal structure (with blocks formed by the unknowns within a given grid-line).
A can be written in the following form

A= trz’diag(—A,f’,v_l, Ai,h _Ai,i-l-l) g = 1, 2, ey Ty

where

A = tridiag(—a; ;1,055 —0;4), J=({E-n+1l.. . in, 1=12,...,n,
Ajipr =diagla; ), J=0GE-1T)n+1,...,in, 1=1,...,n~1,
j:

Ay = diag(e;;_,), t—Dn+1l,...,in, i=2,...,n

The coefficients a; ; are positive and a;; > a;;_1 + ;541 + @jj4n + @jj_n, 1.6, the
matrix A satisfies the maximum principle.

Using the standard LU factorization procedure, we can first split A = D - L —
U into its block-diagonal and (negative) strictly block-triangular parts respectively.
Then the ezact block-factorization can be written in the form,

A=(X-L){I-X"U),
where the blocks of X = diag( Xy, X,,..., X, ) are to be determined. We have

A=X—-L-U+LXU.



Therefore
X=D-LX,

which gives the recursion
Xy = Ay, and X; = 4;; — Ai,i—1X,-__11Ai—1,i, 1=2,...,n (3)

It is well-known that the above factorization exists if A is, for example, positive
definite. This factorization can be used to solve system (2). This requires solution of
linear systems involving the blocks X;. Note that {X;} are in general full matrices and
the resulting (direct) Gaussian elimination algorithm can become too expensive. The
common idea of the block-ILU factorization methods is to approximate X; (or X; )
by sparse (band) matrices. The idea explored in [16] instead, is to first modify the
original matrix A in such a way that the resulting matrices from the exact factorization
of the thus modified matrix (in place of X;) are now circulant,

Let us recall that a circulant matrix C' has the form (¢, ;) = (c(j_k)mdm), where

m is the size of C. Let us also denote for any given coefficients {cy,¢;,...,¢pn_y) by
C = (cps €1y« s Cp_q) the circulant matrix
cﬂ Cl C2 DR C,,,n_l
Cme1 Co € ++r  Cm_g
¢ € ..n Cm_1 G

Any circulant matrix can be factorized as
C = FAF*, (4)

where A is a diagonal matrix containing the eigenvalues of (', and F' is the Fourier
matrix

1 k
— — 211'1,;71
= Vvm {e }og.ksm—l ‘
Here ¢ stands for the imaginary unit.
The general form of the CBF preconditioning matrix €' for the matrix A is defined
by
C = tridiag(——Ci,i_l,Cv‘i, _Ci,ﬂ-wl) 1= l, 2, ceay R,

T

where C;; = Circulant(A; ;) is some given circulant approximation (to be specified
later) of the corresponding block A, ;. Realizing the algorithm we use the exact block
LU factorization for the preconditioner C'. Note that the recursion (3}, performed for
C, is closed in the class of circulant matrices. That is, the corresponding blocks X;
are circulant and therefore the solution of the preconditioned system involving the
matrix C' can be performed efficiently based on the FFT using the representation (4)
for the blocks {X;}.

Following the notations from [16], in the present paper we use the second CBF
algorithm, originally denoted by CBF2. The approach of defining block circulant
approximations in this case can be interpreted as simultaneous averaging of the matrix
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coefficients and changing of the Dirichlet boundary conditions to periodic ones. The
following mean-values are introduced,

~ i m
Gigt1 = 2 G
i=(i—-1}n+1
1 n di
N D DR VT
1 Tt
Jz=(i—-1Int2
1 in—1 di
Bign = > Tjert
j:(i—l)n+1
_ 1 n
Gigo = D
J=(i—1)n+1
where 0 oo
: 1 n
d; = min{d} ", d;"},
and where
40 = A1y — Qo Uy pnq
1 - 2 H
dV = 4. . — s . —an o an
4 = AG-DntL, -1t 7 AE-1)adn=2)ndl T Gli-1nt1intl T Qli-1)nat1,(i-1)nt2)
Vi=2. .n—1,
d1) = An—1)n+1,{n~1)nt1 ~ Cn—1)ntl,(n—2nt+l ~ ¢(n—1)n+1,(n~1)n+2
n 2 ¥
and
d(n) T I o T Y
1 - )
2
A" = a = i1t — G (i1~ Gin Vi=2 -1
1 = iR in,(i~1)n in,(i+1)n in,in—13 1= 4,...,0 )
dn) = Ap2 2 = Qp? (n—1)n — En2 n2-1
n - 9 '

The circulant blocks are defined explicitly by the formulas

Ciszr = (Gige1,0,...,0) = 855041,
Cii = (G50 —Gii1, 0,00 ,0,~8;5 1)

Then the CBF preconditioning matrix C has the form
C = tridiag(—C;;_1, C; 3 —Ciipr)-

It is easy to see that the matrix C defined by the above CBF algorithm is symmetric
and positive definite (see for more details in [16]).



3 Model analysis of the condition number

We consider in this section the model 2D elliptic problem

— Uy — Elyy, = f(2,¥), Y(z,y) € , (5)
u(z,y) = 0, V{(z,y) € T = 09,

where = (0,1) x (0,1) and w,, is a uniform square mesh with a size b = 1/(n + 1)
for a given integer n > 1. Problem (5) is approximated by the standard 5-point finite
difference stencil. This discretization leads to a system of linear algebraic equations

Au = f. (6)

Following the standard procedure we order the grid points along the y-grid lines.
Then, the matrix A admits a block—tridiagonal structure and can be written in the
form A = tridiag(-1,B,—I), where B = tridiag(—¢,2 + 2¢,—¢) and for the corre-
sponding CBF preconditioner we get M = tridiag(—I, D, —1I) with D = circulant(2+
2e,—¢,0,...0,—¢).

Consider also T' = tridiag(—1,2,—1) and C = (2,-1,0,...0,—1). Then we have

A= eleT+T®I,
M = eI@C+Te®I1.

We estimate in the next lemma the condition number £(M~1 A) by the eigenvalues
of eigenproblems of & reduced size n.

Lemma 1 The condition number of preconditioned system salisfies the estimate

max; A((eT + ap 1)~ HeC + al))

M-t
& A4) < ming A((e7 + a, 1)~ sC + ;. I}))’

where o, = 4sin? 2(7’“_’;;7, k=1,2,...n.

Proof: To estimate the relative condition number of the CBF preconditioner we shall
analyze the eigenvalues of the generalized eigenvalue problem

I@C+T@Nw=Mel@T+T @ Hw. (7)

It is easy to compute the eigenvalues of the matrix 7', that are expressed by . (T') =
4 sin? 2(::3’_1), k= 1,2,...n. Then the matrix T can be factored in the form T' =
VT AV, where A is the diagonal matrix of the eigenvalues of T', the matrix V has
the corresponding eigenvectors of 7' and V is orthogonal matrix (ie., VTV = ).

Following the introduced notations we rewrite (7) in the form

E(VIVY® C + (VITAV) @ Nw = A(e(VIV)@ T + (VTAV) ® Tw. (8)

(VIQNDEI@C+ARDV @ Nw=MNVTRNEI9T+ ARV & Hw.
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Denote by u = (V ® I)w and obtain

(I@C+ARNu=MlI@T + AR Iu. (9)

It follows from (9) that the eigenvalues of (7) are solutions of the split system of

eigenvalue problems
(EC + O!kI)’U,k = )\(ST + CEkI)’U;k. (10)

Obviously, the statement of the lemma follows directly from (10}. L]
We will use in the rest part of this section the determinants A;, defined for a fixed
eigenvalue «y.

Definition 1 We denote by A; = Ay(ay) = det(tridiag(—1,2 + p,—1)), where p =
o, /e, and i stands for the dimension of the determinant.

Now, we derive directly from the definition the recurrence equation

A;=(2+ P)Ai—l A VP (11)

where Ag =1 and A, =2+ p.
In the next lemma we will find explicitly the eigenvalues of a generalized eigenvalue
problem of the form involved in Lemma 1.

Lemma 2 The matriz (T + pI)=1(C + pl) has ezactly two eigenvalues different from

unity, and they are
1+A,

Ao =1
1,2 + A

T

Proof: We have to consider the eigenvalue problem (10) (recall that p = oy /e), which
can be rewritten in the form

[(\ = 1)p] + AT — Clu, = 0.

The last equation is equivalent to the following algebraic equation about the charac-
teristic polynomial, i.e.

24p -1 0 0 (-

1 24p -1 0 0 0
PO =( -1 0 —1 24p -1 0 0 |=0 (12

& 0 0 0 -1 2+49p




To solve the equation (12} we factorize the matrix of the above determinant.

( 1
2490 -1 il 0 0 1
-1 24p -1 0 0 0
0 -1 24p -1 0 0 =
\ ﬁ 0 0 0 —1 2+p}
1 0 0 0 ¥y 2z O &
z; 1 0 0 0 yy, 2 &
0 =z, 1 0 0 0 ys, & |
\7]1 T2 s 1 0 0 0 Un
where .
r,=—— 1=1,...n—2
Y
Z=—-1 1=1,...n—-2
yi=2+p
Y, =2+p- t=2,...n—1
Yi—1
¢ = 1
TTA-1
i1 i .
51:: = — 2:2,...n—1
v (A— DIy,
§i1
£ =-1+4 =1+ pryn
! Yiot (A=1) Hj=12 Yi
7]1:é =1,...n—1
Ys
1
i=1,...n—2

nn— = - + i—
! Y1 (A o 1) H_?‘=11 yj



n—1

”2+P“Z£U¢

=1
Usinie that A, =T1* .y, for:=1,2,...n — 1 we get the expressions
H bl ¥y 3y & I

24p- Y : Lo
yn = e —
g o A=12A40 1 Y (A—1A,_,

and
PO = Is= e =
(A _ l)ﬂ' - e - n 1Yn =
= 2+ph z : Ao e =
- p n—1 n—l = 1)2A"A1‘_1 n—2 A _ 1
A 1 n—1 1 9
= A, - — . 14
" (Awl)zfzz}.,;&,-wl_‘_)\—l (14)
Now we determine A; from the recurrence equation (11), and find
1 — p25+2
A= 15
-9 1o
where 1) is one of the roots (to be chosen later) of the square equation
¥ = (2+p)p+1=0. (16)

Now, we simplify (14) as follows

~ 1 —gp2n 7l 1/,2;’—1(1 — 2)? B
D i e

. 1 — il 1 1 _
- P ;(1_,¢,21’_1__¢2i+2)_

_ 1 — op2n 1 1 _
- P (1_,752_1%,#271)””

1 e 2l 2 —2
S el a7
Y2 (1 - 4F)
Substituting (15) and (17) into (14) we get the final presentation of the polynomial
P(}X), and of the related equation in the form

_¢%H-+mx—n_ 1_¢%4)}=& (18)

(1 — %) P2 (1 — o2
Obviously, the above equation has (rn — 2) roots equal to unit. The last two roots are
solutions of the square equation in the brakes, and have the form

n{] — 2 + 1 — th2n
14 SUEIEVON)

PQ)= (-1 (A-1)




We rewrite now the last equality into the terms of A;, and derive the representation

14 A, _
Mg =1+ —“””X—la (19)
Pp
which completes the proof of the lemma. |

Let us remind, that the goal of this section is to estimate the relative condition
number of the CBF preconditioner in the terms of n and . This result is the contents
of the next theorem.

Theorem 1 The relative condition number of the CBF preconditioner for the model
problem (6) satisfies the inequalily

(M-1A) < V2e(n+1)+2.
Proof: Combining the results from Lemma 1 and Lemma 2 we get the estimate

w(M-14) < maxy Ay

ming A,

where A, , are given by (19), depending on k, as p = oy Je. Now we chose ¢ to be
the larger root of {16}, which implies 1 > 1. It follows from (15), that A; can be
expanded in the form

1

1
o . i—2 i
A; 1/)1.—{-1/),‘._2+- + 242
Hence
TI)ATI 1 + ¢n
and therefore
1—A 1—A, o A
)‘2 = 1+ n—1 =14+ 1 . ( ) 1 - "
An ¢An-1 + i TpAn—i + :ﬁﬁ

(/(tb“]-)An—l_’l/)_l_ 1

(% +1)An 1 1 -{—4/,0,

A <2 (21)

Combining the estimates {20) and (21) we get the estimate for the relative condition

number
4
M-1A) <2\/1+——21}1+—-5~»~
ey

At the end, we use the inequality a, = 4sin’ 2(n +1) > & +1)2’ and obtain the final

(20)

and

result of the theorem, namely

K(M=1A) < /4 + 2¢(n +1)2 < V2e(n + 1) + 2. (22)
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Remark 1 It is clear that for ¢ = 1 the last theorem gives the estimate
w(M-1A) < V2(n+2)

for the Poisson model problem. This estimate improves considerably the constant in
the related result from [16], that was obtained using the estimation technique from [6].

4 Numerical tests

The numerical tests presented in this section illustrate the convergence rate of the
CBF algorithm for anisotropic elliptic problems. The computations are done with
double precision on a SUN SPARC Station 2. The iteration stopping criterion is
|lrNie}]/|}r0]] < 10-6, where ri stands for the residual at the jth iteration step of the
preconditioned conjugate gradient method.

Example 1. The first test problem is the model problem analyzed in the previous
section, i.e.

— gy — Uy, = f(z,y), Y(z,y) € @ =(0,1) x (0,1), (23)
u(z,y) = 0, V{(z,y) e I = 00

Table 1 shows the number of iterations as a measure of the convergence rate, where
the mesh size n and the ratio of anisotropy € are varied. As we proved in Theorem 1,
the CBF algorithm is characterized by the estimate k(M1 A) < V2e(n+1)+2. The
presented data demonstrate a behaviour of the convergence, that confirms the high
accuracy of the estimate of the relative condition number. In particular, the data
from the first column (€ = 10) shows very clearly the importance of the ordering the
unknowns along the direction of the weak anisotropy. Let us remind, that the proper
ordering for the block-ILU algorithms is just the opposite, i.e. along the direction of
the strong anisotropy (see, e.g., in [19]).

Table 1: Number of iterations for the model problem.

nle=10.le=1.{e=01]e=001|e=0.001"!e=0.0001 | ¢ =0.00001
8 15 10 7 3 9 9 5
16 19 13 9 5 4 4 4
32 25 17 10 7 it 4 4
64 31 20 13 8 3 4 3
128 42 28 17 11 7 4 3
256 56 34 22 14 9 6 3
512 (i 47 28 18 11 7 4

We consider further test problems with variable coefficients in the form

11



i) du ] du
\a(‘x,y)a{;/ - Ea_y (b(m,y)*&,‘;) = [,

u{z,y) = 0,

Y(z,y) € (0,1) x (0,1),
Y(z,y) € I' = 0Q.

(24)

oz

Example 2. Two test problems are considered in this example, where the problem
coefficients have the form

1 < 0.5
(A) a(z,y) = b(z,y) = { 100 > 0.5 "

1 z < 0.5
(B) a(z,y) = b{z,y) = { 0.01 z>05 "

In these cases the coefficients have jump along the line z = 0.5. Table 2 and Table 3.
show that this kind of coefficient jumps has a weak influence on the convergence of
the CBF preconditioner. Such a behaviour of the number of the iterations is natural.
Note that in these cases the ratio of anisotropy remains equal to € in the subdomains,
independently of the coeflicients jump.

Table 2: Number of the iterations; Example 2-A.

nle=10.le=1.]e=01]e=001]¢e=0.001 |e=0.0001 | e=0.00001
8 15 11 8 6 6 6 6
16 19 12 9 6 6 6 6
32 24 16 10 7 6 6 6
64 35 20 13 3 6 6 6
128 43 27 17 11 7 6 6
256 58 34 22 14 9 6 6
512 75 46 29 18 11 8 6

Table 3: Number of the iterations; Example 2-B.

mle=10 le=1.]e=011e=0.01]¢e=0.001 | e=0.0001 | e =0.00001
8 14 11 8 6 6 6 6
16 18 13 9 6 6 6 6
32 25 17 11 7 6 6 6
64 33 20 13 8 6 6 6
128 42 26 17 11 ] 6 6
256 h6 34 22 14 9 7 6
512 79 47 29 18 12 8 6

Example 3. In this example we consider the test problem (24} with
1
a(z,y) =1+ 3 sin(27z), b(z,y) = Y.

12



The coeficient a(z,y) is oscillating function of z. As in the previous example this
does not changes the general behaviour of the iterative process. The second coefficient
bz, y) varies moderately, and as a result, the number of the iterations shown in Table
4 is weakly increased.

13



Table 4: Number of iterations for the problem (24), where a{z,y) = 1 + 1 sin(27z)
and b(z,y) = e®tv.

nle=10. le=1.1e=0.1]e=001|e=10.001 |e=00001|e=0.00001
8 15 13 9 6 6 6 6
16 23 16 11 8 5 5 5
32 31 21 14 10 7 4 4
64 41 27 18 12 9 6 4
128 54 37 26 16 11 8 5
256 72 56 37 20 14 10 7
512 | 109 93 61 28 18 12 9

Example 4. In the last test example we consider coeflicients in the form
L,
a(z,y) =1+ 55111(271'(3: +y)), blz,y)=e"TY.

They differ a bit from the previous ones. The coefficient b(z, 1 ) is exactly the same,
while now a(z,y) is oscillating function of z and y. The corresponding number of
iterations are presented in Table 5. The number of iterations is larger than in the
previous example, that reflects the varying the oscillating coefficient as function of y.

Table 5: Number of iterations for the problem (24), where a{z,y) = 141 sin(27(z+y))
and b{z,y) = eotv,

nle=10. |e=1 ]e=01]e=001]€c=0.00l [e=0.0001 | e=0.00001
8| 16 13 9 10 10 11 11
16| 23 16 13 11 11 12 12
32| 33 21 16 14 12 12 12
64| 46 27 21 17 13 12 12
128 | 63 39 29 20 16 13 12
256 | 78 57 41 26 19 14 12
512 114 | 92 62 35 22 17 13
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