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i, INTRODUCTION

In this paper we implement the wavelet-modified hierarchical basis method pro-
posed in [14]. The method was based on the use of some approximate L*—projections
which stabilize the classical hierarchical basis ([16], [4]) by taking away from each
hierarchical hasis function its approximate L>-projection on coarse levels. The mod-
ified or stabilized hierarchical hasis shall be called AWM-HB (Approximate Wavelet
Modified Hierarchical Basis). Applications in the ruitilevel preconditioning for finite
element discretizations of elliptic partial differenttal equations are called AWM-HB
methods.

The AWM-HB can be viewad as a stabilization of the HB in the sense that the
resulting multilevel preconditioners are spectrally equivalent to the discretized elliptic
operator for problemns of two and three space variables. Other stabilizations of the
HB methods, such as the AMLI methods presented earlier in [2] and [12], are not
of V—cycle type (in the multigrid terminology), whereas the AWM-HB is of V—cycie
type. The multiplicative AWM-TB method fits in the original framework as given
in Vassilevski [11] (see also [12]) and the latter is a straightforward extension of the
two—level method proposed by Bank and Dupont [3] and studied further by Axelsson
and Gustafsson [1].

A survey on the subject of stabilizing the 1B methods can be found in Vassilevski
[13].

Other related (oniy partial) results in the use of L2 and H' orthogonal direct
decompositions for the finite element space can be found in Griebel and Oswald (7]
and Stevenson [0, 10]. Our result is general; the AWM-HI method is of optimal order
and it applies whenever standard HB decomposition of the finite element space exists.

Our objective in this paper is to implement the AWM-HDB preconditioners. In
particular, we propose some algorithms for computing the actions of the approximate
L2-prajection operator Q% on functions v € VA_“} (see Section 2.2 for details), where
k indicates the number of levels with larger k corresponding to finer spaces. We also
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2 PANAYOT $. VASSILEVSK] AND JUNPING WANG
reforuutate the algorithms of {14 reetor form which, we helieve, is suitable
for practical computation.

The paper is organized as follows. In §2, we review the additive and multiplicative
preconditioners arising from the AWM-HE. In §3, we discuss some examples of the
approximate L2-projection. In §4, we formulate the AWM-HB preconditioners in a
matrix—vector form. In §5, we present some numerical results which illustrate the
theory developed in the fivst part of this work [14].

2. PRELIMINARIES

2.1. A model problem and its discretization. The bilinear form under
consideration is given as follows:

(2.1) alp, ) = /Ww-Wﬁ‘ Ve, ¢ € HY(Q).
. 0

Here @ = {a;;(x)} is the cocfficient matrix, which is assumed to be symmetric and

positive definite uniformly in a: € Q with bounded and measurable entries a;; (x).

To discretize the bilinear form a(-,+), we use the routine successive (possibly
iocal) refinement procedure to generate a sequence of finite elernent triangulations T
for k=0,1,---,J with T being the initial triangulation. Let Vi be the conforming
piecewise linear finite clement space associated to 7i.. Denote by A . v, — Vg the
corresponding discretization of the bilinear form given by

(AW, ) = alp, ) Ve, € Vi,
where (-, ) stands for the standard L*-nner product.

Each Vy is equipped with a standard Lagrangian (nodal) basis {qﬁgk), x; € Mp}
where A is the node-set (the set of nodal degrees of freedtom) of V. The basis
functions satisfy (bg""’) (z;) = d; ; ~ the Kronecker symbol when z; runs over the node-
set M. We assume that Ay C M. Due to the refinement process we also have
Vi € Vi«

For the method to be defined we need the L2-projection operators, @y« L* () —
Vi defined in the standard way. To be morve specific, for any v € L2()), Qpv € Vi is
defined by solving the following mass (or Gramnm} matrix problem:

(Qiv, 1) = (v,9) Vep € Ve
We also nead the nadal interpolation operatovs [y, ¢ C(2) = Vj, given as follows:
Ty = Z v(:z:i)(f)gk).
@i €N

Finally, we need good approximations Qf to @) that satisfy for some small tol-
erance 7 > 0, the estimate:

(2.2) Qe — QW ulla < 7l|Qrvfla Vv € L),

2.2. The AWM-HB preconditioners. The AWM-HB preconditioners ex-
ploit the following direct decomposition for each Vi:

Vie= (I = Q- Wl = 1ot )V @ Vir

By letting V! = (J~ @2 )k — leos)Vie = (=@ )V, where V) = (Iy—Te—1) Vi
is the standard two-level hierarchical complement of Vi) in the nearest fine space
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%, the foilowing direct decomposition of V

V=teV eV e.. eV

7 =V, foliows:

Let N, LE” = M \ Mg-.;. The following set of functions
(2.3) (- Qe ¢t wee MY,

forms a basis for V. The basis functions {( P )d) } are clearly a modification

of the classical AR functions of Vkm. The modification was made by taking away
from the HB function ¢§*“’ its approximate L2-projection onto the nearest coarse
space Vi-1.
The following operators are needed in the construction of the AWM-HB precon-
ditioners:
o In each coordinate space V), we define the solution operators Ag’{) : V-
V! as the restriction of A¥) onto the subspace Ve,

(2.4a) AR, ey = ale’, @'} Vo', BT eV
o Similarly, we define A% Vo, — 1V and ARVl Vi by
@4b)  (ADG0") = (5, AV = alp',d) VP E Vier, @ €V
Thus, the operator A®) naturally admits the following two-by—two block struc-
ture:

| g (AW Al 1y v
(k) _ |13 12 koo,
(2.4) AN = {A'(;;} A(k—l)} b Ve

Let BU”} be given approximations (symmetric positive definite operators) to A{I’{'] such
that fm some positive constant b the following holds:

@5 (Al oy < (B o) < (1 o)(Ale el Vel eV

Let A = AM) be the opervator of our main interest. Below, we define two major
types of preconditioners B and D that exploit the two—hy~two block structure of each
A in (2.4).

DEFINITION 1: MULTIPLICATIVE AWM-HB PRECONDITIONERS. Let B = B
be the multiplicative AWM-HB preconditioner of A = AW Tt is defined as follows:
o Set BO = A©)
o Fork=1,.-,J, set

k WY 3
w _ [BY 0 {1 By l»“gﬁ)}.
B® = | 2l
AP gl o I

DEFINITION 2: ADDITIVE AWM-HB rrecoNDimoNErs. Let D = D be the
additive AWM-HB preconditioner. of A = AV}, 1t is defined as follows:
e Set D = 401
e« For k=1,--+,J, set

(&)
w . | B 0 .
P ﬁ[ 0 DU
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2.3. Main resalts for the AWM-HE preconditioners. In the first part of
this work [14] we have established a spectral equivalence hetween A and its precondi-

tioners B and D. More precisely, the following result was derived:
(2.6) ¢ (Sv,v) < (Av,v) < ea(Sv,v) Y € Vy,

where § = B or D), Heve ¢; are absolute constants independent of the mesh size
h (or the level number J). The estimate (2.6) is based on the following assumptions:
(A) The tolerance 7 in {2.2) must be sufficiently small, though independent of
the mesh sizes h; or the level number J;
(B} There exists a constant o > 0 such that the following estimate holds:

J
(a.) Qovl} + > 2% Qs — Qs )ollg < anfelll VeV,

s=1

(C) There exist constants o7 > 0 and § € (0,1) (in fact, if hi = Thi-1, then
§ = -1} such that the following strengthened Canchy-Schwarz inequality
) g ¥
holds for any ¢ < #:

(aii)  alpn )’ < o8 Dalene)Ailleslls Ve € Vi, @ € Vi

Here A; = O(h.j"'”)) is the largest cigenvalue of the operator AW,

The assurnptions (B) and (C) have been respectively verified by Oswald [8] and
Yserentant [16, 17]. See, also [15], [5], and [6].

Another major fact, as shown in [14], is that the blocks A?j) are well-conditioned.
In particular, they are spectrally equivalent to the diagonal part of their matrix rep-
resentation with respect to the AWM-HTB, Thus, the Jacobi preconditioner would be
a good choice for Bg";) (see (2.5)) in approximating Agﬁ;).

3. ON THE APPROXIMATE L*-PROJIECTION

Let Q%_, denote any approximate L2-projections onto the subspace Vi, We
begin with describing algorithms for computing the actions of Q1

-~ v e \ M- . . :

For any v € Vkm, lat v = 0‘ {ﬁ; \ M-y he its coefficient vector with respect

' k=1

to the standard nodal basis of Vg; the sccond block-component of v is zero since v
vanishes on Ap_q. The operator Q%_, can be designed by approximately solving the
following equation:

(3.1) (Qp—rv,w) = (v,w) Yw € Vv

{(with the abbreviation Jia = IS)) and I‘,{‘"“1 =

Let I.ff“l - [J"l} NG\ N

I | Wiy
I ;{{1 be the natural coarse-to-fine, and respectively, fine-to-coarse transformation ma-
trices. For exarnple, if the nodal basis cocfficient vector of a function vy € Viey in
terms of the nodal basis of Vi_q is va, then its coefficient vector with respect to the
Jng] INE N Npa
Va }Nkwl '

nodal basis of ¥, (note that vy € Ve C Vi) will he I,f:’_]VQ = [
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Figure 1. Plot of a B function (no modification)

Denote now by Gy = {{¢5*'), d;&“)}ﬂ,j‘mje_,\rh the mass (or Gramm ) matrix at the
k-th fevel. Then (3.1) admits the following matrix—vector form:

Wg‘Gk_g\fg = {[,’:_NIW‘_))TG;\,V VWg'

Here v and w are, respectively, the nodal coefficient vectors of Qp_ivandw € Vy_q
at the (k—1)th level. Therefore, one needs to solve the following mass rmatrix problem:

(3.2) , Gpave = 157 v

In other words, the exact L2-projection Qp_v is actually given by G IE Gy
Hence
2 -1 ph—1 T —1 k=1 e kel 2
(33) ”kafvno = (Gk~1]k GkV) ka| (kal [k G;\‘_V) = “Gk—llk GkV” '
Here and in what follows of this paper we use the notation ||x||> = xTx.
To have a computationally feasible basis, we have to replace G,:l hy some ap-
proximations G,‘TL whose action can he cornputed by simple iterative methods applied
to (3.2). Such iterative methods iead to following polynormial approximations of G,:il,

(,‘j;_]1 = “r — Tm {Gk—l)] G}‘_Ml_la

where 7., is a polynomial of degree m. > 1. The polynornial my, also satisfies m, (0) == 1
and 0 < 7, (t) < 1 fort € [, ], where the latter interval contains the spectrum of
the rnass matrix Gp_q. Since Gy is well-conditioned, one can choose the interval
[, 8] independent of k. Thus, the polynomial degree wm can be chosen to be mesh-
independent so that a given prescribed accuracy 7> 0 in (2.2) is guaranteed. More
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precisely, given a tolerance T > 0, one can choose . = m(7r) satisfying

.I- s J —
1050 - Quervlle = NGE, (6% - il ) 17 Gl

L e
”(YL)MJ Ty (G r— 1) 0;i1 I}f 1Gk"ﬁ
fIEr[l((’}}b] T (f) “C,l., 1 ]f lev“

A H

s () Qi- vl

&y,

Here we have used identity (3.3) and the properties of my,. The last estirnate implies
the validity of {2.2) with

T > max wplt)
Z 1ax, m(t)

Figure 2. Plot of a wavelet modified HB function; m = 2

A simnple choice of my, (£) s the truncated series

m—|
(3.4) Ui (O = s (= A7 30 (1 281,
k= '6

which yields @;11 = Pt (G—r). We remark that (3.4) was obtained from the
following expansion:

1=t8" Z(] tg! t € [a, B
k=0

With the above choice on the polynomial m, (t), we have

ll) = 1=ty () =187 S (1= 710 = (1= 71",

k>m
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m
a
max_ 7w (t) = (] - B) .

1€fer,f]

It follows that

In general, by a careful selection on m, we have rr?ax} mm () < Cq™ for some constants
tela,i

¢ > 0 and ¢ € (0,1), both independent of & Since the restriction on 7 was that  be
sufficiently small, then one must have

(3.5) m=0O(log7™ ")
The requirement (3.3) obviously imposes a very mild restriction on m. In practice,

one expects ta use reasonably small m (e.g., m = 1,2). This ohservation is confirmed
by our numerical experiments to be presented in Section 5.

0.8~
3.6
0.4

0.2+

10

r

Figure 3. Plot of a wavelet maodified HB function; m = 4

We show in Fig. 1 a typical plot of a nodal hasis function of V,fl) and its approx-
imate wavelet modification for m = 2 in Fig. 2 and for m = 4 in Fig. 3. The cross
section, for m = 4, is shown in Fig. 4. The conjugate gradient method was employed
to provide approximations for the solution of the mass—matrix problem (3.2},

4. MATRIX-VECTOR REFRESENTATIONS O THE AWM-HB METHODS

We now turn to the description of the multiplicative and additive AWM-HB
methods in a matrix-vector form.

Let us first derive matrix representations for the operators Agi;'), A&’;;’, and Ag’;)
introduced in Section 2 (see (2.4a) and (2.4b)). In what follows of this section, capital
letters without overhats will denote matrices corresponding to the standard nodal
basis of the underiined finite element space. For example, A denotes the standard

nodal basis stiffness matrix with entries { a(gfjgk), qﬁgk°)):}m 2 €N -
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For any v € ¥}, and its nodal coeflicient vector v, we decompose v as follows:

v= (1= Q4 )Tk = T Jv + 0,

where ws € Vi1 is uniquely determined as wa = v+ Q% (Teg — Iy—1)v. Our goal
is to find a vector representation for components of v. Since the abhove decornposition
is direct, it is clear that there are vectors ¥y and Vo satistying

> oy o— ? Nv Nﬂ— 5 -
an  v=o-gaaae [§ N e

The vectors ¥, and ¥ represent the two components of our wavelet-modified two—-level

]

. ~ v
HB coefficient vector v = {Vi ] of .

0.6}

Q.4

0.2¢

“3% 2 4 5 a 10 12 4 16

Figure 4. Cross-section plot of a wavelet-odified HB function, m =4

Now, consider the following problem
(4.2) Av=d,

which is in the standard nodal hasis matris-vector form. We transforn it into the
approximate wavelet modified two—level HB by testing (4.2) with the two components

(I— I,’:_lé,‘fil IF'Gy) [‘T;‘ ] and 7f_, @ for arhitrary @, and W,. By doing so, we get
the following two-hy—two hiock system for the approximate wavelet rnodified two-level
B components of ¥ (denoted by ¥, and ¥a),

Nt (& -~ e
(4.3) [‘f‘ﬁ;) ”i(‘;f)] [I'} _ [&1},
AR AR s

9
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where
A = 01— Gt G i) A (1 - Gtk ) [
AP =11 0](IkaIiff_.ll@;_‘ljif*l)A{k)]'ts_];
A - (- die) 1]
AR = A = AU

Note that having computed ¥; and ¥, the solution v of (4.2) can be recovered by
using the formula (4.1), i.e.,
V= Yﬁ’\] + Y_]{.’g,

where,

. ' S L ]
o= (1= G Gy [0}

We have,

V=YY, V= Hi] v =, V), Y=, v = v,
0

The transformed right—hand side vectors of (4.3) read similarly as follows:
o) (1 -Gt G I ) a =
s = IFla=v]d

ol )
fi

Thercfore, the multiplicative AWM-HB preconditioner B®) from Definition 1,
starting with B = AQ)  takes the following block—matrix form:

o e BT 3

2 [ B 0 1 BY AL

4.4 B = | 71 {1 2.
(44) Al pl-n ] o I

The preconditioner B™ is related to B i the same way as AR} to /T("’); namely,
B® = (v, Ya] P BWY;, ¥5] and thercfore, BT = (7, %] BE T (1, ¥5]7. We will
show below that the inverse actions of B} can be computed only via the actions of
A®) v, ¥y, and )";‘", Y.ET in addition to thoe inverse actions of ﬁf‘]‘)

We point out that (4.4) has precisely the same form as the algebraic multilevel
methad studied in Vassilevski [11] (see also Axclsson and Vassilevski [2] and Vasstlevski
[12]).

Observe that, in {4.4), 1§§’;” is an appropriately scaled approximation of ,21“5’;’
We have shown in {14] that /?E’]) is well-conditioned (sce Lermma 4.3 there). Thus,
it is possible to take some simple poiynornial approximation EEP for Eﬁ’i) in the
implementation. Iowever, in order to take mto account any possibie jumps in the
coefficient of the differential operator, it would he preferable to comnpute, for example,
the diagonal part of ,?15‘]) This is computationally feasible since the hasis functions
of VI = (I - 2_1)\’,\,(” (given in (2.3)) have veasonably narrow support if m is
not too large, which should be the case in practice. Nevertheless, we employed in
our numerical experiments the CG method to compute {fairly accurate) approximate

|
actions of A&’;) .
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ALGORITHM 1: COMPUTING INVERSE Acrions oF BY . The inverse actions of
BW) are computed by solving the system
B*¥w =4,
with the change of basis w = Y w. Numely, by setting
~ .~ S| W
wo =YW+ Yaws = [V, ¥4 [Al] )
W3

w = B®W™'d is computed via the solution of B =d as follows:

e FORWARD RL(;URRFI\( o
(1) compute %) = B( )7 di;
(2) change the busis; vﬁ.e,., compuf« v = Y\%;
(3) compute dy = ds — 4,, W =Y WA — ARz,
{4} compute Wy = ple=17"q,;
(5) change the busis, i.e., compute v = YaWa;

» BACKWARD RECURRENCE!
(1) update the fine—grid residual, i.c., compule

pimdy - ARG, = VT — AR ®R.) = VT (d - AW,

-l
(2) compute Wy = H,’;) di;
(3) get the solution by w = Y1 W, + YoWy = V1% +v.

End

Note that the ahove algorithmm requives only the actions of the standard stiffness
matrix A% the actions of the transformation matrices ¥7 and ¥5 and their transpo-
sition ¥,T and Y., the inverse action of Ew, and some suitable approximations to
the well-conditioned matrices A' E’}} Note that the actions of ¥ ~! are not required in
the algorithm.

We now formulate the solution procedure for one preconditioning step using the
multiplicative AWM-HDB preconditioner B = B,

ALGORITHM T1: MULTIPLIGATIVE AWM-TI3 PRECONDITIONING,  Given the prob-
lem

Bv =d:

Initiate:
d) = d.

(A) Forward recurrence. For k= J down ta 1 perform:
(1) Compute:

i =17 o ](1—(*,\:'JL Nen ]Ik‘l)d{”;

{2} Solve:
BiYe =di
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(3) Transform basis:
_ b A1 b=t Y [ W] Ve \ Nt
w= (1= 16 &) [ . ] NG
(4} Coarse—grid defect restriction:
d-b = gl - A,
[ () — Al

(5) Setk=Fk—1. If k>0 goto (1) else:
(6) Solve on the coarsest level:

A0 () d(()),,
(B} Backward recurrence.
(1) Interpolate result: Set k =k + 1 and compute

) o B,

(2} Update fine—grid residual:
O [ ()
e d® o) - ciklfj_,é;;_‘] TE=1) 4R ®)
[F 0T = Gelf_ Gl 157 () — AUy,
{3) Solve:
B =l
(4) Change the basis:

w=(I- Ii'f—'léf:—ialff_lc"‘) {"61} ;

(5) Finally set:
) = ) o

(6) Set k:=k+ 1. Ifk<J gotostep (1) of (13), else set
v = x0T
END
Similarly, one preconditioning solution step for the additive AWM-HB precondi-

tioner D = D) takes the following form:
ALGORITHM [T ADDrrive AWM-HB PRECONDITIONING. Given the problem

Dv =4d-

Initiate:
d) = g.

(A} Forward recurrence. For k= J down to 1 perform:
(1) Compute:

aw — o) (1 Gl G I,’i“l) am,
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{2) Solve:
A, =d,
(3) Transform basis:

) _ (5 gk A=l gk W | Ve \ N1,
= (f Ten G2y I, Gk) [ 0 ] Wit ;

(4) Coarse-grid defect restriction:

A1 = 15“1(1("');

(5) Setk=4k—1. Ifk>0goto (1), else:
(6) Solve on the coarsest level:

AQ@ @ — g,

(B} Backward recurrence.
(1) Interpolate result: Set k =k -+ 1 and compute

wW o= f::'ﬁlxtkml};

{2) Update at level k:
) = x4

(3) Set k:=k-+1. Ifk <J gotostep (1) of (B), else set

v = %)

IIND

For both the additive and multiplicative preconditioners, it is readily seen that
the above implementations require only actions of the stiffuess matrices A“”'), the mass
matrices GO}, and the transformation matrices / ,’;'_I and 7 ,f‘ =1 The approximate in-
verse actions of A\ﬁ} can he computed via sorne inmer iterative algorithms. Similarly,
the action of (?Lf_‘l can he computed as approximate solutions of the corresponding
mass—matrix problem using m steps of some simple iterative methods. Therefore, at
each discretization level k, one performs a number of arithmetic operations propor-
tional to the degrees of frecdom at that level denoted hy M. In the case of local megh
refinement, the corresponding operations involve only the stiffness and mass matrices
computed for the subdomains where local refincinent was made. Hence, even in the
case of locally refined meshes, the cost of the AWM-TIB methods is proportional to
M = M,. The proportionality constant depends linearly o m = O{log 1), but is
independent of J (or k).

The solution vector v in the additive algorithm is given hy an expression of the
forrn,

J
(4.5) v=D"ld = (R}{W“"' Ry + S BB m.) d,
fes g

where the matrices Ry are given by
RY = If, ftork=0,
(4.6)

RE = 1} [1- 1E G 1G] m for k > 1-
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Here 7f stands for the natural coarse—to—fine transfer matrix from level k to the finest
level.

It is clear from (4.5) and (4.6) that the additive version of the algorithm can be
implemented in a paraltel fashion, hut this will requive 0 (‘ﬂlog‘ﬂlog ’T_l) operations
versus O (‘ﬁ log T“) operations in the consecutive implementation which is due to the
more expensive simuitancous transfor of the same data from the finest grid directly to
all the kth level grids for k = .J —1,...,0 and vice versa.

5. NUMEBERICAL BXPERIMENTS

In this section we present some mumerical results which demonstrate the perfor-
mance of the additive and multiplicative AWM-HB algorithins described in Section
4,

For simplicity, the domain £ was taken to be the unit square (0,1)%. Also, the
finite element spaces ¥y contain piecewise linear continuous functions that vanish on
I'p = {{&0): 0<a < Tu{(0,y): U <y < I} The spaces Vi correspond to
uniform triangulations of Q consisting of isosceles right triangles of size hy, = 2% for
k=0,1,2,...,J. The mass matrix problem involved in both algorithms are solved by
applying /> 0 steps of the CG method (without preconditioning). The problem with
}1\(1'{) was solved by the CG method until a prescribed residual tolerance is reached.

Ly |
That is, one may assume that the actions of 4 (,’]) are practically exact. The diffusion
coefficient a = a(z,y) in the bilinear form (2.1) was given by

ala,y) = 1427+ 7

Int the test we varied the mumber of inmer iterations i = 0, 2, 4 for solving the mass ma-
trix problem in order to compute the actions of QF_ required in the AWM-IIB meth-
ods. The multiplicative method with m = 0 corresponds to the method of Vassilevski
[11], which coincides with the HB-MG method of Bank, Dupont, and Yserentant [4].
The additive method with m = 0 is then a variant of the HB method of Yserentant

16},

Tanne 1
HE Multilevel Preconditioners; fm = 0)

levels Ariditive Multiplicalive

J Amnin Amaz n fler Anin Amax p iler
3 0.462 {5.167 0.438 25 1.000 2.677 0.127 10
4 0.396 7.674 £.566 38 1.000 3.109 0.234 14
& 0.358 110.52 0.619 18 1.000 4.433 0.298 17
8 0.333 13.26 0.690 59 1.000 5.522 0.347 19
7 0.316  116.09 0.726 G 1.006 6.732 0.383 22
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In the Tabies i-3 we show the munber of iterations, ier, in the preconditioned
conjugate gradient method applied to solving

Ax = b,

A= AW for J =3,4,5,6,7 (i.e., the mesh-size f = -é—, Tlg, %, g{f, %g) with the same
m in a given table. The right-hand side vector b was chosen to satisfy a prescribed
solution w(x,y).

The stopping criterion used is
YW e < 107 e W g,
where W is the preconditioner (i.e., B or D), r is the current residual, and rg =

(I — AW=1)b is the initial residual. We also show in the tables the following average
1

Wty

COMVErgence rate p = {

Information on the minimum (Awin) and maximum (Anax) cigenvalues of AR i)
and A® 7 D) for k= 3,...,J can also be found in the tables. The Lanczos method
was employed n the code to provide this information.

Natice that, in Tables 2-3, the nuwmber of iterations (as well as the estirnated
extreme eigenvalues) tends to be wniformiy bounded from above. This is very well
seen from the columns for the muitiplicative AWM-HB preconditioner in Table 3.
Thus, as proved in [16], the choice of m is practically not affacted by J. For example,
m = 2 (see Table 2) gives also weakly sensitive values of the number of iterations (as
well ag eigenvalues) when J varies from 3 to 7. An improvement over the pure HB
method (see Table 1) is clearly demonstrated in this test. 1t is expected that a much
better improvement can be seen for problams of three space variables. To conclude,
the rumerical tosts do illustrate the convergence theory presented in the first part of
this work.

Tanue 2
AWM-HB Muliilene! Precondilioners; m = 2

levels Addilinve Mulliplicative

J Amin Amax n iter Monin Amoz 4 iter
3 0.542  |2.846 0.375 21 0,972 1.577 0.118 10

1 0.481 3.395 G466 28 0490 1.711 0.143 11

5 0.443 |3.564 0.486 30 £.940 1.798 0.156 11

6 0.418 |[3.674 0,459 3 0.989 1.832 0.157 11

7 0401 | 3.698 0.505 32 0.989 1.877 0.156 12
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TanLe 3
AWM-HE Mullitevel Preconditioners; m = 4

levels Addilive Mulliplicalive

J Amin Amax 4 iter Amin Amaz p iter
3 0.544 |2.862 0.364 21 0.997 1.572 6,098 9
4 0.481 3.393 0.447 26 0.999 1.724 0.130 10
5 0.442 3.633 0.6G3 28 0.988 1.808 0.143 11
6 0417 3.722 0.484 30 0.509 1.856 0.147 11
7 0.399 3.769 (.498 32 0.999 1.905 0.147 11
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