UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

A Numerical Method for Two Phase Flow
Consisting of Separate Compressible and
Incompressible Regions

Rachel Caiden
Ronald P. Fedkiw
Chris Anderson

January 2000
CAM Report 00-01

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90095-1555

http://www.math.ucla.edu/applied/cam/index.htm]



A Numerical Method for Two Phase Flow
Consisting of Separate Compressible and
Incompressible Regions

Rachel Caiden **
Ronald P. Fedkiw * §
Chris Anderson 1*

June 15, 2000

Abstract

We propose a numerical method for modeling two phase flow con-
sisting of separate compressible and incompressible regions. This is of
interest, for example, when numerically modeling the combustion of
fuel droplets or the shock induced mixing of liquids. We use the level
set method to track the interface between the compressible and incom-
pressible regions, as well as the Ghost Fluid Method (GFM) to create
accurate discretizations across the interface. The GFM is particularly
effective here since the equations differ in both number and type across
the interface. The numerical method is presented in two spatial dimen-
sions with numerical examples in both one and two spatial dimensions,
while three dimensional extensions are straightforward.
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1 Introduction

Problems with large density ratios, e.g. the combustion of fuel droplets
or the shock induced mixing of liquids, are still rather difficult problems for
modern computational fluid dynamics. These problems all concern the inter-
action of liquid droplets with a compressible gas medium. In general, there
are three classical approaches to such problems; one can treat both phases
as compressible, the gas as compressible and the Hquid as incompressible,
or both phases as incompressible.

When gas and lquid phases are treated as compressible, it is customary
to model both with the fully compressible Navier-Stokes equations and a
different equation of state for each phase. The change in equation of state
is known to cause oscillations in numerical solutions near phase interfaces.
These oscillations can be suppressed e.g. see [19] and [18] where the oscil-
lations caused by the numerical method in [22] are removed. However, the
suppression schemes have a side-effect that fluid properties can be smeared
near interfaces. More details on the successful application of these types
of numerical methods can be found in {1}, [25], {32] and [31]. Numerical
smearing across interfaces can be avoided using the Ghost Fluid Method
(GFM) first proposed in [11] for two phase compressible flow and later ex-
tended to shocks, deflagrations, and detonations in [12]. While the Ghost
Fluid Method can yield solutions with sharp fluid interfaces, a completely
compressible treatment can be limiting because of the difference in sound
speed between the liquid phase and gas phases. The more restrictive CFL
condition in the liquid phase dictates a small time step for both phases, and
this leads to ineflicient numerical methods. In addition, a completely com-
pressible approach is limited to liquids (or other materials) for which there
are acceptable models for their compressible evolution.

To address such difficulties, we propose using the approach where the
gas is modeled as a compressible fluid and the liquid is modeled as an in-
compressible fluid. The method can be viewed as a phase decomposition
approach in which a high-resolution shock capturing scheme for the com-
pressible flow is coupled with a standard incompressible flow solver for the
liguid. The sharp liguid-gas interface is captured with the level set method
[21]. Near the interface the Ghost Fluid Method is used to treat the bound-
ary conditions in a manner that admits sharp discontinuities while still allow-
ing for smooth discretizations across the interface. One important feature
of our method is that we do not evolve the solution using operator split-
ting; in each time step both phases are updated simultaneously. Thus, the



method avoids the time discretization errors that are associated with time-
split schemes. The equations are solved with third order TVD Runge Kutta
schemes in time and third order ENO schemes in space see [30, 13, 11,17]. A
method where the compressible and incompressible phases are also treated
separately is presented in [14]. However, the method in [14] is restricted to
one spatial dimension and it was not clear how to extend that technique to
multiple spatial dimensions without ill-advised dimensional splitting.

In our procedure we are treating the liquid phase as incompressible. An
alternate possibility that still retains the compressible nature of the liquid
phase and avoids the time-step restriction of the difference in sound speeds
would be to employ numerical methods designed specifically for low Mach
number flow, e.g. [20] proposed a one dimensional numerical method based
on asymptotics which was more recently extended to apply to a large class
of standard compressible flow solvers in multiple dimensions [26]. In [5], this
problem was treated with a semi-implicit method that was only implicit on
those terms related to the speed of sound. See also [23] which generalized
the work in [5]. A related method appears in [36] which splits the equations
into an explicit advection phase and an implicit nonadvection phase. This
particular method has been used to produce phenomenal images of fluid
motion, see e.g. [35]. There are many other notable methods and the reader
is referred in particular to [10] which uses a Hodge decomposition and [27]
which addresses cancelation difficulties with low Mach number flows. The
general technique that we outline for evolving the gas and liquid phases
using separate models would apply to a method where the incompressible
algorithm is replaced with one of the low Mach number solvers mentioned
above; we leave this to future work. .

Lastly, there are several methods that model both phases as incompress-
ible, [34] , [4], [33], [6] and [17], however, this approach is ruled out because
our interest is in flows where compressible effects in the gas phase are im-
portant.

In the second section we describe the equations that are used to evolve
the compressible fluid, the incompressible fluid, and the level set function. In
addition, this section addresses the boundary conditions and coupling at the
compressible/incompressible interface. The third section discusses the gen-
eral time stepping strategy including the details required to advance each
phase for one Euler time step. Section four addresses higher order TVD
Runge Kutta methods and adaptive time stepping. Section five presents
computational results that demonstrate the efficacy of our procedure. The
numerical method is presented in two spatial dimensions with computa-
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tional results in both one and two spatial dimensions. Three dimensional
extensions are straightforward.



2 Equations and Their Discretization

2.1 Compressible Flow

The basic equations for two dimensional compressible flow are the Euler
equations which can be written as:
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where ¢ is the time, z and y are the spatial dimensions, p is the density, u
and v are the velocities, F is the total energy per unit volume, and p is the
" pressure. The total energy is the sum of the internal energy and the kinetic
energy,
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where e is the internal energy per unit mass. The pressure can be written as
a function of density and internal energy, p = p(p, e). For the sake simplicity
only a gamma law gas, p = (y — 1)pe, is considered in this paper. Note that
the effects of viscosity, thermal conductivity, and mass diffusion are ignored
in the compressible gas. The compressible flow equations are discretized
using 3rd order accurate ENO methods. See [30, 13] for more details.

E=pe+

2.2 Incompressible Flow

The equations for incompressible flow can be deduced from the compressible
flow equations by setting the divergence of the velocity field, V =< u,v >,
to zero obtaining,
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where both p and g are assumed to be constant in the incompressible region.
The equations are discretized on a MAC grid using the projection method
[9] which allows eguation (3} to be rewritten as
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where the convection terms are discretized with standard 3rd order Hamilton
Jacobi ENO methods [11, 16], and the viscous terms are discretized with
standard second order central differencing. Once V* has been computed,
the Poisson equation

0 (6)

Ap* =V -V* (n

is discretized with Dirichlet boundary conditions on the pressure. This equa-
tion is derived by taking the divergence of equation (6) noting that the di-
vergence of V1! is identically zero. Also note that the pressure has been

rescaled using
At)
&
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to define a scaled pressure, p*. After solving equation (7) for the scaled
pressure, the appropriate form of equation (6) given by

VYR L Upt =0 (9)

is used to obtain 17"""“’“1.

2.3 The Level Set Method

The level set equation
¢+ V V=0 (10)

is used to track the interface between the compressible and the incompress-
ible regions. ¢ < 0 designates the incompressible fluid and ¢ > 0 designates
the compressible fluid. Hamilton Jacobi WENO methods [11, 16] are used
to advect the level set function according to equation (10) and to reinitialize
the level set function according to

¢+ S(go) (V| —1) = 0 (11)

which was first proposed in [33]. The level set function is used to define the
unit normal at every grid point as

ﬁm qu =< N3, Ty > (12)
[Vl



uging central differencing where N points from the incompressible fluid into
the compressible fluid. In the rare case that the denominator is identically
zero, one sided differencing is used to calculate ¢, and ¢, in order to allow
at least one nonzero value to be calculated. The curvature at each grid point
is defined as

. (d’gﬁbmm - 2¢z¢y¢my + ‘rbg:ﬁf’yy)
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and discretized using standard central differencing. In order to ensure that
under-resolved regions do not erroneously contribute large surface tension
foreces, thresholding is applied to the curvature so that it satisfies

1
P
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2.4 Interface Boundary Conditions

In order to obtain a numerical method that can treat the interface between
compressible and incompressible flow one must first address the boundary
conditions and coupling mechanisms at the interface. Since the interface is
a contact discontinuity moving with the local fluid velocity, 17, the Rankine
Hugoniot jump conditions imply that [p] = 0 and [Vy] = 0, i.e. both the
pressure and the normal velocity, Viy = V.N , are continuous across the
interface, see e.g. [11].

In the presence of thermal conduction, the temperature is confinuous
across the interface. In this paper, thermal conductivity effects are ignored
introducing an uncoupled variable across the interface. When considering
compressible flow, this can be thought of as an equation of state variable,
e.g. p or e. We choose the entropy, S, as the equation of state variable since
the entropy obeys a simple advection equation of the form

8 +V-V8=0 (15)

away from shocks implying that the entropy is not convected across the
interface (which moves at speed Vy in the normal direction)} {11]. In the
incompressible flow, both density and internal energy obey equation (15)
as well with § replaced by either p or e respectively [24]. Thus, similar to
the entropy, information in these variables does not cross the interface. In
the presence of viscosity, the tangential velocities are continuous, and the
[p] = 0 boundary condition needs to be modified to account for the viscous



stress, see e.g. {17]. In this paper, the compressible fluid is inviscid implying
that there is no viscous coupling across the interface so that [p] = 0 remains
valid while the tangential velocities are uncoupled across the interface. The
nonzero incornpressible viscosity only acts internal to the incompressible
fluid. In addition, note that the tangential velocities obey equation (15) as
well implying that information in these variables does not cross the interface.

In order to design a numerical method, the interface needs well defined
values of all the independent variables. This can be achieved by specifying
D, 17, and e on the incompressible side of the interface and S, 17, and p on
the compressible side of the interface. All the uncoupled variables can be
determined using one sided extrapolation to the interface. These variables
are the tangential velocities on both sides of the interface, the incompress-
ible density and internal energy, and the compressible entropy. In the Ghost
Fluid Method, these interface values are not directly used, but instead these
interface values are captured using one sided extrapolation of these quanti-
ties into ghost cells on the opposite side of the interface. Note that both the
mcompressible density and internal energy are treated as spatially constant
80 that no numerical treatment of these variables is needed. In fact, the in-
compressible internal energy can be completely omitted from the problem.
The [Viy] == 0 jump condition implies that the normal velocity is continu-
ous across the interface and that both the compressible and incompressible
normal velocity must be considered when determining the unique value of
the interface normal velocity which is used on both sides of the interface.
Once the interface normal velocity has been determined, all that remains
is the compressible pressure, and since all other interface values are deter-
mined, this variable is actually uncoupled! Therefore the interface value of
the compressible pressure is determined with one sided extrapolation and
its interface value can be captured with ghost cells similarly to the variables
that obey equation (15). This is quite surprising since the interface separat-
ing two phase compressible flow requires the same coupling for the pressure
that is required for the normal velocity [11].

The interface normal velocity can be determined using any number of
interpolation techniques. However, one should be careful to realize that
the interface normal velocity should be defined in a way that is consistent
with incompressible flow. That is, since the incompressible region and its
boundary should behave in a way that conserves area (or volume in three
dimensions), the interface normal velocity needs to be consistent with the
interior incompressible flow providing an extra global constraint on the in-
terface normal velocity which is related to the compatibility condition, see



[24]. For this reason, the interface normal velocity is determined solely from
the incompressible fluid values. This gives the interface velocity an incom-
pressible character that helps to alleviate area (or volume) loss. Once again,
the exact interface velocity is not actually computed, but captured using
one sided extrapolation from the incompressible region. At this point, one
might have legitimate concerns over the coupling mechanisms, that is, while
the compressible fluid sees an incompressible interface velocity, the incom-
pressible fluid is oblivious to the compressible velocity field. However, the
incompressible fluid is coupled to the compressible fluid in the projection
step. The compressible interface pressure is used as a Dirichlet boundary
condition when solving a Poisson equation in the incompressible region, and
the resulés are used to update the incompressible velocity field providing the
proper coupling. Note that uging the compressible pressure in this way also
enforces the [p] = 0 boundary condition. In the presence of surface tension,
the compressible pressure is not used directly, but is first modified according
to the appropriate [p] = ok jump condition.



3 Solution Advancement

In this section we describe how our procedure advances the solution one
Euler time step. Higher order TVD Runge Kutta methods can be obtained
as a combination of Euler time steps and simple averaging as explained in
the next section.

At the beginning of a time step the level set function, ¢, is defined
at all grid nodes. The zero contour of the level set, {(z,y)]|¢(z,y) = 0},
delineates the interface between compressible and incompressible fluids. The
values of the compressible fluid are indicated by ¢ > 0 and those of the
incompressible fluid are indicated by ¢ < 0. The compressible fluid values
of mass, momentum and energy, designated by Tj’, are known at the nodes of
a non-staggered grid while the incompressible fluid velocities are known at
staggered MAC grid locations. The MAC grid values of ¢ are defined using

averaging of the nodal values, e.g. ¢, 1= PijtPiti '+g’*'+1 3

To advance the solution consists of carrying out three calculations:

1. Extending the mcompressible and compressible fluids across the inter-
face using the ghost fluid technique.

2. Computing (_f"“'i, $™+1 and 17'*, i.e. advance the compressible fluid
and the level set funciion one time step, and compute the intermediate
value of the incompressible velocity field V*.

3. Projecting V* onto its divergence free component in the region defined
by 4™ < 0 to obtain ¥+ for the incompressible fluid. Note that this
step also accounts for the interface forces imposed by the compressible
pressure.

The extension of the flow variables across the interface allows the calcula-
tions in step 2 to be implemented using standard difference formulas without
regard to the position of the interface. The success of the procedure depends
critically upon the manner in which the fluids are extended across the in-
terface; the procedure used here is an extension of the Ghost Fluid Method
[11]. Since our spatial discretization uses a combination of staggered and
non-staggered grids some additional complexity is introduced into the tech-
nique. However, this complexity is tolerated because the use of a staggered
MAC grid for the incompressible fluid greatly simplifies the implementation
of the projection calculation in step 3.

We begin more detailed descriptions of the steps 1-3 with a discussion
of the methods for extending the incompressible and compressible fluids.
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3.1 Incompressible Fluid Extension

Incompressible velocities need to be defined at ghost nodes in the compress-
ible region in order to advance the incompressible velocity field. In section
2.4 it is concluded that these values should be obtained by extrapolation
from their values in the incompressible region. Constant extrapolation in
the normal direction to the interface can implemented by solving

L+N-VI=0 (16)

in fictitious time 7 for I = u on the subset of the MAC grid where the
u component of the incompressible velocity field is defined, and separately
for I = v on the subset of the MAC grid where the v component of the
incompressible velocity field is defined. Instead of time marching, a first
order accurate solution to the steady state of equation (16) can be obtained
using the fast (velocity) extension method in [2] (which is based on the Fast
Marching Method, see e.g. [28]). We prefer this method as it substantially
reduces the computational execution time.

3.2 Compressible Fluid Extension

The compressible fluid extension at nodes within the incompressible region
(i.e. compressible ghost fluid nodes), is defined by the values of its veloc-
ity, its entropy and its pressure. As discussed in section 2.4, the interface
boundary conditions dictate that the entropy, the pressure, and the tangen-
tial velocity at the ghost fluid points be extrapolated from their values in
the compressible region. The values of the entropy and pressure are extrap-
olated using the fast extension method in [2]. In order to construct a ghost
cell velocity, we follow the procedure in [11]. The idea is to extrapolate the
entire compressible velocity field to the ghost points using [2] and then ob-
tain the tangential velocity at the ghost points by computing the difference
between the extrapolated velocity and its normal component. The total
velocity is then computed as

V= (Vi N) N + (Veat = (Vi - N) N) ()
where the first term is the normal component of the incompressible velocity
and the second term is the tangential component of the extrapolated com-

pressible velocity. The incompressible velocity, 17}, needs to be defined at
the ghost nodes. If the extrapolated values of the incompressible velocity
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are defined first (as outlined above), then simple averaging can be used to
obtain the incompressible velocity at each ghost node. Note that equation
(17) does not require explicit knowledge of the tangent plane making it easy
to implement in three dimensions. Once the ghost node values for the ve-
locity, pressure and enfropy have been defined, the conserved variables at
the ghost nodes can be reassembled.

3.3 Computing U™, ¢"*+1 and V*

With the compressible ghost fluid values defined, compressible fluid values
are advanced one time step by applying the ENC discretization procedure
at points in the compressible region. Note that a band of ghost nodes are
updated in time as well so that they are appropriately defined in case the
level set changes sign making them real fluid grid nodes. Since the normal
velocity of the interface is defined by the incompressible velocity field, this
velocity field is used in equation (10) for the evolution of the level set func-
tion. Thus, to advance ¢ in time, the velocity in equation (10} is computed
at the grid nodes using simple averaging of the extended incompressible ve-
locity field. Finally, V* is computed by applying the ENO discretization
procedure to all points within the incompressible region including a band
about the interface.

3.4 Projecting the incompressible fluid increment v*

Once V* and #"*1 have been computed the discrete Poisson equation with
Dirichlet boundary conditions

Ap* =V - V* (18)

is used to obtain the scaled pressure in the region where ¢"*! < 0. The
boundary conditions for p* are obtained from p™*! at all compressible points
adjacent to the incompressible region using the formula

p* = (%) (pn+1 +O'ﬁ:)

where the —A—}t- multiplier accounts for the scaling, p’ is the incompressible
density, an(tij the ok term accounts for the jump in pressure due to surface
tension forces, i.e. [p] = ox. Note that the curvature is computed at each
grid point using the level set function, ¢"*1. To solve (18) we use a pre-
conditioned conjugate gradient (PCG) method with an Incomplete Choleski
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preconditioner [15]. Once p* has been computed Vmtlis obtained with the
relation V7! = V* — Vp*.
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4 Runge Kutta and Adaptive Time Stepping

Since both second and third order TVD Runge Kutta schemes [29] can be
written as a convex combination of simple Euler steps, see [29, 17], it is
straightforward to generalize the first order time discretization discussed in
section 3 to third order TVD Runge Kutta. One difficulty in implementing
Runge Kutta methods in problems with interfaces arises when nodal values
change character as the interface moves (e.g. one may inadvertently average
incompressible and compressible flow values). However, the use of the ghost
fluid technique circumvents this difficulty. First, the values of the level set
can be averaged directly. Second, the values of the compressible fluid can
be averaged using the appropriate ghost cell values where necessary. Third,
the incompressible velocity can be averaged using the extended values of
the I7M ac velocity field where needed. Note that the values of I7M Ac in the
ghost cells are determined by one sided extrapolation of the incompressible
velocity, and thus do not exactly satisfy the divergence free condition al-
though they do have incompressible character. This can cause slight jumps
in the pressure at the interface as a larger than normal pressure gradient is
needed to enforce exact incompressibility. Also, when using these extended
velocities in a Runge Kutta averaging procedure the resulting velocity field
is not exactly divergence free. However, the mumerical results show that
the area loss is small especially when compared to any standard level set
calculation. Thus, these slightly compressible edge velocities do not seem
t0 be a gignificant source of error. Note that one could remove these errors
entirely by defining the extended velocity field using a divergence free con-
straint similar to the process outlined for free surface flows, see e.g. {7] and
[8].

Adaptive time stepping is used where the overall time step is the mini-
mum of the compressible and incompressible time steps, i.e.

At = 5min{AtC, At (19)

where we have chosen a CFL restriction of .5. For compressible flow, the
convective time step restriction

AC (I‘leAj; “+ ]“LJ; C) <1 (20)

needs to be satisfied at every grid point where ¢ = ,/1;? is the speed of
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sound. For incompressible flow, every grid point needs to satisfy

2 2
A ((Gcfl + Ver) + \/(Ccfl + Ver)? + 4(Sepi) ) <1

2
where l ]
U v
Cert= 5o T Ay

is for the convection terms,

o 2 2
Vet =7 ((AwV * (Ay)ﬂ)

is for the viscous terms, and

oK

p(min{Az, Ay})?

Sefr =

is for the surface tension forces [17].
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5 Numerical Examples

In this section, we report on numerical examples which demonstrate the
accuracy and convergence behavior of the method. In particular, these ex-
amples show that the fluid quantities are not smeared out near the interface
por do the numerical solutions exhibit nonphysical oscillations. Also, all
the two dimensional numerical examples had less than %% area logs on the
finest grids. The calculations performed here used 3rd order accurate TVD
Runge Kutta methods and adaptive time stepping as discussed in section 4.
Unless otherwise specified, the two dimensional examples include the effects
of viscosity and surface tension with g = .001 137%“% and o = .07 285:—%. These
effects are not present in one spatial dimension.

5.1 One Dimensional Case

In one spatial dimension, the incompressible flow equations are greatly sim-
plified. Equation (4) becomes 4, = 0 implying that the incompressible
velocity is constant. Equation (3) then becomes

ut+?i§xo (25)

implying that equation (5) is just u* = u™. Equation (7) becomes p}, = 0
implying that the incompressible pressure is merely a straight line connecting
the values of p* on the left and right boundaries. In fact, equation (9)
becomes N .
S S Pright — Plefr __ 0 (26)
L
where L ig the length of the incompressible region.

5.1.1 Example 1

Consider a 1m domain with 200 grid cells. The domain is filled with a
compressible gas with vy =14, p = 1.226;%%, u=02 and p=1x 10° Pa,
except for a .2m incompressible droplet in the center of the domain with
p= 10()0;}"1%, w= 100" andp = 1x 10° Pa. Since the incompressible droplet
is moving to the right in a gas which is originally at rest, a compression
wave will form in the gas ahead of it and an expansion wave will form in
the gas behind it as shown in figure 1 at t = 7.5 x 10™* seconds where the
red region represents the compressible fluid and the blue region represents

the incompressible fluid. The density, velocity and pressure all drop across
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the few grid cell thick compression wave, although the density jump is too
small to be seen in the figure. The density and pressure drop while the
velocity rises across the smooth expansion wave which is resolved by the grid,
although once again, the density change is too small to be seen in the ﬁgure
Figure 2 shows similar behavior with an incompressible density of p = 10w-9—
Note that the lighter droplet is slowed down faster by the compressible gas,
and as a result secondary expansion waves with significant amplitude stretch
between the droplet and the lead compression and expansion waves. A grid
refinement study was preformed on both calculations using grids of 200, 400,
and 800 cells. The incompressible velocity was used for the comparison with
Aitken extrapolation [3]. The computed velocities of 99.72162, 99.7189- -
and 99.71752 from the coarsest to the finest mesh yield a convergence rate

of 9475 for the p = 1000—% case, and the computed velocities of 75.6466 -,
75.4843 7 and 75.4043 i * yield a convergence rate of 1.0206 for the p =
107—];% case. Figure 3 shows the results obtained with 800 grid cells for

the p = 10%% case to illustrate the behavior of the variables under mesh
refinement.

5.1.2 Example 2

In this example, the ambient compressible medium has p = 1.58317%&’;,
u =02 and p = 98066.5Pa. A shock wave is initially located at z = .1m
with a post shock state of p = 2.1242%, u = 89.9812, and p = 148407.3Pa
to the left of # = .1m. The shock wave travels to the rlght impinging
on the incompressible droplet with initial state of p = 100()“%, u = 0%
and p = 98066.5Pa causing both reflected and transmitted waves as shown
in figure 4 at ¢t = 1.75 x 107% seconds. Note that the transmitted wave
is too weak to be seen in this figure, although it can clearly be seen in
figure 5 which shows the same calculation with an incompressible density of

p= 10::1—%. Figure 6 shows the calculation at an earlier time of £ =9 x 10~
seconds with a density of lOf—i%, shortly after the shock has initially impinged
on the droplet. Note that the transmitted wave has traversed the droplet at
infinite speed and is now entering the gas on the far side. A grid refinement
study was preformed on both calculations using grids of 200, 400, and 800
cells using the incompressible velocity for the comparison. The computed
velocities of .544424 %, 5444639, and 54447427 from the coarsest to
the finest mesh yleid a convergence rate of 1.0617 fOr the p = 1000-»3~ case,
and the computed velocities of 40.9873 -2, 40.8685-™ and 40.8074 - y1e1d a

sec?
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convergence rate of .9593 for the p = 107—’;% case. Figure 7 shows the results

obtained with 800 grid cells for the p = 101%% case to illustrate the behavior
of the variables under mesh refinement.

5.2 Two Dimensional Case
5.2.1 Example 3

Consider a [0m, 1m] x [0m, 1m] domain with 100 grid cells in each direction.
Similar to example 1, the domain is filled with a compressible gas with
p == 1.2267—’;%, w=v=02andp=1x 10° Pa, except for a .2m radius
incompressible droplet in the center of the domain with p = 1000,{%‘?;, U =
1002, v = 0% and p = 1 x 10°Pa. This incompressible droplet moves to
the right causing a compression wave in the gas ahead of it and an expansion
wave in the gas behind it. Figure 8 shows a one dimensional cross section
of these waves at t = 5 x 107 seconds. Figures 9 and 10 show the pressure
contours and the velocity field at the same time. Figure 11 shows the initial
level set location as compared to the location at t = 2.5x 1073 seconds using
50, 100, and 200 grid cells in each direction. Careful examination of the right
hand side of the level set location shows first order accurate convergence in
the location of the interface. An area loss study was undertaken using the
method outlined in the appendix. Initially, the area of the droplet is .047.
The area loss was .23%, .16%, and .0125% on grids with 50, 100, and 200
cells in each direction respectively. Similar results for p = 10-7%% are shown
in figures 12 and 13 where the area loss was .49%, .31%, and .13%. Notice
that the lighter droplet has been deformed and slowed at a faster rate than
the heavier droplet. Also note that the calculation on the finest mesh is
starting to show signs of Kelvin-Helmholtz instability as demonstrated by
the small wiggles in the interface location. This instability occurs when
the tangential velocity is discontinunous across an interface as is required
by the imposed no-slip interface boundary condition. On coarser grids, the
numerical viscosity can nonphysically damp out this effect.

In order to illustrate the effects of viscosity and surface tension, we shrink
the domain to [0m,1 x 107%m] x [0m,1 x 107°m] for the p = 10&% case.
Figure 14 shows a one dimensional cross section of these waves at £ = 5x 1079
seconds. Note the jump in pressure due to surface tension effects. Figure 15
shows the initial level set location as compared to the location at 2.5 x 108
seconds using 50, 100, and 200 grid cells in each direction where the area loss
was .225%, .107%, and .006% respectively. Note that the smaller droplet
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has a rounder shape as compared to the larger droplet in figure 13.

5.2.2 Example 4

Consider a [0m, 1m] x [0m, 1m| domain with 100 grid cells in each direction.
Similar to example 2, the ambient compressible medium has p = 1.58317%%,
u=v = 02 and p = 98066.5Pa. A shock wave is initially located at

sec

z = .1m with a post shock state of p = 2.124%%, u= 899812 v =0/ and
p == 148407.3Pa to the left of x = .1m. The shock wave travels to the right
impinging on the incompressible droplet with initial state of p = 10?%93—,
v =10 = 02 and p = 98066.5Pa, with radius .2m at the center of the
domain, causing both reflected and transmitted waves as shown in the one
dimensional cross sections in figure 16 at 1.25 x 10~3 seconds. Figures 17
shows the velocity fields at the same time. Figure 18 shows the initial level
set location as compared to the location at ¢ = 2.5 x 103 seconds using
50, 100, and 200 grid cells in each direction where the area loss was 1.6%,
.52%, and .43% respectively. Note that the calculation on the finest mesh

is starting to show signs of Kelvin-Ilelmholtz instability.
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6 Conclusions and Future Work

In this paper we have presented a numerical method for two phase flow where
one of the phases is treated as an incompressible flow and one is treated as a
compressible flow. The primary computational difficulty in creating numer-
ical schemes that respect the fundamentally different nature of the fluids in
these phases is the creation and implementation of appropriate boundary
conditions. We derive boundary conditions using "ghost flnid” ideas; the
computational results indicate that high quality solutions can be obtained
with their use. The test problem we considered was the behavior of an in-
compressible liquid when subjected to shock waves formed in a high speed
gas flow. This test problem was primarily selected to investigate the ability
of our proposed method to compute compressible/incompressible flow inter-
actions when the compressible flow contains shocks. It is a separate (and
interesting) problem in fluid mechanics to consider the validity of modeling
liquid/gas phase interactions as an incompressible/compressible interaction.
In future work, the validity of the incompressible assumption for the liquid
will be tested by comparing the results obtained with the method presented
here with the results obtained with a method where the liquid is modeled
as a slightly compressible fluid.

38



A  TUnbiased Level Set Contouring

Consider a two dimensional level set function, ¢, defined on a Cartesian grid.
This appendix addresses the construction of an unbiased linear approxima-
tion to the zero contour (where ¢ = 0) of the level set function (commonly
used contour routines introduce a directional bias due to the choice of an
underlying triangulation).

The standard contour plotting algorithms dictate triangulation of the
domain followed by linear interpolation along each edge of each triangle
resulting in the determination of the location of the zero values of the level
set function along each edge. These zero values occur on two of the edges
when the sign of the level set function on one corner is different from the
sign on the other two corners, or on none of the edges when the sign of the
level set function is the same on all three corners. In the case where the
zero values occur on two of the edges, a line segment can be used to connect
these two zero values leading to a piecewise linear subcell representation of
the zero contour of the level set function. From this zero contour one can
easily calculate quantities such as the area enclosed by or the length of the
zero contour.

A straightforward way of choosing a triangulation consists of construct-
ing a diagonal in every Cartesian grid cell. Let #;;, #3415, Ti441, and
#it1,j4+1 represent a single grid cell where the subscripts place the points
in the obvious locations. Then one could construct the diagonal connecting
Zi; and Fiq j41 or the off-diagonal connecting F;41,; and Z;j+1 as shown
in figure 19a and 19b respectively. For each Cartesian grid cell, there are 4
distinct cases to consider. Case 1: all four nodal values have the same sign
of ¢ (note that we classify ¢ = 0 as negative, since we partition the domain
into two parts consisting of ¢ < 0 and ¢ > 0). In Case 1, there is nothing to
address since the cell does not contain any part of the zero contour. Case
2: omne of the nodal values has a different sign than the other three. Case
3: there are two nodes of each sign and opposite corners are of the same
sign. Case 4: there are two nodes of each sign and opposite corners are of
opposite sign. Each case is discussed in detail below.

Consider Case 2 with ¢;; < 0, ¢ir15 > 0, ¢i 531 > 0 and @iy1,541 > 0.
In this case, the diagonal determines two triangles which each contain part
of the interface, while only one of the two triangles produced by the off-
diagonal contains part of the interface, i.e. different answers are obtained
depending on whether the diagonal or the off-diagonal is used. See figure 20
for an illustration of the diagonal case (figure 20a) and the off-diagonal case
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(figure 20b). In the figure, the shaded regions denote ¢ < 0. Presumably,
using the extra zero value that lies on the diagonal itself results in a more
accurate construction as shown in figure 20a. Otherwise, there is no need for
triangles in this case at all as one can construct the representation given by
the off-diagonal construction in figure 20b by simply connecting the linearly
interpolated zeroes on each side of the grid cell. Note that the diagonal
gives extra information (an extra point) when either ¢;; or ¢;;1,41 is the
point of differing sign, but gives no extra information (no extra point) when
either ¢y 41 5 or ¢; ;41 is the point of differing sign. For the case where either
$it1,; OF @; 541 s the point of differing sign, the off-diagonal must be used
to pick up extra information (an extra point). Note that this case points
out that it is unwise to use diagonals {(or off-diagonals) everywhere since
the reconstruction is biased. It is better to use an “adaptive” triangulation
which always gives exira information, i.e. one should chose the diagonal or
off-diagonal in order to obtain a construction similar to figure 20a and not
figure 20b.

Consider Case 3 with ¢;; <0, ¢iq1,5 > 0, ¢ 541 > 0 and ¢i41,541 < 0.
In this case, the diagonal construction implies that the line of sight (the
line segment connecting two points in space) between ¢;; and ¢y ;41 is
contained in ¢ < 0 while the line of sight between ¢;11; and ¢; ;411 is not
contained in ¢ > 0 as shown in figure 21a. Similarly, the off-diagonal con-
struction implies that the line of sight between ¢;11 ; and ¢; ;11 is contained
in ¢ > 0, while the line of sight between ¢; ; and ¢;;1,.1 is not contained in
¢ < 0 as shown in figure 21b. In level set notation, the diagonal construc-
tion implies that the negative values of the level set have (or are) “merged”,
while the off-diagonal construction implies that the positive values of the
level set are merged. In fact, using a diagonal construction everywhere cre-
ates a grid dependence of increased merging in the diagonal direction, while
using the off-diagonal construction everywhere creates a grid dependence of
increased merging in the off-diagonal direction. Obviously, this is not desir-
able and some average of these two constructions is desired, especially since
the information given (at the grid nodes) does not dictate whether or not
merging has occurred. The choice of triangulation itself forces the merging.
Using the linearly interpolated zero values on each of the four sides of the
cell, one can see that the diagonal construction implies that the point on
the bottom of the cell between Z; ; and &;4; ; is connected to the point on
the right of the cell between Z;11; and & 11 j41, while the point on the left
of the cell between Z;; and Z; j41 is connected to the point on the top of
the cell between Zj ;41 and ;4 j41 implying that the negative values are
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merged. Similarly, the off-diagonal construction implies that the point on
the bottom of the cell is connected to the point on the left, while the point
on the right is connected to the point on top implying that the positive
values are merged. Since there are four points to be paired off into two
linear segments, there is a total of three ways to make the connections. The
diagonal and off-diagonal constructions give only two ways, leaving one pos-
sibility inaccessible to these straightforward triangulations. The remaining
way to connect the four points consists of connecting the points on opposite
sides of the cell giving a construction where neither the positive nor the
negative values are merged as shown in figure 21c. In fact, both the positive
and the negative values are in contact at a single saddle point formed by
the intersection of the two line segments producing an “average” of the two
triangulations. While achieving the desired compromise between positive
and negative merging, this method does not use triangulation to determine
an extra point as opposed to figure 20a. In addition, note that the positive
and negative merging cases do not use an extra subcell point either, as they
can be constructed by connecting the zero values of the Cartesian cell in the
appropriate fashion. In fact, the positive and negative merging cases each
contain two line segments similar to Case 2 without triangulation as was
shown in figure 20b. Therefore, in order to introduce a new point within
this cell to improve the accuracy, we choose the standard average of the
four zero values on the Cartesian cell boundary. The zero contour is con-
structed by connecting this new point to each of the four zero values from
which it was formed. Note that this construction can be obtained with an
adaptive triangulation where the cell is divided into four triangles defined
by the line segments connecting this new zero value inside the cell to each
of the four corners of the cell. This adaptive triangulation and the resulting
segmentation are shown in figure 21d.

Consider Case 4 with ¢'i,j m<,, 0, qu.l,j < 0, qﬁi,j_i.l > 0 and ¢i+1,j+i > 0.
In this case, one could simply connect the two zero values with a straight line
ignoring triangulation as shown in figure 22a. Using triangulation gives a
different subcell point depending on whether the diagonal (figure 22b) or the
off-diagonal (figure 22¢) is used (except for the case where the subcell point
happens to be the intersection of the diagonal and the off-diagonal for both
constructions). To avoid ambiguities one needs to determine which of these
two candidates for the intermediate point should be used. Designating the
subcell candidates by #; and #; and the zeroes on the Cartesian boundary
by Tr and £g, both points can be used in the construction by connecting
Ty, to Ty to Ty to g (figare 22d) or by connecting £z to & to Z1 to Ig
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(figure 22e). However, this gives a subcell contour with a possibly large
variation. Instead of choosing one or the other, we note that the line segment
connecting 73 to Ty lies on both contours and choose the midpoint of this
line segment (the standard average of Z; and Z2) as the subcell zero value
and connect this midpoint to each of the zeroes on the Cartesian boundary
resulting in a construction with less variation (a shorter length) than one
using both #; and 3. Once again, this construction can be obtained with
an adaptive triangulation where the cell is divided into four triangles defined
by the line segments connecting this new zero value inside the cell to each
of the four corners of the cell. This adaptive triangulation and the resulting
segmentation are shown in figure 22f. It is interesting to note that Case 3
and Case 4 have two corner values of differing sign and require four triangles,
while Case 2 has one corner value of differing sign and requires two triangles
implying that two triangles are needed for each corner that differs in sign.

Note that one could ignore triangulation altogether simply connecting
the two edge points in Case 2 (figure 20b) and in Case 4 (figure 22a), while
connecting the points on the opposite sides of the cell in Case 3 {figure 21c).
This gives similar answers in each case, although a liftle less accurate since
no extra grid point is determined within the cell.

A.1 Calculating Area

We use the cross product of two vectors to compute the area of triangles, as
this is rather robust. For example, consider a triangle with vertices defined
by Z,, £ and Z. in counterclockwise order. Then defining ¥ = I} — &, and
B, = Tp — T, allows us to define the area as % Using this definition it
is easy to avoid roundoff errors due to thin triangles as they show up as a
negative area that can be discarded.

42



(a)

Figure 19: (a) diagonal, (b) off-diagonal.
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(a)

Figure 20: (a) diagonal, (b) off-diagonal.
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(c) (d)

Figure 21: (a) diagonal, (b) off-diagonal, (c) connect opposite edges, (d)
adaptive triangulation.
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{a) {b)

() (d)

(e) (£)

Figure 22: (a) connect opposite edges, (b} diagonal, (¢) off-diagonal, (d)
both, (e) both, () adaptive triangulation.
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