UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

A Fast Iterative Algorithm for Elliptic

Interface Problems

Zhilin Li

September 1995
CAM Report 95-40

Deparitment of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555



A FAST ITERATIVE ALGORITHM FOR ELLIPTIC INTERFACE
PROBLEMS *

ZHILIN LIt

Abstract. A fast, second order accurate iterative method is proposed for the elliptic equation

V- (B, y)Vu) = flx,y)

in a rectangular region £ in 2 space dimensions. We assume that there is an irregular interface across
which the coefficient 3, the solution u and its derivatives, and/or the source term [ may have jumps.
We are especially interested in the cases where the jump in § is large. The interface may or may not
align with a underlying Cartesian grid. The idea in our approach is to precondition the differential
equation before applying the immersed interface method proposed by LeVeque and Li [SINUM, 4
(1994), pp. 1018-1044]. In order to take advantage of fast Poisson solvers on a rectangular region, an
intermediate unknown function, the jump in the normal derivative across the interface, is introduced.
Our discretization is equivalent to using a second order difference scheme for a corresponding Poisson
equation in the region, and a second order discretization for a Neumann-like interface condition, Thus
second order accuracy is guaranteed. A GMRES iteration is employed to solve the Schur complement
system derived from the discretization. A new weighted least squares method is also proposed to
approximate interface quantities from a grid function. Numerical experiments are provided and ana-
lyzed. The number of iterations in solving the Schur complement system appears to be independent
of both the jump iu the coefficient and the mesh size,

Key words. elliptic equation, discontinuous coefficients, immersed interface method, Cartesian
grid, Schur complement, GMRES method, preconditioning

AMS subject classifications. 65N06, 65N22, 65N50, 65135

1. Introduction. Consider the elliptic equation

V {3z, y)Vu) = flz,y), z€

(1.1)
Given BC on 900

in a rectangular domain Q in two space dimensions. Within the region, suppose there
is an irregular interface I' across which the coefficient 3 is discontinuous. Referring to
Fig 1, we assume that (z,y) has a constant value in each sub-domain,

02) sea={ 5 lnen

The interface I' may or may not align with a underline Cartesian grid.
Depending on the properties of the source term f (z,y), we usually have jump
conditions across the interface I';

(1.3) ] Xt (X(s),Y(s)) —u (X(s),Y(s)) = w(s),
(14) [Bua] & Brul (X(s),Y () — B us (X(s),Y(s)) = v(s),

* This work was supported by URI grant #N00014092-J-1890 from ARPA, NSF Grant DMS-
9303404, and DOE Grant DE-FG06-93ER25181.

t Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095.
(zhilin@math.ucla.edu),




2 Z. LI

(a) (b)

FIG. 1. Two typical compulational domains and interfaces with uniform Carlesian grids.

where (X (s),Y(s)) is the arc-length parameterization of I, the superscripts — or -+
denotes the limiting values of a function from one side or the other of the interface.
These two jump conditions can be either obtained by physical reasoning or derived
from the differential equation, see [2, 9, 14] etc. Note in potential theory, v(s) # 0
corresponds to a single layer source along the interface I', while w(s) # 0 corresponds
to a double layer source. The normal derivative u, usually has a kink across the
interface due to the discontinuity in the coefficient 8. If w(s) # 0, then the solution
u itself would be discontinuous across the interface.

There are many applications in solving elliptic equations with discontinuous coef-
ficients, for example, steady state heat diffusion or electrostatic problems, multi-phase
and porous flow, solidification problems, and bubble computations etc. There are two
maijn concerns in solving (1.1)-(1.4) numerically:

e How to discretize (1.1)-(1.4) to certain accuracy. It is difficult to study the
consistency and the stability of a numerical scheme because of the discontinn-
ities across the interface.

» How to solve the resulting linear system efficiently. Usually if the jump in the
coefficient is large, then the resulting linear system is ill-conditioned, and the
number of iterations in solving such a linear system is large and proportional
to the jump in the coeflicient.

There are a few numerical methods designed to solve elliptic equations with discon-
tinuous coefficients, for example, harmonic averaging, smoothing method, and finite
element approach efc., see [2] for a brief review of different methods. Most of these
methods can be second order accurate in the I-1 or the [-2 norm, but not in the [-oc
norm, since they may smooth out the solution near the interface.

A. Mayo and A. Greenbaum [14, 15} have derived an integral equation for elliptic
interface problems with piecewise coefficients. By solving the integral equation, they
can solve such interface problems to second order accuracy in the l-oo norm using
the techniques developed by A. Mayo in {13, 14] for solving Poisson and biharmonic
equations on irregular regions. The total cost includes solving the integral equation
and a regular Poisson equation using a fast solver, so this gives a fast algorithin. The
possibility of extension to variable coefficients is mentioned in [14].

R.J. LeVeque and Z. Li have recently developed a different approach for discretizing




A FAST ALGORITHM FOR INTERFACE PROBLEMS 3

elliptic problems with irregular interfaces called the immersed interface method (1IM)
[2, 9], which can handle both discontinuous coefficients and singular sources. This
approach has also been applied to three dimensional elliptic equations [7], parabolic
equations[10, 11, 12], hyperbolic wave equations with discontinuous coefficients [4, 5],
and the incompressibie Stokes flow problems with moving interfaces {3, 6]. L. Adams 1]
has successfully implemented a multi-grid algorithm for the immersed interface method.
However, there are some numerical examples with large jumps in the coeflicients in
which the immersed interface method may fail to give accurate answers or converge
very slowly.

In this paper, we propose a fast algorithm for elliptic equations with large jumps
in the coefficients. The idea is to precondition the elliptic equation before using the
immersed interface method. In order to take advantage of fast Poisson solvers on
rectangular regions, we introduce an intermediate unknown function [w,](s) which is
defined only on the interface. Then we discretize a corresponding Poisson equation,
which has different sources from the original one, using the standard five-point stencil
with some modification in the right hand side. Our discretization is equivalent to using
a second order difference scheme to approximate the Poisson equation in the interior
region QF and Q~, and a second order discretization for the Neuwmanun-like interface
condifion

(1.5) grut — B u, =v.

Thus from the error analysis for elliptic equations with Neumann boundary conditions,
for example, see [17], we would have second order accurate solution at all grid points
including those near or on the interface. A GMRES method is employed to solve
the Schur complement system derived from the discretization. A new weighted least
squares method is proposed to approximate interface quantities such as u¥ from a
grid function defined on the entire domain. This new technique has been successfully
applied in the multi-grid method for interpolating the grid function between different
levels [1] with remarkable improvement in the computed solution. These ideas will be
discussed in detail in the following sections. The method described in this paper seems
to be very promising not only because it is second order accurate, but also because the
number of iterations in solving the Schur complement system is almost independent
of both the jumps in the coefficients and the mesh size. This has been observed from
our numerous mumerical experiments, though we have not been able to prove this
theoretically. Our new method has been used successfully for the computation of some
inverse problems [20].

This paper is organized as follows. In Section 2, we precondition (1.1)-(1.4) to
get an equivalent problem. In Section 3, we use the IIM idea to discretize the equiv-
alent problem and derive the Schur complement system. The weighted least squares
approach to approximate u¥ from the grid function u;; is discussed in Section 4. Some
implementation details are addressed in Section 5. Brief convergence analysis is given
in Section 6. An efficient preconditioner for the Schur complement system is proposed
in Section 7. Numerical experiments and analysis can be found in Section 8. Some
new approaches in the error analysis involving interfaces are also introduced there.

2. Preconditioning the PDE to an equivalent problem. The problem we
intend to solve is the following:



Problem (1).
(2.62) V{Bz,y)Vu) = flz,y),
(2.6b) Given BC  on 00,
with specified jump conditions along the interface I
(2.7a) [u] = w(s),
(2:7b) Bu,] = vs).

Consider the solution set u,(z,y) of the following problem as a functional of g(s).
Problem (II).

Au+vﬁw -Vu-———f— ifr e QF

(2.8a) Vf [;L ﬂf+
But - Vu= o 2 eQ,
(2.8b) Given BC' on 011,
with specified jump conditions®
(2.9a) [v] = wis),
(2.90) bl = g(s).
Let the solution of Problem (I) be u*(z,y), and define
(2.10) 0(s) = 1)

along the interface I'. Then w*{z,y) satisfies the elliptic equation (2.8a)-(2.8b) and
jump conditions (2.9a)-(2.9b) with g(s) = ¢*. In other words, u,.(z,y) = u*(z,¥),
and

Ot

(2.11) (87521 = o).

is satisfied. Therefore, solving Problem (I) is equivalent to finding the corresponding
g¢* and then wu,.(z,y) in Problem (II). Notice that g* is only defined along the
interface, so it is one dimension lower than w(z,y). Problem (II) is an elliptic interface
problem which is much easier to solve because the jump condition [1,] is given instead
of [Bu,]. With the immersed interface method, it is very easier to construct a second
order scheme which also satisfies the conditions of the maximum principle. In this
paper, we suppose 3 is piecewise constant as in (1.2}, so Problem (II) is a Poisson
equation with a discontinuous source term and given jump conditions. We can then
use the standard five-point stencil to discretize the left hand side of (2.8a), but modify
the right hand side to get a second order scheme, see [2, 9] for the detail. Thus we
can take advantage of fast Poisson solvers for the discrete system. The cost in solving

! The jump conditions (2.9a) and (2.9b) depend on the singularities of the source term flz,y)
along the interface. However, in the expression of (2.8a), we do not need information of f(z,y) on
the interface T, so there is no need to write f(z,y) differently.




A FAST ALGORITHM FOR INTERFACE PROBLEMS 5

Problem (II) is just a little more than that in solving a regular Poisson equation on the
rectangle with a smooth solution. For more general variable coefficient, the discussions
in this paper are still valid except we can not use a fast Poisson solver because of the
convection term (Vg - Vu)/B in (2.8a). However a multi-grid approach developed by
L. Adams {1} perhaps can be used to solve Problem {II}.

We wish to find numerical methods with which we can compute u,. (z,y} to second
order accuracy. We also hope that the total cost in computing g* and wu, is less
than that in computing u,. through the original Problem (I}. The key to success is
computing g* efficiently. Below we begin to describe our method to solve g*. Once
g" is found, we just need one more fast Poisson solver to get the solution v*(z,y}.

3. Discretization. We use a uniform grid on the rectangle [a,8] x [¢,d] where
the Problem (I} is defined:

z;=a+ih, y; =a+jh, 0<i<m, 0<j<n

We assume that A = (b—a)/m = (d—¢)/n for simplicity. We use a cubic spline X(s)=
(X (s),Y(s)) passing through a number of control points (X, Y2), k=1,2,--+,m, to
express the immersed interface, where s is the arc-length of the interface and (X, Y}) is
the position of the k-th point on the interface I'. Other representations of the interface
are possible. A level set formulation is currently under investigation.

Any other quantity g(s) defined on the interface such as w(s) and g(s) can also
be expressed in terms of a cubic spline with the same parameter s. Since cubic splines
are twice differentiable we can gain access to the value of g(s) and its first or second
derivatives at any point on the interface in a continuous manner.

We use upper case letters to indicates the solution of the discrete problem and
lower case letters for the continuous solutions.

Given W, and G, the discrete form of jump conditions (2.92) and (2.9b}, with
the immersed interface method, the discrete form of (2.8a) can be written as

_fi o 1<i<m—t1, 1<j<n—1,

(3.12) Ly Uy B i
where
LU U1+ Vicry + Ui + Uy — 404y
Wiy — h2 }

is the discrete Laplacian operator using the standard five-point stencil. Note that if
(x;,y;) happens to be on the interface, then fi;/B is defined as the limiting value
from a pre-chosen side of the interface. Cy; is zero except at those irregular grid
points where the interface cuts through the five-point stencil. A fast Poisson solver,
for example, FFT, ADI, Cyclic reduction, or Multi-grid, can be applied to solve (3.12).
The solution Uy; dependson Gp, Wi, k=1,2,..., continuously. In matrix and vector
form we have

(3.13) AU + B(W, @) = F,

where AU = F is the discrete linear system for the Poisson equation when W, Gy
are all zero. The solution is smooth for such a system. B(W,G) is a mapping from
W = W, W,,...,W,]" and G =[Gy, Gy, .-, G )" to Cy in (3.12). From [2, 9] we




6 Z. 11

know that B(W,G) depends on the first and second derivatives of w(s), and the first
derivative of g(s), where the differentiation is carried out along the interface. At this
stage we do not know whether such a mapping is linear or not. However in the discrete
case, all the derivatives are obtained by differentiating the corresponding splines which
are linear combination of the values on those contiol points. Thercfore B(W,G) is
indeed linear function of W and G and can be written as

B(W,G) = BG — B,W,
where B and B, are two matrices with real entries. Thus (3.13) becomes
AU+BG = F+BW

(3.14) “ g

The solution U of the equation above certainly depends on G and we are interested in
finding G* which satisfies the discrete form of (2.7b)

(3.15) UG~V = BYUHGT) - B UL (G") =V =0,

where the components of the vectors U," and U, are discrete approximation of the
normal derivative at control points from each side of the interface. In the next section,
we will discuss how to use the known jump G, and sometimes also V, to interpolate
U,; to get U and U, in detail. As we will see in the next section, Ut and U, depend
on U, G and V linearly

gtUr —pU; —V = EU+DG+PV -V,

(3.16)
= EU+DG-PV

where E, D, and P are some matrices and P = I — P. Combine (3.14) and (3.16) to
obtain the linear system of equations for I/ and G:

o [ ollel-[a]

The solution U and G are the discrete forms of u,.(z,y) and g*, the solution of
Problem (II) which satisfies (2.11).

The next question is how to solve (3.17) efficiently. The GMRES method applied
to (3.17) directly or the multi-grid approach [1] are two attractive choices. However,
in order to take advantage of fast Poisson solvers, we have decided to solve G in (3.17)
first, and then to find the solution U by using one more fast Poisson solver. Eliminating
U from (3.17) gives a linear system for G

(D-EA'B)G = PV-EA'F

(3.18) o

This is an n, X n, system for G, a much smaller linear system compared to the one
for U. The coefficient matrix is the Schur complement of D in (3.17). In practice,
the matrices A, B, E, D, P, and the vectors V, F are never formed. The matrix and
vector form are merely for theoretical purposes. Thus an iterative method, such as
the GMRES iteration [18], is preferred. The way we compute (3.16) will dramatically
change the condition number of (3.18).




A FAST ALGORITHM FOR INTERFACE PROBLEMS 7

4. A weighted least squares approach for computing interface quanti-
ties from a grid function. When we apply the GMRES method to solve the Sclur
complement system of (3.18) for G*, we need to compute the matrix-vector multiplica-
tion, which is equivalent to computing U, and U with the knowledge of U;; and the
jump condition [/,]. This turns out to be a crucial step in solving the linear system
(3.18) for G*. Our approach is based on a weighted least squares formulation. The
idea described here can also be, and has been, applied to the case, where we want to
approximate some quantities on the interface from a grid function. For example, inter-
polating U;; to the interface to get U—(X,Y) or U*(X,Y), where (X,Y) is some point
on the mterface This new approach has also been successfully applied to the multi-
grid method for interpolating the grid function between different levels by L. Adams[1]
with remarkable improvement in the computed solution.

We start from the continuous situation, the discrete version can be obtained ac-
cordingly. Let u(z,y) be a piecewise smooth function, with discontinuities only along
the interface. We want to interpolate u(z;,y;) to get approximations to the normal
derivatives u;; (X,Y) and w} (X,Y’), which are only defined on the interface, to second
order.

Our approach is inspired by Peskin’s method in interpolating a velocity field u(z, y)
to get the velocity of the interface using a discrete delta function. The continuous and
discrete forms are the following:

(4.19) w(X) = f fg w(z,y) §(X — 2) 8(Y — y) dudy,

(4.20) wWX) = hEYwy 6(X —m) 6 (Y — vy,

i3
where X = (X,Y), and §, is a discrete delta function. A commonly used one is

5 () { 7+ cos(ra/2m) i la] <2

Notice that §,(z) is a smooth functmn of z. Peskin’s approach is very robust and only
a few neighboring grid points near X are involved. However this approach is only first
order accurate and may smear out the solution near the interface.

Our interpolation formula for u;;, for example, can be written in the following form

(4.21) up (X) ~ Z’Yij Ui do (X - 5 - Q,

4
where d,(r) is a function of the distance measured from the point X,

%1 cos(mr/a)) i r<a
(4.22) d"‘(r):aa“ﬂ(?")x{ 0( Fele) if 'rioz.

() is a correction term which can be determined once 7;; are known. Although we are
trying to approximate the normal derivatives here, the same principle also applies to
the function values I/ as well with different choices of 7;; and Q. Note no extra effort
is needed to decide which grid points should be involved. Therefore, expression (4.21)
is robust and depends on the the grid function u,; continuously, two very attractive




8 7. LI

properties of Peskin’s formula (4.20). In addition to the advantages of Peskin’s ap-
proach, we also have flexibility in choosing the coefficients ;; and the correction term
Q to achieve second order accuracy. The parameter « in (4.21) can be fixed or chosen
according to problems, see Section 8,

Below we discuss how to use the immersed interface method to determine the
coeflicients ;; and the correction term . They are different from point to point on
the interface. So they should really be labeled as vy, g, efe. But for simplicity of
notation we will concentrate on a single point X = (X,Y) and drop the subscript X,

Since the jump condition is given in the normal direction, we introduce local
coordinates at (X,Y),

¢ = (z—-X)cosb+ (y—Y)sinb,

(4.23) .
n = —(z-X)sinf+(y—Y) cosd,

where @ is the angle between the z-axis and the normal direction. Under such new
coordinates, the interface can be parameterized by & = x(n), # = 7. Note that x(0) =
0 and, provided the interface is smooth at {X,Y), x'(0) = 0 as well. The solution of
the Poisson equation Problem (II) will satisfies the following interface relations, see
[2, 9] for the derivation,

ut =u" +w,

+w —_—
ug =u; + g,
wf =y

(4.24) i

ufe = uge T gx" —w' + [g]
Uyy = Uy ~gX" W,

“?n =Ug, T 9 X"+

Let (£;,7m;) be the £ coordinates of (z;,7;), then we have
1 1
(4.25) ulzyy;) = wFHuf&uyn+ 5“?5 &+ §u$,, s+ ’U»étn &m; + O(°)

where the + or — sign depends on whether (&;,7;) lies on the + or — side of I'.
Using Taylor expansion of (4.25) about (X,Y) in the new coordinates, after col-
lecting terms we have

up o~ Dy (Y da(X — Z5l) - @
i,5

= g u” +aut +ag U + 0y u;r + ag iy, —}—aﬁu:{—#a:r Ug ¢ + Og ug“e
+ ag uyy + Gip Uy + a1y ug, T 0y ul, —Q+ O(h® max |y;])

= (ag + ap)u” + (e +ag)ug + (a5 + agluy + (ar + ag)ug
+ (ag + @yp)umy, + (011 + ar2)ug, + ayfu] +ay [usg] + aglu,]
+ agluge] + Gioftg,] + aralite ] — @ + O(h* max |y;;1),

where the a; are given by




A FAST ALGORITHM FOR INTERFACE PROBLEMS 9

a= Y, YdallX ) w= 3,  Tda(X -
(mivy)EQ™ {zs,yi €0t
Gy = Z ExYig 4. (X — 5350 ay = Z Eevis Ao (| X — 235])
CIR =t (miy; )8t
@y = Z M Yis do(|X — 3} g = Z M ¥is e (X — @35))
(v Q™ (i yy)efat
1 —
1 _, . - 1., .
m= Y, s&rdd(X —al) % > gt da(X )
(z:,07)EQ (C TR 1Y)
1 -
1 - . _ 1. .
Gy = Z 5”%:7:‘3’ dcx(iX - miji) 10 z . 9 The"Yi da(lx mtg])
(@iys )EQ™ (zi,u; 30
ap = Y. &Garida(IX —ag) %27 ST Gy da(IX — 75))
(w0 EQ {ziy;)e0t

From the interface relations (4.24) we know that all the jumps in the expression above
can be expressed in terms of the known information. Since u, = u;, we obtan the
linear system of equations for the coefficients -y;;:

aq +a2 =

Qg +G.4 =

ag;+dg =

-

(4.26)
473 +ag =

dg + g =

o o @ [ =]

M+ =

Note that we would have the exact same equation if we want to interpolate a smooth
function w(z;,y;) to get an approximation u, at X to second order accuracy. The dis-
continnities across the interface only contribute to the correction texm . This agrees
with our analysis in [2, 9] for Poisson equations with discontinuous and/or singular
sources, where we can still use the classical five-point scheme but add a correction
term to the right hand side at irregular grid points.

If the linear system (4.26) has a solution, then we can obtain a second order
approximation to the normal derivative u,, by choosing an appropriate correction ferm
(. Therefore we want to choose « big enough, say « > 1.6h, such that at least six
grid points are involved. Usually we have an under-determined linear system which
has infinitely many solutions. We should then choose the one vj; with the minimal
2-norm

E (’)’%)2 =113in§ fﬁj, subject to  (4.26).
. i T
i H

For such a solution, each +; will have roughly the same magnitude O(1/h), so
'yfjda(p? — x7,;]) is roughly a decreasing function of the distance measured from X
This is one of desired properties of our interpolation. In practice, only a hand full of
grid points, controlled by the parameter «, are involved. Those grid points which are
closer to (X,Y) have more influence than others which are further away.




10 Z. 11

When we know the coefficients ;;, we also know the ¢;’s. From the a,’s and the
interface relations (4.24), we can determine the correction term @ easily,

f
= aywta,gtoegw +a ( "—w"—l—[—}
(4.27) Q 2 4 g T Og 8 ‘.GX 8]

+ay [w" - QX"] +aps ('w'X” + .9’)-

Thus we are able to compute u; to second oxder accuracy. We can derive a formula
for ul in exactly the same way. However, with the relation u) = u, + g, we can write
down a second order interpolation scheme for u)} immediately

(4.28) uf o~ Y uleny)da(X - E) - Q+ g,

i

where -;; is the solution we computed for u,,. In the next section, we will explain an
important modification of either (4.21) or (4.28) depends on the magnitude of 57 or
pr.

We should mention another intuitive approach, one-sided interpolation, in which
we only use grid points on the proper side of the interface in computing a limiting
value at the interface:

- . + _ .
Uy = Z Viz Yigs Up #= E Tij Yij-

(miu; )0~ (zi,yi)eft

This approach does not make use of the interface relations (4.24), so we have to have
at least six points from each side in order to have a second order scheme. Note that
we can also use the least squares technique described in this section for one-sided
interpolation. This approach has been tested already. The weighted least squares
approach using the interface relations (4.24) appears superior in practice. It has the
following advantages:

o Fewer grid points are involved. When we make use of the interface relation,
compared to the one-sided interpolation, the mumber of grid points which are
involved is reduced roughly by half,

e Second order accuracy with smaller error constant. The grid points involved
in our approach are clustered around the point (X,Y) on the interface, and
those which are closer to {X,Y) have more influence than those which are
further away in our weighted least squares approach. We have smaller error
constant in the Taylor expansions compared to the one-sided interpolation.
The error constant can be as much as 8§ ~ 27 times smaller as the one-sided
interpolation. In two dimensional computation, we can not take m and n to
be very large, to have a smaller error constant sometimes is as important as
to have a high order accurate method.

s Robust and smoother error distribution. We have a robust way in choosing
the grid points which are involved. The interpolation formulas (4.21) and
(4.28) depend continuously on the location (X,Y) and the grid points (z;,y;),
and so does the truncation error for these two interpolation schemes. In other
words, we will have a smooth error distribution. This is very important in
moving interface problems where we do no want to introduce any non-physical
oscillations.




A FAST ALGORITHM FOR INTERFACE PROBLEMS 11

» No break downs. In one-sided interpolation, sometimes we can not find enough
grid points in one particular side of the interface, then the one-sided interpo-
lation will break down. In our approach, every grid point on one side is
connected to the other by the interface relations (4.24). So no break down will
oceur.

o Trade off or disadvantages. The only trade off of our weighted least squares
approach is that we have to solve a under-determined 6 by p linear system of
equation (where p > 6) instead of solving one that is 6 by 6. The larger o is,
the more computational cost in solving (4.26). Fortunately, the linear system
has full row rank and can be solved by the LR-RU method [8] or other efficient
least squares solvers.

5. Some details in implementation. The main process of our algorithm is to
solve the Schur complement system (3.18) using the GMRES method with an initial
guess

G(U} = {GEO)a Géﬁ)) T Gi(mc:; } .

We need to derive the right hand side, and explain how to compute the matrix-vector
multiplication of the system without explicitly forming the coefficient matrix. The
right hand side needs to be computed just once which is described below.

5.1. Computing the right hand side of the Schur complement system.
If we take @ = 0, and apply one step of the immersed interface method to solve
Problem (II) to get U{0), then

U@©)=A"'F.

With the knowledge of U{0) and G = 0, we can compute the normal derivatives on
each side of the interface to get UF(0) using the approach described in the previous
section. Thus the right hand side of the Schur complement system is

V = PV -~EA'F
= PV — EU(0)
= —(BYUF(0)-p U, (0)-V).
The last two equalities are obtained from {3.16) and (3.18) with G = 0. Now we are

able to compute the right hand side of the Schur complement system.

5.2. Computing the matrix-vector multiplication of the Schur comple-
ment, Now consider the matrix-vector multiplication

(5.29) (D—-EAB)Q

of the Schur complement, where () is an arbitrary vector of dimension n,. This involves
essentially two steps.
1. A fast Poisson solver for computing

(5.30) U(@)=4"(F - BQ)

which is the solution of Problem (II) with G = @, sce (3.14).




12 Z. LI

2. The weighted least squares interpolation to compute U (Q} and U, (Q).
The residual vector in the flux jump condition is

(5.31) RQ) =V - (U (@)~ 8 U (@)

which is the same residual vector of the second equation in (3.17) from our definition.
In other words, see also (3.16)

(5.32) PV —(DQ + EU(Q)) = R(Q)-

The matrix-vector multiplication (5.29) then can be computed from the last equality
of the following derivation:

(D-EAT'B)Q = DQ-EATBQ

= DQ@Q+EU(Q)—EA™'F from (5.30)
= DQ+EUQ -PV+V
= —-R(@Q)+V from (5.32).

Note that from the second line to the third line we have used the following
EA'F=PV -V

which is defined in (3.18).

It worth to point out that once our algorithm is successfully terminated, which
means that the residual vector is close to the zero vector, we not only have an ap-
proximation @ to the solution G*, an approximation U(Q) to the solution U, bult also
approximations UZ(()) to the normal derivatives from each side of the interface. The
normal derivative information is very useful for some moving interface problems where
the velocity of the interface depends on the normal derivative of the pressure.

6. Convergence Analysis. As to this point, we have had a complete algorithm
for solving the original elliptic equations of the form Problem (I). We have transformed
the original elliptic equation to a corresponding Poisson equation with different source
term and jump conditions, or internal boundary conditions, (2.9b) and (2.11}. The
jump condition (2.11) is Neumann-like boundary condition which involves the normal
derivatives from each side of the interface. In our algorithm, the classical five-point
difference scheme at regular grid points is used. This discetization is second order
accurate. As discussed in Section 4, the Neuwmann-like internal boundary condition
(2.11) is also discretized to second order. So from the analysis in Chapter 6 of [17} on
Neumann conditions, we should be able to conclude second order convergence globally
for our computed solution, provide that we can solve the Poisson Problem (II) to second
order accuracy. This is confirmed in our early work [2, 9]. Numerical experiments have
confirmed second order accuracy of the computed solution for numerous test problems,
see Section 8.

7. An efficient preconditioner for the Schur complement system. With
the algorithm described in previous sections, we are able to solve Problem I to sec-
ond order accuracy. In each iteration we need to solve a Poisson equation with a
modified right hand side. A fast Poisson solver such as a fast Fourier transformation
method (FFT), cyclic reduction, etc. [19], can be used. The number of iterations of




A FAST ALGORITHM FOR INTERFACE PROBLEMS 13

the GMRES method depends on the condition number of the Schur complement. If
we make use of both (4.21) and (4.28) to compute UZF, the condition number seems
to be proportional to 1/h. Therefore the number of iterations will grow linearly as we
increase the number of grid points.

Below we propose s modification in the way of computing UZ which geems to
improve the condition number of the Schur complement system dramatically.

If u} and u,, are the exact solutions, that is

ﬂ+u;t - ﬁ_u; —v= 0:'

then we can solve u] or u} in terms of v, 87, A7, and {u,]. It is easy to get

- _ﬁ+ n
(7.33) u = 323-;-:[7“?],
or
_)67 n,
(7.34) ut = “—ﬂr_—éi}

The idea is simple and intuitive. We use one of the formulas (4.21) or (4.28) obtained
from the weighted least squares interpolation to approximate u,, or u}, and then use
(7.34) or (7.33) to approximate w;} or u; to force the solution to satisfy the flux jump
condition. This is actually an acceleration process, or a preconditioner for the Schur
complement system (3.18).

With this modification, the number of iterations for solving the Schur complement
system seems to be independent of the mesh size h, and almost independent of the
jump [8] in the coefficient as well, see the next section for more details. Although
we have not been able to prove this claim, the algorithm seems to be extraordinary
guccessful.

Whether we use the pair (4.21) and (7.34) or the other (4.28) and (7.33) have only
a little affect on the accuracy of the computed solutions and the number of iterations.
The algorithm otherwise behaves the same and the analysis in the next section seems
to be true no mater what pair we choose.

We have been using the following criteria to choose the desired pair

Ut is determined by (4.28)

It gr<p: g _ V-BG
n o B+ _ ﬁm b
U is determined by (4.21)
+ - _
£ p">p: gt V=BG
n ﬂ+ . ﬁ__ b

which seems always better than the choice of the other way around.

8. Numerical Experiments. We have done many numerical experiments with
different interfaces and various test functions. Since our scheme can handle jumps in
the solution, we have great flexibility in choosing test problems. From the numerical
tests we intend to determine:

s The accuracy of computed solutions. Are they second order accurate?




14 Z. L1

» The numbers of iterations as we change the mesh size h and the ratio of the
discontinuous coeflicient, p = 8t /5~.
e The ability of the algorithm to deal with complicated interfaces and large
jumps in the coefficient.
All the experiments are computed with double precision. The computational parame-
ters include:
e Computational rectangle [a,b] X [¢, d].
» The number of grid points m and n in the z- and y- directions respectively,
we assume that h = (b— a)/m = (d — ¢)/n, where h is the mesh size.
e The number of control points n,. The interface is expressed in terms of cubic
splines passing through the control points.
e The parameter o in the weighted least squares interpolation. We take
a = 2.1 h unless specified differently.
The maximum norm is used to measure the errors in the computed solution Uy,
and the normal derivatives Uy, and UJ, from each side of the interface at the p-th
control point. The relative errors are defined as follows

1) max |u(z;,y;) — Uyl
8.1 E, = -
' max [u(z;, ;)|

25, P ) - sy

(82) B, = ,

1%%’_5” Up (X:v)

(53) L mE [ U,

. - o)
+

s, [ut ()

where X 2y 1 < p < my is one of control points on the interface. Each grid point is labeled
as either in the inside Q™ or the outside QO of the interface and the exact solution is
determined accordingly. In other words, the exact solution is not determined from the
exact interface but the discrete one. In Table 1, r;, ¢ = 1,2,3 is the ratio of successive
errors. A ratio of 4 corresponds to second-order accuracy. In Table 1, & is the number
of iterations required in solving the Schur complement system (3.18). The ratio of
coefficients is defined as p = 87 /8", In the figures, we use S;, ¢ = 1,2,3 to express the
slopes of least squares line of experimental data (log(h;), log(E;)).

Ezample 1. Consider the following interface

X =r(0 g
r(6) cos(6) + 0<8<2r,
Y = r{6) sin(8) + .,
where
r{f#) = ry + 0.2sin(w ), 0<8 <2,

within the computational domain —1 < z, y < 1. Fig 1 shows some interfaces with
different parameters 7y, (Z.,¥.), and w. Dirichlet boundary conditions, as well as
the jump conditions [u] and [Bu,] along the interface, are determined from the exact




A FAST ALGORITHM FOR INTERFACE PROBLEMS 15

solution
r? if Q
— iz, y) el
. 5 (z,y)
WL, Y} = 4 . 1 \ /.3 4 AY
C (21 rd 4 Gy log(2ry)
T"f‘ﬂ(;____:'i:u_gu_!_cl ('é%_ 30"T"U23fg( 0}) if(zjy)eﬂﬁg}

where 7 = /2% + y%. The source tern can be determined accordingly:

2 @y e
5
Fev) =9 (¢

ﬁ-i—

if (z,y) € Q.

We provide numerical results for three typical cases below.

Case A. The interface parameters are chosen as 7o = 0.5, (z,,¥.) = {0,0), and
w = 0. So the interface is a circle centered at the origin, see Fig 2(a). With C; =1,
the solution is continuous everywhere, but u, and fu, are discontinuous across the
circle. It is easy to verify that [fu,] = —0.7 when we take Cy = —0.1. Fig 3(a) is the
plot of the solution —u with 7 =1 and g+ = 10.

Case B. The interface parameters are chosen as ry = 0.5, z, = y, = 0.2/ V20,
and w = 5, see Fig 2(a). We shift the center of the intexface a little bit to have a non-
symmetric solution relative to the grid. We want our test problems to be as general
as possible. The interface is irregular but the curvature has modest magnitude. So
with a reasonable munber of points on the interface, we can express it well. Now it is
almost impossible to find an exact solution which is continuous but not smooth across
the interface, so we simply set C; = 0, and C; = —0.1. Fig 3(b) is the plot of the
solution —u with 8~ = 1 and 8% = 10,

Case C. The interface parameters are chosen as ry = 0.4, z, = y, = 0.2/ V20,
and w = 12, see Fig 2(b). Now the magnitude of the curvature is very large at some
points on the interface and we have to have enough control points to resolve it. The
solution parameters are set to be the same as in Case B.

Fig 4-6 and Table 1 are some plots and data from the computed solutions which
we will analyze below.

8.1. Accuracy. Table 1 shows the results of grid refinement analysis for Case
A with two very different ratio §~/8%, 8t > f~. When /8% = 0.5, the ratio
are very close to 4 indicating second order convergence. With = = 1 and g% = 104,
the error in the solution drops much more rapidly. This is because the solution n
Qt approaches a constant as 8+ becomes large, and it is quadratic in Q7. A second
order accurate method would give high accurate solution in both regions. So it is not
surprising to see the ratio r, is much larger than 4. For the normal derivatives, we
expect second order accuracy again since St u) is not quadratic and has magnitude of
O(1). This agrees with the results 7, and r5 in Table 1.

In Fig 4 we consider the opposite case when /8% = 10%, 8% < §7. In this case
the solution is not quadratic so we see the expected second order accuracy. Fig 4(a)




16

(a)

2. 1I

(b)

0.5

0.5

1

-t

=1 05

H
[

0.5

F1G. 2. Different inlerfaces of Example 1. {a) Case A and B, (b) Case C.

(b)

-1 4

FIG. 3. The solutions —u of Example I with it = 10, and f7 =1, {(a) Case A, o circular
interface where the solution is continuous but [Bu,] = —0.7. (b) Case B, an irregular interface where
both the solution and the fluz {fun] are discontinuous.

TABLE 1
Numerical results and convergence analysis for Case A with m = n, = n.

n | BT | 8 £y Ey By T3 Ty rs | k

40 2 1 1228510°% ] 2.23107° | 7434 1073 7

80 | 2 [ 1 [52251071] 5.95610°% | 1.98710°% | 437 | 3.74 } 3.74{ 7
160 | 2 1 112601074 1.82710* | 6.101 1074 1 4.12 {326 { 3.26 | 7
320 2 1 [2.08810 ° | 5.038 10° | 1.678 10~* | 4.25 | 3.63 | 3.64 | 7
n gt | g By E, B 7y T, ry | Kk
40 | 10000 | 1 | 6.552107% ] 6.33110"* | 2.110 1071 8
80 | 10000 | 1 [ 7.847107% 1 8.366107° } 2.785107° | 8.35| 7.57 | 7.58 | 8
160 ] 10000 | 1 | 5.98810°7 | 9.1921077 | 3.03310"° | 13.1 | 9.10 | 9.18 | 8
390 1 10000 | 1 [5859107% | 2.05810°7 | 6.887 107" | 10.2 | 447 | 440 | 7




A FAST ALGORITHM FOR INTERFACE PROBLEMS 17

(a) (b)

'S, = 2.6194

.

o
S
_—

o5

(AAS
A

SRS
e
S

.

ool
2SS
o

o
ot

-

i)

L
S

5
e

=
S
S
S2S
S

Lo
ey
o o
S’
S
S
s
5

2
o
)
Q"‘-‘“’
o2
=
<5050
s,
S S SO
s
X

\ N

A
T T RS
v

£

2
2538
e

o2
s

ity
':'A'I"”f %,
i I.I,u,:,;.r,,b
”0”"%;; :

pry f&g(h) -4 -2

FIG. 4. (a): Error distribution for Case A. (b): Errors E; vs the mesh size h in log-log scale for
Case A withm =n=ng, §~ = 10" and ¥ = 1.

(a) (b)

o g, =222 T T T

-4 - ]
@:,s ]
& | 8, =344/ v

10

=10

[} R = Yy l 0?:‘{ h)ah T 48

FIG. 5. Errors Il vs the mesh size b in log-log scale for Case B with §~ = 10° and g+ =1. (a)
The solid line: my = 130 + 3int (1”/(11 - 130)2). The dotted line: ny = n. (b) The solid line and

dotted line are the same as in (a) but on a different scale. The dash-doiled line is the result obiained
with o = 3.6 h and np = n.

log(E;)

£

-85 -8 ss.slog ( h) -5 -4.5 -4

F1G. 6. Errors E; vs the mesh size b in log-log scale for Cose C with §7 = 100 and Bt =1. The
solid line: fired ny {ns = 520). The dotted line: ny =n.



18 Z. L1

plots the error distribution over the region. The error seems to change continuously
even though the maximum error occurs on or near the interface. Usually if the curva-
ture is very big in some part of an interface, for example, near a corner, then we would
observe large errors over the neighborhood of that part of the interface.

For interface problems, the errors usually do not decrease monotonously as we
refine the grid unless the interface is aligned with one of the axes. We need to study the
asymptotic convergence rate which is usually defined as the slope of the least squares
line of the experimental data (log(h;),log(E;)). Fig 4(b) plots the errors versus the
mesh size h in log-log scale for the case n, = n. The asymptotic convergence rate is
about 2.62 compared to 2 for a second order method. As h gets smaller we can see
the curves for the errors become flatter indicating the asymptotic convergence rate will
approach 2.

The dotted curves in Fig 5 and Fig 6 are the results for case B and C, where
the interfaces are more complicated compared to case A. Again we take m = n = n,.
The asymptotic convergence rates are far more than two. Such behavior can also be
observed from Example 4 in {16]. Does it mean that our method is betier than second
order? Certainly this is not true from our discretization. Below we explain what is
happening.

For interface problems, the errors depend on the solution u(z,y), the mesh size h,
the jump in the coefficient [8], the interface I’ and its relative position to the grid, and
the maximal distance between control points on the interface, h,. We can write the
error in the solution, for example, as follows

(8.4) Ey = C(u, b, by, [B],T) h* + C (u, h, by, [, 1) R

The first term in the right hand side of (8.4) is the error from the discretization of
the differential equation. The term C (u,h, hy, {7, T) has magnitude O(1) but does
not necessarily approach to a constant. The second term in the right hand side of
(8.4} is the error from the discretization of the interface I'. If we use a cubic spline
interpolation, then g > 2. For Case A, the interface is well expressed and the first term
in (8.4) is dominant, we have clearly second order convergence. For Case B and C,
the interfaces are more complicated and the second term in (8.4) is dominant. That is
why we have higher than second order convergence. Eventually, the error in the first
term will dominate and we will then observe second order convergence.

To further verify the arguments above, we did some tests with fixed number of
control points n,. For example, we take m, = 540 for Case C, see the solid line in
Fig 6. Presumably the interface is expressed well enough and the second term in (8.4)
is negligible. We see the slopes of the least squares line of the errors E, and E, are
2.15 and 2.07 respectively indicating second order convergence. Usually E, and Ej,
the error in the normal derivatives u;; and u;}, behaves the same, so we only need to
study one of them. If we let n; change with the same speed as the number of grids m
and n, then the second term in (8.4) is dominant and the slopes of the least squares
line of the errors E, and E, are 2.71 and 2.69 respectively. Once n, is large enough,
the first term will dominate in (8.4) and the error will decrease quadratically. This
can also be seen roughly from Fig 6. Note that the errors oscillate as n gets large
whether we fix n, or not. But the fluctuation becomes smaller as we refine the grid.
The upper envelop of £, behaves the same as the least squares line of the experimental
data (log(h;),log(E;)). So it is reasonable to use the asymptotic convergence rate to
discuss the accuracy when errors do not behave monotonously.



A FAST ALGORITHM FOR INTERFACE PROBLEMS 19

As another test, we let n, change slower than m and n. The solid lines in Fig 5(a)
are obtained with n, = 130 + 3int (\Sj(n — 130)2) , n > 130. Now we have roughly

h{ ~ h? and the errors decrease quadratically with the mesh size h, but not h;. The
slopes of the least squares line of the errors By and £, are 2.23 and 2.22 respectively.

We now discuss the effect of the different choice of the parameter « in the least
squares approximation described in Section 4 on the solution. Most of the computa-
tions are done with & = 2.1 h except in Fig 5(b}, the dash-dotted line where o = 3.6 h.
As we can expect, the smaller « is, the higher accuracy in the computed solution be-
cause the points involved are clustered together and the error in the Taylor expansion
will be smaller. However, the simaller e is, the more oscillatory in the error as we
refine the grid. For larger ¢, the computation cost increases quickly, but the error
behaves much smoother with the mesh size k. Usually we can take small « for smooth
interfaces, and larger o if we want a smoother error distribution for more complicated
interfaces.

8.2. The number of iterations versus the mesh size h. Fig 7(a), also see
Fig 10(a) for Example 2, shows the number of iterations versus the number of grid
points m and n for case A, B, and C. It is not surprising to see that the number of
iterations depends on the shape of the interface. The number of iterations required for
Case C is larger than that for Case A and B. But it is wonderful to see that the number
of iterations is alimost independent of the mesh size h. For Case A, where the interface
is a circle, we only need about 5 ~ 8 iterations for all choices of the mesh size h for two
extreme cases p = 10* and p = 10™*. We will see in the next paragraph that this is also
true for different choices of the ratio p = §~ /8%, Note that the mumber of iterations is
about two or three fewer than the numbers of calls of the fast Poisson solver. We need
two or three of them for initial set up of the Schur complement system. In Fig 7(a},
the lowest curve corresponds to case A with = = 1 and §% = 10*, the lowest but
the second curve corresponds to §~ = 10* and §t = 1. For case B, the number of
iterations required is about 17 ~ 21 for p = 10~% and p = 10 respectively. For case C,
the most complicated interface, the number of iterations is about 46 with reasonable
number of control points on the interface for p = 1072 and p = 10* respectively.

8.3. The number of iterations versus the jump ratio p = 37 /8%, Fig 7(b),
also see Fig 10(b) for Example 2 , plots the number of iterations versus the jump ratio
p in log-log scale with fixed number of grids m = n = n; = 160. As p goes away from
the unit we have larger jump relatively in the coefficient. The number of iterations
increases proportional to |log(p)| when p is small but soon reaches a point after which
the number of iterations will remain as a constant. Such points depends on the shape
of the terface. For Case A, it requires only about 5 ~ 6 iterations at the most for
p < 1 and about 7 ~ 8 iterations for p > 1 in solving the Schur complement system
using the GMRES method. For Case B, the numbers are about 17 ~ 22. For Case C,
the most complicated interface in our examples, the mimbers are about 47 ~ 69. As
we mentioned in the previous paragraph, also see Fig 7(a}, for Case C, with only 160
control points we can not express the complicated interface Fig 2(b) very well. If we
take more control points on the interface, then the number of iterations will be about
46.

R e e




20 2. LI

(a) (b)

1o

wt ! 107 Iog(n"ﬁw/ﬁﬂk) 0t 1o*

F1G. 7. The number of iterations for Brample 1 with m =n =mny. (a): ws the number of grids
n. Case A: lower curve, 8~ = 1, O == 10*; upper curve, 8~ = 104, A% = 1. Case B: lower curve,
G- =1, 8t = 10%; upper curve, B~ = 10%, gt = 1. Case C: B~ =1, Bt =100. (b): vs the ratio of
jumps B~ /Y in log-log scale withm =n =ns = 160. We set §~ =1 w hen B/ <land gt =1
when B /BT > 1.

Ezample 2. This geometry of this example is adapted from Problem 3 of [1]. The
solution domain is the {—1,1] x [0, 3] rectangle and the interface is determined by

X=06 #) —0.3 36 ¢
{ cos(8) cos(36) + 0<b<om

Y = 0.7 sin(8) — 0.07 sin(3 8) + y.,

Fig 8(a) show the solution domain and the interface I' with z, = 0 and y. = 1.5.
Again Dirichlet boundary condition, as well as the jump conditions {u] and [Bu,] are
deteymined from the exact solution

.3) e” (¢ sin(y) +¢%) if (z,y) € Q7
ulxr,y) = )
—z? —y? if (z,y) € Q7.

The source term can be determined accordingly:

G e® (2+y® +2sin(y) + 4z sin(y)) if (z,9) €Q”
fz,y) = ,
—43% if (z,y) € @t

Fig 8(b) is a plot of the computed solution.

This example is different from Example 1 in several ways. The solution is inde-
pendent of the coefficient 3. But the magnitude of the jump [Bu,] and the source
term [f], increase with the magnitude of the jump [§]. However we have observed
similar behaviors in the numerical results as we discussed in Example 1. Example 1
and Example 2 are two extreme samples of elliptic interface problems. So we should
be able to get some insights about the method proposed in this paper.

Fig 9 shows errors E; versus mesh size h in log-log scale with different choice of
ny. In Fig 9(a), 8~ = 1, B = 10°. The solid lines correspond to a fixed discretization
of the interface, n, = 420. As we expected, the asymptotic convergence rate for £;
are S, = 2.1404, S, = 2.1268, and §; = 2.1272. They are all close to 2 indicating




A FAST ALGORITHM FOR INTERFACE PROBLEMS 21

(a)

y=0

F1G. 8. (a) The interface of Ezample 2. (b} The solufion of Ezample 2.

second order accuracy. The dotted line in Fig 9(a) correspond to a variable n, which
changes in the same rate as the number of grid point m in z-direction. The asymptotic
convergence rate of F; for are S) = 4.0703, S, == 3.3413, and 53 = 3.3473. They are
S, = 3.2044, S, = 3.1790, and S; = 3.1897 for 5~ = 10° and f* = 1 in Fig 9(b).
These numbers are all larger than 2 similar to the cases we saw in Fig 5, and Fig 6.
We have explained such phenomena already.

Fig 10(a) plots the number of iteration versus the number of grids n with m =
ny = 2n/3. Again we consider two extreme cases, p = 107° with 87 = 1, and p = 10°
with G+ = 1. Once the interface is well expressed somewhere after n > 180, the
number of iteration will slightly decrease to a constant which is about 28 for p = 107°
and 34 for p = 10%. Fig 10(b) plots the number of iteration versus the ratio p with
fixed grid m = n, = 160,n = 240. We set §~ = 1 when p < 1 and g+ = 1 when
p > 1. We observe the same behavior as in Fig 7(b). Initially the number of iterations
increases proportional to |log(p)} as p goes away from the unit, but it soon approaches
a constant which is about 28 for p < 1 and 34 for p > L.

@ (b)

Rz % iy Y lo-gt( h’)sfz s ErTa— (S ey — Tég(ﬁ) Y Ry Sy

FiG. 9. FErrors E; vs the mesh size h in log-log scale for Ezample 2 with m = 2nf3. (a)
B =10° and Bt = 1. The solid line: fived ny, ny = 420; The dotied line: ny =m. (b) 87 =1 and
gt =102 Error plot of I}; with np = m.

Summary of the numerical experiments. In our computations, the largest
error usually occurs at those points which are close to the part of the interface which




22 24,11

a4 p =107 _ 34
SNAA__ 2
i 28 '

......

= ] 1

60 00 160 00 B850 300 350 400 W' et s ) . L
71 10 o Iog(bﬁ——/ﬁm“—) 10
FIG. 10. The number of iterations for Example 2 with m = ny = 2n/3. (a): wvs the number of
grids n. Lower curve: §~ =1 and 8 = 10%; Upper curve: §~ = 10% and BT =1. (B): ws the ratio
of jumps B8~/ in log-log scale with fived grid m = ny = 160 and n = 240. We set 87 =1 when
B/8% <1 and g+ =1 when f7/BF > 1.

has large curvature. Depending on the shape of the interface, we should take enough
control points on the interface so the error in expressing the interface does not dominate
the global error. However, once such a critical number is decided, we do not need to
double it as we double the number of grid points, which saves some computational cost.
We should still be able to maintain second order accuracy. The number of iteration for
solving the Schur complement system using a GMRES method is almost independent
of both the mesh size h as well as the jump in the coefficient.

9. Conclusions. We have developed a second-order accurate fast algorithm for
a type of elliptic interface problems with large jumps in the coeflicient across some
irregular interface. We precondition the original partial differential equation to obtain
an equivalent Poisson problem with different source terms and a Neumanu-like inter-
face condition. The fast Poisson solver proposed in [2, 9] can be employed to solve
the Schur complement system for the intermediate unknown, the jump in the normal
derivative along the interface. Then we proposed a preconditioning technique for the
Schur complement system which seems to be very successful. Numerical tests revealed
that the number of iterations in solving the Schur complement system is independent
of both the mesh size h and the jump in the coefficient, though we have not proved this
strictly in theory. The idea introduced in this paper might be applicable to other re-
lated problem, for example, to domain decomposition techniques. A new least squares
approach to approximate interface quantities from a grid function is also proposed. By
analyzing the numerical experiments, we have discussed some issues in error analysis
involving interfaces.

There is still a lot of room for improving the method described in this paper. For
example, we have used cubic spline interpolations for closed interfaces. There are some
advantages of this approach. But large errors can occur at the connection of the first
and the last control points when we try to make the curve closed. That might also
be one of reasons why the error does not decrease monotonously, As an alternative, a
level set formulation is under investigation.

The next project following this paper is to study the case with variable coefficients.




A FAST ALGORITHM FOR INTERFACE PROBLEMS 23

We can rewrite (1.1) either as (2.8a) or

V(E@vu)zﬁi_ if z€Q,
(9.5) ’ '

(B o)L
V(}B;Vu)—ﬁg ifzer,

where 85 and §f are the averages of the coefficients 3 from each side of the interface.
Whether (2.8a) or (9.5) is used, we shall still introduce an intermediate unknown, the
jump in the normal derivative across the interface if the jump condition is given in the
form of [Bu,]. In this way, the coefficients of the difference scheme would be very close
to those obtained form the classical five-point stencil. We can not take advantage of
the fast Poisson solvers for variable coefficient anymore, but we can make use of the
multi-grid method developed by L. Adams in [1].

10. Acknowledgments. It is my pleasure to acknowledge the encouragements
and advice from various people including Prof. Randy LeVeque, Stanley Osher, Tony
Chan, Loyce Adams, Jun Zou and Barry Merriman. Thanks also to Prof. Yousef Saad
and Dr. Victor Eijkhout for helping me to implement and understand the GMRES
method.

REFERENCES

[1] L. M. Adams. A multigrid algorithm for immersed interface problems. Proceedings of Copper
Mountain Multigrid Conference, to appear, 1995.
[2] R.J.LeVeque and Z. Li. The immersed interface method for elliptic equations with discontinuous
coefficients and singular sources. SIAM J. Num. Anal, 31:1019-1044, 1994,
[3] R. J. LeVeque and Z. Li. Simulation of bubbles in creeping flow using the immersed interface
method. in Proc. sixth international symposium on computational fluid dynamics, Lake
Tahoe, Nevada, in press, 1995,
[4] R.J. LeVeque and C. Zhang. Immersed interface methods for wave equations with discontinuous
coefficients. To appear, 1994,
[5] R. J. LeVegue and C. Zhang. Finite difference methods for wave equations with discontinuous
coefficients. in Proc. 1995 ASCE Conference, S, Sture, ed., to appear, 1995.
{8] R.J. LeVeque and Z. Li. Immersed interface method for Stokes flow with elastic boundaries or
surface tension. Tech. Report #95-01, University of Washington, submitted to STAM J.
Sci. Stal, Compt., 1995,
{7} Z.Li. A note on immersed interface methods for three dimensional elliptic equations. Computers
and Mathematics with Applications, in press,
[81 Z.Li. Uniform treatment of linear systems — algorithm and numerical stability, Numer. Comput.
Appl., 2:71-86, 1989,
[9} Z.Li. The Fmmersed Interface Method — A Numerical Approach for Partial Differential Equa-
tions with Interfaces. PhD thesis, University of Washington, 1994,
[10} Z. Li. Immersed interface method for moving interface problems. UCLA CAM Report #95-25,
submitted to Numerical Algorithms, 1995,
[11} Z. Li and A. Mayo. ADI methods for heat equations with discontinuties along an arbitrary
interface. In Proc. Symp. Appl. Math. W, Gautschi, editor, volume 48. AMS, 1993,
[12} A. Mayo. On the rapid evaluation of heat potentials on general regions. IBM Technical report
14305.
[13] A.Mayo. The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM
J. Num. Anal., 21:285-299, 1984,
[14] A. Mayo. The rapid evaluation of volume integrals of potential theory on general regions. J.
Comnput. Phys., 100:236-245, 1992,
[15] A. Mayo and A. Greenbaum. Fast parallel iterative solution of Poisson’s and the biharmoenic
equations on irregular regions. SIAM J. Sei. Staf. Comput., 13:101-118, 1992.




24 7. L1

i16] A. McKenney, L. Greengard, and Anita Mayo. A fast poisson solver for complex geometries.
preprint, 1994,

{17] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Fquations, Cam-
bridge press, 1995.

{18] Y. Saad, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems, STAM J. Sci. Stal. Compui,, T:856-869, 1086,

{19] Pau} N. Swarztrauber. Fast Poisson solver. In Studies in Numerical Analysis, G. H. Golub,
editor, volume 24, pages 319-370. MAA, 1984,

[20] A. Wiegmann and K. Bube. Computing some inverse problems. private communications.




