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REGULARIZATION OF ILL-POSED PROBLEMS
VIA THE LEVEL SET APPROACH

EDUARD HARABETIAN * AND STANLEY OSHER !

Abstract., We introduce a new fornulation for the motion of curves in R?, (easily extendable to
the motion of surfaces in R?®), when the originalmotion generally corresponds to an iil-posed problem,
such as the Cauchy-Riemann equations. This is, in part, a generalization of our earlier work in f6)
where we applied similar ideas to compute flows with highly concentrated vorticity, such as vortex
sheets or dipoles, for incompressible Euler equations, Qur new formulation invelves extending the
level set method of [12] to problems in which the normal velocity is not intrinsic. We obtain a coupled
system of two equations, one of which is a level surface equation. This yields a fixed grid, Eulerfan
method which regularizes the ill-posed problem in a topological fashion, We also present an analysis
of curvature regularizations and some other theoretical justification. Finally, we present numerical
results showing the stability properties of our approach and the novel nature of the regularization,
including the development of bubbles for curves evolving under Cauchy-Riemann flow.
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1. Introduction. Our general problem is to move a curve Iy : (zo(s), yo(s)) where s need not
be arclength, through a system.of partial differential equations

(1.1} ( Z: ) = ( :; ) = d(t,z,y, s, Ys)

with periodic boundary conditions and initial conditions given by
(1.2) ( 2(3,0) ):( Zo(s) ) 0<s<L
y(2,0) vo(s) =0
If the problem is Hadamard ill-posed, as for example in the initial value problem for the Cauchy-
Riemann system:

(1.3) ihaenu) = 2)

one has to be content with computing the solution of a regularized problem.

In this work we consider the Ievel set formulation of {1.1), he. the PDE associated with the
function (t, z,y), defined below, whose zero level set is the original curve (see [12]). If this PDE is
approximated by a dissipative approximation, it provides a regularization which is closely related to
the one obtained by adding a curvature term to the velocity of the original equation:

() (%)

where

H(t, 2z, v, we,ys) + enil

L Taeles — Us¥ss
(2 + )T

is the curvature and

- _ 1 (—ys)
TRV e

is the normal.
In fact, away from smgularities, (for example points where either Vo = 0 or I's(t,3) = G,
D{s,t) = (2{t,5),¥(t, 5})}, the two regularizations are identical. This follows from the fact that in
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the absence of singularities, if @(t,z,¥) is the signed distance function to its zero level set, then
Ap = —h.

We observe that the two regularizations ave still identical at points where I" is singular, such as
the paints whera T'. = 0. For example, at such points, in the case of the Cauchy-Riemann equations
{1.3), first there is a cusp, followed by the formation of a loop that changes the index in the curve.
Consider the following exact solutions:

z(t,s) = s+ 0 sinh(wkt)cos(rks)
(1.5) y(t,5) = 1— B cosh{mkt)sin{wks}
with k a constant integer and 3 a real constant. At time { = 0 this is a smooth periodic curve
of index 0. Singularities or kinks develop at the points where cos(kxs) = @ at the critical time
ter = %sinh_l (m‘t—ﬂ,) These are the points where the curvature blows up. Past the critical time,

the curve changes its index and loops develop. Both regularizations prevent these self-intersections
(see Fig 2a}.

There are topological reasons why this works. Consider the existence of sinooth periodic solutions
of the regularized Cauchy-Riemann equations in the polar variables 8, f,

B(s,t) = arctan( 3‘{i)
Ty

(1.6) It = {22 +42)/?

(see [12] for a discussion of this coordinate system for curves moving with curvature dependent
velocity). The proof of existence with general simooth initial data, even for short time, is an open
problem.

Assuming the existence result one can easily prove the topological regularization praperty and in
particular that the winding number does not change. For instance, the winding number Is given by
the total change in 8 along the curve (divided by 27}, and as long as § remains smooth and periodic,
that change remains 0.

Interestingly, the two regularizations differ however, at points where I' is regular, but the level set
function ¢ is singular, such as the points where different parts of the curve merge together without
a change in index, forming a figare 8. In this case the solution I'(%,5), even with the curvature
regularization, does allow the two parts of the curve to pass through each other, while » prevents
that from happening. This is consistent with the theory of Hamilton-Jacobi equations, in which
multivalued selutions are replaced by single valued viscosity solutions. This is also illustrated in
numerical results (see Fig. 3a-d).

Besides topological reasans, there are also analytical reasons why curvature regularizations work.
Consider the example invelving the regularized Cauchy-Riemann equations {which are nonlinear)
and the behavior of small perturbations near the kinks. We show that the corresponding linearized
problen is stable in the sense that no matter how small ¢, eny perturbation stays bounded as time
increases. It is important to emphasize that the stability of the linear problem holds only when the
linearization is done near kinks. Therefore, the above argument is formal, but serves to Hlustrate the
pazticular nature of this regularization, In smooth regions without kinks, the curvature regularization
is similar to other regularizations such as low-pass filters for which there is always a cut-ofl parameter
depending on ¢ so that the Fourier modes below this cut-off in fact grow unboundedly in time, It
is near kinks, or points of large curvature, that the regularization (1.4} is different, as we discussed
above.

Clurvature regularizations have been used before on other ill-posed problems such as denoising
and deblurring in image processing applications [1, 14, 15]. The idea there is to process images
by following the gradient Aow for a particular functional. The Cauchy-Riemann equations (1.3,
represent a gradient flow themselves, where the functionalis the signed area enclosed by the curve:

1
A:E/ydxuxdy

The gradient of A is interpreted in the following sense:

EE}S%A(F+J‘)= (VA(F),f‘)zj( —f )( )ds

Since curvature times the normal vector is the gradient of the lengih functional, the regularized
Cauchy-Riemann equations represent the foliowing gradient flow:

( e ):V{A—cL)

Y
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where L is the length of the curve:
L= [etrayr

Geometrically, the Cauchy-Riemann systens moves the curve in the direction of maximumn increasing
area while the curvature term compensates by making it move in the direction of maximum decreasing
length.

There are numerical difficulties in solving (1.4) directly, caused by the stiffness of the curvature
term, as has been observed by Sethian [16]. As regions of large curvature develop, discrete points
on the curve converge, and any explicit time marching scheme will fail. It is then necessary to use
complicated implicit schemes or regridding algorithms. One interesting and useful regridding scheme
is due to Hou, Lowengrub and Shelley ([§]). We discuss its relevance and its relation to our approach
in the next section. Their approach is successful in desingularizing a class of problems in which the
curve develops a kink, but does not gensrally work for the strongly ill-posed problems discussed here.

A useful slternative is the level set method developed by Osher and Sethian in [12]. The original
applications involved the motion of curves and surfaces whose speed depends on local curvature,
Other applications and bmprovements continue to arise — see e.g. [1, 2, 4, 6, 9, 17, 18, 19]. Corre-
sponding theoretical justification was given in [3, 5, 11] and elsewhere, and wunerical schemes for
the basic Hamilton- Jacobi equations were developed in [12, 13].

In the level set approach one emhbeds the curve (2(s,t),y(s,t)} in the level sets of a function
w(t,z,4). One then determines the partial differential equation that » must satisfy to be consistent
with the motion of the curve. In the case in which the normal velocity is intrinsic (solely geometry
or position based), this single equation which is of Hamilton-Jacobi type is sufficient to determine
@. For problems where the normal velocity is not intrinsic, such as the above Cauchy-Riemann
equations, one equation is not sufficient,

In this work we first provide an extension to situations where the 1101111a1 velocity need not be
intrinsic and for which the problem written in Lagrangian (moving) coordinates is Hadamard ill-
posed. The level set formulation leads to a coupled system of nonlinear equations which are solved
on a fixed Eulerian grid by use of a standard dissipative scheme,

Our main observation is that this approach provides a regularization of the original problem
which does not suffer from any stiflness side eflects. As before, there are topological and analytical
reasons for this regularization.

I addition, the linearized problem is sfways well-posed and quite simple in the direction of
propagation normal to the level set, no matier what the equation (1.1} is. Overall, the problem may
in general be ill-posed; however, there appears to be a tangential regularization through curvature
as mentioned,

We have used as paradigms two ill-posed examples: the Cauchy-Riemann system, and in ()]
the motion of a vortex sheet in two dimensional incompressible inviscid Huid flow, We shall also
indicate how these methods can be applied to preblems in three or higher dimensions.

The paper is organized as follows: in section 2 we introduce the level set formulation for an
arbitrary moving front and determine when it is well-posed. We also analyze the stability of the
regularized Cauchy-Riemamn equations. In section 3 we show numerical results for the Cauchy-
Riemann equations past thie singularity time, The vortex sheet roll-up was computed in ([6]). Finally,
we give the details of some of the more technical results in an Appendix.

2. The Level Set Method and Stability. In this section we introduce the level set formu-
lation for an arbitrary woving front (1.1} (and its 3D analogue). We show that the system is always
well-posed normal to the front, and verily it is well-posed overall if the original equations are well-
posed. We then consider the curvature regularization and show that the regularized Cauchy-Riemann
equations are linearly stable near kinks.

The level set method addresses the following problemn. Given a region (2 {which might be multiply
connected), we wish to move it normal to jtsell mumerically, using a fixed (Ewlerian) grid. The velocity
is given by 7.
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We construct an auxiliary function, ¢(z,1) > 0 & 2 e 0
wlz,t) <0 & zef
wlr, ) =04& zedfd
{all at time t}
Since w = 0 on 80, we have
(2.1) pr+7-Ve=0 for xzedll
and ¢ = 0 characterizes 3.
Generally, if 77 (for i = T%IV:O the unit normal to 890) is a function of the geometry, e.g.
the curvature, the equation on 3l becomes

(2.2) vt + |[Ve|F(r) =0
where

o=y |2
(2.3) r= -V (!V‘P;)

is the mean curvature of every level set of o, particularly of 851,

We extend (2.2) to be true throughout space and let the plotter find the resulting zero level set,
which is 09, at later times. Merging, pinching off, general topological changes and the development
of singularities cause no difficulties here.

To sce that singularities of 88 do not affect the stiffness of {2.2) at least when F is linear in &,
note that

x|Ve| = -T - D*(¢) - T

where

. a2 )

and D2 (i) is the Hessian matrix of second derivatives of . Therefore, in analogy with the regular
Jieat equation, the CFL condition for a time explicit marching scheme for (2.2) is of the form

<1

consi
Az? T

where the constant does not dependent on how small |Vy| is. By contrast, in the Lagrangian
framework where the variables are @(s, £}, ¥(s, ),

1
Rt = =il ( Ess )1'}',
f Yas

where f is the arclength function given in (1 .6) and 4 is the outward unit normal vector. The CFL
condition for the corresponding problem is now
1 At
TTas C
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and problems arise near singularities, i.e. when [ vanishes. Nate that the two CFL expressions are
" dimensionally” equivalent since

F2As? s de® dy2

The stiffness is removed by approximating dz? + dy? on a fixed Fulerian grid.

We now turn to the general problem (1.1), where ¥ - 7l may be parametrization dependent such
as in the case of the Cauchy-Riemann system (1.3) where it is equal to f.

As usual, we defined ¢(t,z,y) so that

w(hz,y) >0 if (z,9) e &
#(0,2,y) <O if (v,y) € 0°
(2.5) w{0,z0(s), va(s)) =0
In addition, we now define the function (¢, z, y) which evolves the parametrization of the curve

in time. The function ¥ is conjugate in the sense that the pair {y,+) form an orthogonal coordinate
system near the zero level set of . Initially

(2.6) ${0,2(0,5), ¥(0,5)) = s
and
(2.7) V- {V‘J")* = priy — ‘Py"l"."a #0

att=0onIy.
We require, in addition to the usual criterion

(2.8) wlz(s,8), ¥{s, )t} =0 for >0
the additional criterion on the conjugate function
(2.9) Plz(s, ), y(s, tht) = s for t> 0.
Differentiating both equations with respect to f leads us to two equations on F(s, 1}
{2.10) we + T-Ve=0
(2.11) P, 4+ T V=0

It remains to define a¢, y. in terms of Vi and V4 within the arguments of v in (2.10), (2.11).
This is done on T by differentiating (2.8) and (2.9) with respect to 5. We are led to
(2-12) Pals -+ pyys =0
(2.13) Pa@s + Pyye = 1.

Solving this leads to
(2.14) () =twe) w1 (70 )

Ys L2k

on I'(s).

The quantity

(V‘P) ’ {V"\[))* = ‘PI'J“y - ‘Py"l‘-’a: =-J

is the Jacobian of (i, %) (the negative sign is there so that J > 0 in our applications). The variable
J must not vanish in order for (2.14) to be well defined,

We replace (25, %<} by this expression in the arguments of v in equation (2.10}, (2,11}, extend
this to all space, and arrive at

(2‘15) Pt + 7 (a"iyi wTy) _?&) . V"\O =0
(2.16) P 4+ T (ay %’i, _fx) V=0

This is owr first level set formulation. It can be easily generalized to nmltidimensions, te. to
the motion of an n dimensional surface in #n + 1 dimensions. In that situation, ene has n conjugate
functions ¥y, ..., ¥m, each satisfying an equation of the form {2.11). Equations such as (2.12),(2.13}
can then be used to express the velocity in terms of gradients of ¢,4;.

We use this formulation in the Appendix to analyze the stability properties of the motion;
however, its drawback is that the function 4 is not single valued on closed curves.

5



A more useful variable than + is J. To obtain the evolution equation for J, we let ®(t,a) =
(z,9}(t,a) be the trajectory of a point referenced by a under the flow, which implies

ot B{t,n)) = lp(U,!L)
P{t, ®{t,a)) = ¥(0,a)

te. @ and 4 are constant along flow trajectories. Differentiating with respect to a, and taking the
determinant, we abtain

a(cp,'!'f:} 8(:c,y} — la((pO)’J’O)
(=, v} &a 8a
Applying D¢ (i.e. differentiating along the srajectory) to this equation, we obtain
=,
D:J| CICRT l wy)‘
da
1t is known [see [10], page 11] that
a(z, v) « |8z, 9)
i IV (v-4) da
Thus, we arrive at the following ecuation for J in Eulerian coordinates
(2.17) Je 4V (J#) =0

Phis formula is also valid for the Jacobian of n functions in » space dimensions.

Let us remark at this point, that for divergence free flows (when V - 7 = 0}, (2.17) implies that
J is constant along particle trajectories. In pasticular, if J is a constant at time zero, it stays a
constant for all time, and the equation {2.17) simply drops out. This fact was used in our work
on vortex motion [6] to devive a simple algorithm for the evolution of a vortex sheet in an Eulerian
framework.

We arrive therefore at the following system:

(2.18) e+ 6(w,1,%li,”j”)-v¢:{}
(2.19) I+ v.(m(x,y,%,‘j“‘))zn

The distribution g = J&(y) represents the density near the level set and one easily verifies that
p satisfies the same equation as J, l.e. it is congerved.
For the Cauchy-Riemann equations the system becomes

(2.20) @+ §Vj12 =0
(2.21) Jo 4+ Ap=0
The initial values corresponding to the example in (1.5} are
wo = y-+ Bsin(wkz)
Yo = =

Therefore Jy(2,y) = 1. We will discuss specific boundary conditions in the next section.
Another useful variable is
\%
(2.22) = Vel

J

Restricted to the curve I', f is the arclength variable [[g| = /22 + y2.
By substituting {2.22) into (2.17), we arrive at the following formulation involving the pair ¢
and f

(2-23} @+ 7 (m,y, ) Ve = 0
1V f IWi
v V|?
(2'24) (L‘ﬁl) + V- (l_‘PlE) = 0
f /e b
The equation {2.24) simplifies if the velocity is always normal to the curve, i.e.
Vi

U=§fﬁ=ﬂfW



for some function g. Substituting for ¥ in (2.24}, carrying out the differentiation, and using the
equation for ¢ yields

“;f‘t‘ivﬂgi_ VW'V(Hf) " ng'vivwl A+ Te -Ve=0
12 i |Vl
or
fgVe -V f 2 AV — Ve V|V
AL A ER
‘ [Vl d [Vl

—9£%n(e)

wlhiere x{yp) is the curvature.
We therefore arrive at the following system in o, f for the motion of a carve with purely normal
velocity

{2.25) we+af[Ve| = 0
{2.26) fo+ ng = -—ai*al)
[Vl

Equation (2.26) is more or less a Riccati equation for the "arclength” element f. IH-posedness
is reffected in the blow up (f — o) or vanishing (f — 0) of f, depending on the sign of s, since f is
non-negative,

In the special case of the Cauchy-Riemann equations, ¢ = 1.

As we mentioned before, extensions of this method applied to three equations in_two space
dimensions are (formally} very simple. For example, consider the motion of a surface X (t,u,v) =
(=9, 2){t,u,v), in which the velocity is purely normal, i.e.

+ "
XNewm gfN
Here f represents the area element, i.e.
f= |Xu X )\’vl

Using the same steps as above, it follows that the equations (2.25) and (2.26) represent a level set
formmlation for this motion, with s the mean curvature of the surface. Details will he provided in
future work.

In practice, the system (2.23)-(2.24) is approximated by a dissipative finite diflerence schieme
such as the Lax-Friedrichs scheme. To be able to compute an iil-posed problem such as the Cauchy-
Riemann system for large time, we explicitly add a curvature term. The curvature regularization
(1.4) is implemented by modifying the equation for ¢ as follows:

o) Y ) V=
(2.27) wr + (ff—l— er{) Vel V=0
In practice, € may be chosen to be proportional to the mesh size {see our numerical results h section
3).

} The following results are abtained in the Appendix: The system (2.15)-(2.16) is always well-posed
in the direction normal to the level curves ¢ = constant, in fact it is just linear advection with
“frozen”, and it is well-posed if and only if the original system (1.1} is.

The level set fornmuiation for the Canchy-Riemann system (1.3) is an ill-posed system (see the
Appendix), particularty in the direction tangenl to the level curves. By adding a small curvature
term to the motion, one obtains a tangential regularization near singularities. We wish to study the
linearization of this system near a given solution.

We rewrite the Cauchy-Riemann equatious in the variables (6, A = log(f)) {see 1.6):

G = A

At = "‘Bs
We consider the following parabolic system:

(2.28) 8,
At

he ce_A(e"’\Bs)s
s

il

which is the curvature regularization.




For this analysis, we choose the particular solution
(2.29) 00 = &
do = =1

Fhe curvature rp = ef is positive and becomes unbounded as ¢ gees to infinity.
Fo study the behavior of nearby sclutions we substitute:

(5)=(% )+ (%)

in {2.31) and collecting the O(n) terms we obtain the linearized system:

b () (% ) (8) (%),

where
ae(t) = enpe™ 0 = et
The main observation is that e > 1 when 2¢ > log(1/e¢) and that the 2 x 2 matrix in (2.30)
changes from a matrix with purely imaginary eigenvalues for 2¢ < log{i/¢) to one with distinct real
eigenvalizes when 2t > log(1/c}. This suggests the stability of the system (2.30) and the absence of
any cutofl in frequencies. To obtain some estimates, it is enough to consider t > to > %—Iog(ﬁ/c).
Then, cve — 1 > 0 and we can synunebrize the systemn

(2.31) ('&i{"f)j(?_; () () w5 (h)

where we have omitted the ¢ subscript.
We proceed by multiplying (2.31) by
L.
a—1
A1
integrating in s and integrating by parts to obtain
1d [T 8 \? " T 2w
= Mids e (B, Vs ——#ds =0
2 dt [(aml) A + n—l(ls} + {x—1)2 e
—cr —Tr —a

where we used oy = 2o, Finally, integrating in time, from £ = #p to £ = T, and noting that o > 1,

we obtain
T 6 2
/ [( ! ) +)\§}(T){Es < M
o —1

—

r kg o .
/ / (6:,)%ds < M
-1
tn -

where M is a constant dependent only on ¢ and the initial conditiens, but independent of T. This
gives a uniform bound in time for A, and suggests a decay in 81, .

We conclude this section with an observation which concerns an earlier case due to Osher and
Sethian [12] of a simple problem which is (mildly) iil-posed in the Lagrangian framework but which
becomes well-posed in the level set framework using the notion of viscosity solution.

We consider the simple problem of a front moving normal to Hself with constant (say unit)
velocity. This becomes (2.25) with g = -;: The level set formmlation decouples, and we get the

Hamilton-Jacobi equation

(2.32) wr+ |Vl =0

whose viscosity solutions are the limits of positive curvature: for € > 0 small:
v

(2.33) o + V0| = ¢| Vel (v : —f—) :
Vel

8



The viscosity solution kills smajl scale oscillations, captures kinks, and the finite difference ap-
proximations used are not stiff [12].

To show the ill-posedness of the Lagrangian method we can use § and f (see (1.6)) arriving at
(2.34) o= b
(2.35) g = o.

This is a hyperbolic systemn with 0 as double eigenvalue — it has a Jordan block. The exact
solution is
{2.36) 8 = #(s)
(2.37) f fo{s) + t0p(s).

"Fhis will cause f to turn negative if fg is ever decreasing — particles intersect. It is also {(mildly)

classically ill-posed. The blow-up js linear in the Fourier frequency, rather than exponential.
Both methods are limits of positive curvature. The Lagrangian formulation is

(2.38) ay = —%";i(l—fﬁ)

Ts

FT— 7(1 — e},

This is a very stiff system, very difficult ta compute with for ¢ small, [16] while (2.33) is robust
and can be computed unifermly in ¢. However, a new idea of Hou, Lowengrub and Shelley [8] can
be used to remove the stiffness here, In this case, the idea amounts to adding tangential velocity to
the original system, of the form

T=5-4¢

S = 2ms{L(t) where s = arclength, and L(t} = total length of the curve. The normal velocity is
unchanged and the motion of the curve is unaffected as long as it stays smooth. The resulting motion
is governed by

27

0 — 30)

(6 ~s)f: = O

A1)

L{0)} + 27t

This equation predicts a shock in # if the initial curve is nonconcave, which is correct. Also,
adding ¢ curvature, for ¢ > 0 to the motion, and letting ¢ — 0 can be shown to give the entropy
condition satisfying the criterion for the jump in 8, [7}

The level set method for curvature dependent motion also yields a formmulation involving # and
s, for s arc length.

We begin with the equation

oo=lvelr (- (3£))., FoI<0

and follow the motion of the zero level set of .
By rotating coordinates, if necessary, we can view this locally as a graph.

=y — Pz i)

arriving at

Praa
= - )'2. F -
P V1442 ('—““‘—(1_}_1/%)3/2)
We also have
¢ = tan"* (¢s),

thus

" Yt _ 1 i o f 2 Paw

b = 1-?1/;%_1+1,[)§.8m( 1+¢”F((1+1J;3)3/2>>
_ —ra Pz I thye » 1 —?—F Pax
TP\ HNEP? ) i 0 \ (1445
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Thus we arrive at

00 + (tan 0)0. F(0,) = —%F((is).

This resembles the results obtained in [7], at least for |#] bounded away from % or for |8
bounded i.e., (as long as the curve remains a graph).

The general procedure of regridding in [8] works only if the normal velocity of the curve is intrinsic
- independent of the parametrization used. This Tules out most of the ill-posed examples. However,
the tmportant case of vortex sheets for the incompressible Euler equations fits here, and was done in
(7.

3. Numerical Results. In this section we present numerical results for the Cauchy-Riemann

equations with different sets of initial data.

In the first set of experiments, we chose initial data corresponding to a sinusoidal curve plus
noise with small amplitude:

xz{s) = s
y(s) = ~0.5 sin(ws) — o sin(507s)

where o is the noise amplitude. In Fig ta we show the plot of {(z(T',s), ¥{T, 5)), at T' = .1, which is the
solution of the Cauchy-Riemann equations in Lagrangian coordinates for & = .005. The equations
were solved using a Lax-Friedrichs scheme and 200 points. The dissipation in the scheme was large
enough in this case (or, equivalently, the mesh was coarse enough) to prevent roundoff noise from
polluting the computation. The "loops” in the picture represent the growth of the initial noise,
These loops grow expenentially in time, so for later times the computation explodes.

We solve the same initial value problem using the level set formulation given in (2.20), {2.21).
We simplify the equations by setting

W(tﬂw’y) y_ﬂo{tnﬂ"}
J(t,z,y) = J(t,=z)

and to get a system of conservation laws (which is a convenient system to approximate numerically},
we further set

U= pr

(1-|—112)
wy —
J a

(3.1) Ji—uz = 0

and obtain

1l
=

The corresponding initial data is given hy

w(0,2) = —0.57 cos(nz) + abln cos(50mx)
(3.2) J{0,z) 1

1l

The boundary conditions are periodia:

u(t, ~1)
J(t,-1)

(£, 1)
J{4,1)

It

We also add a curvature like regularization of the order of the mesh size to both equations:

(ux\/l T2 )
eAx —

with £ = .75.

The numerical methad we use to advect the system is a Lax-Friedrichs type scheme. In Fig 1b we
show the solution y = @{T,=) at time T = .1 with 200 peints. The function ¢ was obtained from »
by integrating. Comparing with Fig 1a, the "loops” are not present and the solution curve has not
changed its index.

In our second set of mumerical experiments, we set the noise to zere (o = 0). In this case the
curve develops only one loop, at the point where the curve has a minimum. The solution is given
analytically in (1.5). In Fig 2a,c,d we compare the analytic solution (solid curve} with the level set
computation {circles) at different times in terms of the function y = #{T,»). In Fig 2b we have the
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same sohation as in Fig 2a, but in terms of w(T, 2} (top) and J(T,x) {bottem), At T=.2, the exact
solution is barely past the time of singularity.

We note that the mumerical solution approximates very wel the exact solution away from the
singularity. Mear the singularity, the numerical sclution has preserved its index. From Fig 2h, it
appears that the level set formulation admits a solution with a discontinuity in % and a delta function
in J.

In the third and final set of experiments, we considered a different parametrization of the initial
data to cause merging of different parts of the curve and a bubble to form. For example, we chose
the following initial conditions for the Lagrangian formulation:

cos(ws) — 1
Fa
™

y(0,8) = —.4— .5sin (m-——;r:(({},s))

1 1fw

2(0,5)) = s+ sgn(s)

The graph of this curve is still a simple sinusoidal curve, but the parametrization makes the middle
part move faster. The solution at a later time is given in Fig 3a. Notice that the curve lias merged
and self-intersected without a change in index. This solution was computed with a Lax-Friedrichs
type scheme in Lagrangian coordinates, with a curvature regularization.

We computed a similar solution using the level set method. In order to be able to handle the
change of topalogy, we computed the full twe dimensional equations {2.20}, {2.21) with a small cur-
vature regularization. Since it is too complicated to find the initial data for the level set formulation
that corresponds exactly to the Lagrangian data given above, we chose a similar but slightly different
one. The level set solution is therefore not the same as the Lagrangian solution, but ¢ualitatively
similar.

The level set solutions are shown in Fig 3b-d at different times. After it merges, the curve forms
a bubble which separates {Fig 3d). This is typical of the level set approach which does not allow
self intersections, Notice that, even though both the Lagrangian and the level set equations use a
curvature regularization, the resuits are gualitatively diflerent,

The boundary conditions are: periodic J in both z and y, periodic ¢ in # and modulo 2 in y.

A. Appendix, We analyze the linearized stability of our system {2.15}, {2.16). We have two
main results. The first is that the liunearized problem (2.15, (2.18) is well posed iff the original
problem {1.1) has that property. The second is that the linearized problem is always well posed in
the direction normal to level sets of . In fact it is precisely {2.15), (2.16) with a “frozen” value of
the vector v.

The linearized version of problem (1.1) is (up to lower order terms)

(A1) (5 )= (i o) (5r)

This is well posed (hyperbolic) iff

(A2} ((v1)w, = (12)y,)* > —~4(v1)y, (v2)a. -

We may rotate coordinates in equation {2.15) locally and assume that  is the graph of a function,

ie
(A.3) wle,y,t) = T{zt)—y
'V')(mly)t) = ’U’J(xlT(mit)it)zqib(x’t)'
(the second equation follows by defining ¥(x, T(w, 1), t) = $(=, 1)},
Then
1
A.d re = -
(A.4) 7
I
ye - "j’n: '
Equations (2.15), (2.16) becomes (suppressing the £,x,y dependence in v sk
1 T 1 T
A5 Te + v (m—,—)T—v (——,—):D
( ) ‘ g "f’a: "J”:\: o : ’l,!'/; thy
1 T
-, == -0
oot (Tf’:u Y ) Ve
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"Fhe linearized problem, modulo lower order terms is:

(A.6) (T‘)+A(T”):e

L P L WP
where
T2

{1’1 + (Ul)ys%‘: - (112}3'3%) '""(Ul)-“-'s % - (ul)ys ,’:,_‘;
(A7) A= Hw2)e g + () TF

(1"1 )Us 4 T ('Ul)a:g I!;i: - (Ui)ys %’:
This is well-posed iff

2T, va )y, — (V1 )y 2 T.
O e IR AV
T2 1 Tz
- (m)yré + {v2)z, ) + (‘UZ)!“E}

or iff
(A.9) {(va)y, — ()%, )" > —4(v1}y, (v2)a,-

Thus, we have proven.

THEOREM A.1. The lnearized version of problem (1.1} is well posed iff the lincarized version
of the level set extension (2.15) is well posed.

Next we linearize (2.15), {2.16) arriving {inodulo lower order terms) at the system

A0 ("") A(“”) B(‘f’)ﬂo.
(A.10) o) A e JPELG ),
We wish to show that the matrix (Af 4 Bw) has real distinct eigenvalues for £ = wx, 71 = @y, Here

(1€ + v2n) + wa(€lmn)pe T alv1)e, ) @2lé(vi}p. +ulvi}y,)

Fipy (Elvale, + 0(v2)ey) oy (€ (v2) gy + n(v2 )}y, )
(M41) By =
P (E(v1)pe +u{viey) (i€ +v2n) + i (Eln )y, +0lvi)y,)
ey {E(v2) s + {2}y ) by (E{ua) g, + nlva)y,)
We now show:
(A.12) Apa + Byy = (viyz + vaipy)l.
This is equivalent to showing (via the chain rule) that
(A.13) wa(we)ps +oy(@s)ey, = 0
{A.14) wa(Ys)ps +eplys)ey, = O
(A.15) poiwa)yy toylesly, = 0
{A.IG} Say(ys);,‘:_r + ‘Py(y-*)‘lfy = 0O

Since #, and ye are homogeneous of degree zero in {vz, wy), {see 2.14), equations (A.14) and (A.15)
come immediately from differentiating the identities
(A7) zalctpz, cpy) = Z:(wz.ey)
(A.18) valowmiowy) = velwn vp)
with respect to ¢, then setting c = 1.
Next, the formula in (2.14) are of the form
(A-lg) Te — [ {pathy — Pyfzliey
(A-2D) Ys = f(%":l—‘(Py - ‘Py"/‘x)‘{’a:
and (A.15), {A.16} {ollow immediately. We thus have:
THEOREM A.2. The lineavized problem (2.15), (2.16), uyp to lower ovder lerms, eveluated in the

divection (z, 0y) is just the simple decoupled system (2.15), (2.16) with the velocily veclor & frozen
at ils lineerized value

]
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Figure 1a: (z(T,s),¥(T,s)) graph of solution to Cauchy Riemann equations
with noisy initial data



Eulerian Cauchy-Riemann
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Figure 1b: Level set solution to Cauchy-Riemann equations with noisy
initial data



Cauchy-Riemann, T=.2

Analytic solution (solid line) compared to level set computation

Figure 2a:
just after time of singularity
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Figure 2b: “Shock” in u(T, z) just after time of singularity (top)
4delta function” in J(T,z} just after time of singularity
(bottom)
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Figure 2c: Analytic solution (solid line) compared to level set
computation at T = .25



Cauchy-Riemann, T=.3
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Figure 2d: Analytic solution (solid line) compared to level set
computation at T = .3
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Figure 3a: Lagrangian computation of “figure eight”.



Eulerian Cauchy-Riemann
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b: Level set computation of development of bubble.
The middle part will move faster.

Figure 3
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Figure 3c:

Eulerian Cauchy-Riemann
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Level set computation of develpment of bubble.

The middle part will tend to merge.
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Figure 3d: Level set computation of development of bubble
after pinchoff.



