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Abstract

The Bose condensate model is used to analyze the superfluid flow around
an ion (modeled as a solid sphere) and to elucidate the mechanism of vortex
ring emission from the sphere that occurs if its velocity exceeds a critical value.
An asymptotic expansion is developed for the steady subcritical flow, using the
ratio of the healing length to the radius of the sphere as a small parameter.
This expansion allows for the compressibility of the condensate, and converges
well enough for the critical ion velocity to be calculated accurately. The flow
for supercritical ion velocities is computed numerically. Particular attention is
paid to the question of why the vortex rings are emitted at a preferred location
on the sphere’s surface.



1 Introduction

This is the seventh in a series of papers devoted to the Bose condensate as applied to
superfluid helium and especially superfluid vortices; see Roberts and Grant (1971),
Grant (1973), Grant and Roberts (1974), Jones and Roberts (1982), Jones et al.
(1986), and Berloff and Roberts {1999).

Vortex nucleation by an impurity such as the positive ion ‘Hel moving in super-
fluid helium at low temperature has been studied experimentally and theoretically
(see, e.g. Donnelly, 1991), and has uncovered some interesting physics. The flow
round an ion that is moving with a sufficiently small velocity, v, is well represented
by one of the classical solutions of fluid mechanics, namely the flow of an inviscid
incompressible fluid around a sphere. In this solution, the maximum flow velocity, u,
relative to the sphere is 3v/2, and occurs on the equator of the sphere (defined with
respect to the direction of motion of the sphere as polar axis). Above some critical
velocity, v,, the ideal superflow around the jon breaks down, leading to the creation
of a vortex ring (Rayfield and Reif, 1964). The critical velocity can be roughly esti-
mated by arguing that the vortex will be nucleated from the point where the relative
velocity of ion and superfluid is greatest (the equator), and will occur when that ve-
locity reaches the Landau critical velocity, vy, If, using the incompressible model, we
estimate the relative velocity as 3v/2, we find that v, & 2v1/3, in rough agreement
with experiment; see Table 8.2 of Donnelly (1991). Because 2v,/3 is only about 15%
of the speed of sound, ¢, it appears that the incompressible model should perform
reasonable well, and that an allowance for the compressibility of the superfluid is
not a high priority. This was the basis of the original paper by Strayer et al. (1971)
and the later developments of Muirhead et al. (1984), who created a theory of vortex
nucleation that allowed them to calculate v, the form of the potential barrier that
must be overcome for the creation of vortices both as encircling rings and vortex
loops, and the nucleation rate. These calculations were carried out for a smooth
rigid sphere moving through an ideal incompressible fluid.

The Bose condensate offers a different insight into the nucleation process. The

condensate is a weakly interacting Bose gas that, in the Hartree approximation, is



governed by an equation for the single particle wavefunction ¥(x,t) that was first
derived by Ginsburg and Pitaevskii (1958) and Gross (1963); see (1) below. Using this
equation, Grant and Roberts (1974) studied the negative ion (the electron bubble)
and a positive ion, modeling the latter as a spherical, infinite potential barrier, on the
surface of which 1) vanishes. Their solutions were derived by expansion in v/¢, so that
their leading order flow is incompressible. They did not observe vortex nucleation.

As a model of superfluidity, the condensate suffers from the defect that its dis-
persion relation does not possess a roton minimum, so that v; = ¢. To observe
vortex nucleation therefore, Grant and Roberts (1974) would have had to develop
expansions appropriate for a compressible flow in which u = O(c), which they did
not do (although we do so in §3 below). It is possible to make the condensate model
more realistic by replacing the §—function interaction potential between atoms, on
which it is based, by a nonlocal potential. This restores the roton minimum and a
realistic vy, but only at the expense of considerable complexity; see Berloff (1999).
As for most recent research on our topic (e.g., Frisch et al., 1992; Winiecki et ol
1999), we shall employ the condensate model in its original form.

An important scale defined by the condensate model is the ‘healing length’, a,
defined in (10} below. This determines the radius of a vortex core and the thickness
of the ‘healing layer’ that forms at a potential barrier {such as the ion surface in
our model). The radius, b, of the ion is large compared with «, and asymptotic
solutions for € = a/b — 0 become relevant; see §3. Such a solution has two parts,
an interior or ‘boundary layer’ structure that matches smoothly to an exterior or
‘mainstream’ flow. In the mainstream, quantum effects are negligible at leading
order, and the condensate becomes effectively a compressible inviscid fluid obeying
the simple equation of state, p o p?, where p is pressure and p is density; see (8)
below.

There is some similarity between the flow of the condensate past the ion and the
motion of a viscous fluid past a sphere at large Reynolds numbers, the healing layer
being the counterpart of the viscous boundary layer. There are, however, important

differences. At subcritical velocities, the flow of the condensate is symmetric fore and



aft of the direction of motion, and the sphere experiences no drag. In contrast, the
viscous boundary layer separates from the sphere, so evading D’Alembert’s paradox,
destroying the fore and aft symmetry, and therefore bringing about a drag on the
sphere. Moreover, when v > v,., shocks form at or near the sphere, but shocks are
disallowed in the condensate since they represent a violation of the Landau criterion
and a breakdown of superfluidity. When v > v, the condensate evades shocks
through a different mode of boundary layer separation. The sphere sheds circular
vortex rings that move more slowly than the sphere and form a vortex street that
trails behind it, maintained by vortices that the sphere sheds. As the velocity of the
ion increases such a shedding becomes more and more irregular. Each ring is born
at one particular latitude within the healing layer on the sphere. As it breaks away
into the mainstream, it at first contributes a flow that depresses the mainstream
velocity on the sphere below critical. As it moves further downstream however, its
influence on the surface flow diminishes. The surface flow increases until it again
reaches criticality, when a new ring is nucleated and the whole sequence is repeated.
The vortex street trailing behind the ion creates a drag on the ion that decreases as
the nearest vortex moves downstream, but which is refreshed when a new vortex is
born.

Frisch et al. (1992) and Winiecki et al. (1999) have solved the condensate equation
for flow past a circular cylinder, and have confirmed the main features of the scenario
just described. In this paper, we present analogous solutions for the more realistic,
geometry. By employing a convergent series expansion suitable for u = O{c), we
determine v, for ¢ = 0 more accurately than before. We confirm this value through
numerical integrations at finite ¢, at the same time obtaining indications of how
v, depends on €. (We should observe here that the criterion v = ¢ for criticality
applies only for € = 0. The velocity in a healing layer can exceed ¢ without implying
nucleation. For example, v in a vortex core actually becomes infinite, according to
the condensate model!) We also show how and why the vortex ring detaches, not
from the equator of the ion, but from a latitude downstream of it. We find how this

latitude depends on v.



2 The condensate equation

According to the Bose condensate model, ¥(x, t) in an assembly of N bosons of mass

M, is governed by the nonlinear Schrodinger equation

2
0l =~ Loy — (B4 30— Vol (1)
where V; is the strength of the §—function interaction potential between the bosons
and F is the single particle energy in the laboratory frame, where the ion moves with
velocity v in the positive z—direction through fluid at rest at infinity. Equation (1)
is written for the ion reference frame, in which the fluid at infinity is moving with
velocity » in the negative z—direction and the ion is at rest. Thus we require that
iMuvz
h

W — Yoo €XP [— ] . for X — 00, (2)

where 15, = (E/V3)Y/2.
We ignore the effect of the electric charge on the ion, and model it as a sphere of

radius b that is an infinite potential barrier to the condensate, so that
P =0, at  r=h (3)

We have here introduced a spherical coordinate system (r, #, ¢), with origin at the
centre O of the ion, and with # = 0 as z-axis. The wavefunction is required to obey
the normalization condition on the total number of the bosons N = [ [¢|*dV. The

mass density and flux are

K
p=Myp, = (TVY - V). (4)

Equation (1) can be written in hydrodynamic form through the Madelung trans-

formation,
P = ReiS: (5)
so that

p=MR*  j=pu=pV¢,  ¢=(h/M)S. (6)



inary parts of (1) then yield a continuity equation

JoTTe T o T T T T

op
L . = 7
LV (o) =0, (1)
and an integrated form of the momentum equation
0 1, 15 ofp WV
kRl LA I T S A 8
Y +gut —gv +c . 1 SN ST , (8)

the last term of which is often called the “quantum pressure” although it is dimen-
sionally a chemical potential. Also appearing in (8) are the density at infinity peo

and the speed of sound c:
poo = MRy, ¢ = E/M. (9)

We also define the healing length, a, as

h
= ———. 10
T BME)? (10)
The boundary conditions (2) and (3) give
7= Poos u — —vl,, for X — 00, (11)
p =0, gr =0 on r=>, (12)

where 1, denotes the unit vector in the direction of increasing coordinate g. There is
no requirement that u, = 0 on 7 = b; indeed, the problem would be overdetermined
if we applied that condition.

3 Asymptotic expansion for velocities
up to criticality

In this section, we develop the asymptotic expansion of solutions for small € = a/b.
We suppose that the speed of the ion is comparable with the speed of sound ¢, so that
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cts of compressibility cannot be ignored. The appropriate non-dimensionalization

x — bx, t -+ (abM/h}t, v~ (hfaM)U, P = Yoot (13)

Subcritical flow is steady in the ion reference frame, and the Madelung equations are

therefore

V2R — R(VS)? = (R* — 1 —-U?)R, (14)
RV2S +2VR-VS =0. (15)

The quantum pressure term, e2V2R is negligibly small in the far field but is of
major importance in the boundary layer, for which we set r = 1 + ¢, and expand I
and S as

R(f, 9) - ﬁﬂ(‘f; 9) + Eﬁl(éa 9) + €2§2(§: 9) +- (16)
S(€,0) =5y, 6) + €S1(€,0) + 28,(£,0) + - - - (17)

Equations (16) and (17) give 85,/0¢ = 88, /6€ =0, so that
So=59), Si=51() (18)

where 53(6) and §,(#) are to be determined by matching to ug on r = 1 in the
mainstream. After we substitute the Sy into (14), it becomes to leading order

2R,

s~ et Ro[1 407~ 0] =0, (19)
so that
Ry = g(8)tanh(g(8)¢/V2), (20)
where
9(6) = V1 +U* - (59))] (21)



The equation governing Ss is
8 A28A2 _ 1 a 52 . d§0
6_§ (RO_E.) = =350 [RD sin GM@—] . (22)
‘This gives S, as
. 1 0 . dS,
S =———= (h(g, 6) sm@d—;) + G(0), (23

where

g ¢ 1 V2¢ g{0)¢
h(&, 0 :/ -~ / R? £.0 de" = =£2 — Z2coth( 22 ), 24
(€.6) o Ri(¢,0) Jo ol".0) 2 g(0) ( V2 ) 2
and (2(f) is a function of integration that can be determined by matching to the
mainstream.
To leading order, the mainstream flow is the classical inviscid compressible flow
past a sphere, and is governed by

R*=1+U?—(VS)3 (25)
R*V2S +VR?.VS =0. | (26)

We substitute the first equation of this system into the second to obtain an equation
for S alone. We then expand S as in (17) and then expand Sy, Si, - - - in powers of
U') e'g':'

So(r,8) = USy1(r) Py(cos 8) + UP(Ss1(r) P (cos 0) + Sas(r) Ps(cos @) + - -+ (27)

For U close to the speed of sound, ¢ = 1/4/2, we do not expect (27) to converge
fast enough to be useful, but the critical I which we are trying to determine is ap-
proximately 2¢/3 and for such values of U the expansion (27) converges fast enough.

We expand S to the U term in order to get an estimate for the critical velocity of



d2811 n 2 aSn 2511

dr? ror 2 0, (28)
d2831 Ed831 _ 283; N g(dSll)deSH 25%1 d2811
dr? r dr r2 5\ dr dr? r2  dr?
6 dS11)3 2811 dSn 2 SS%
— - 29
57‘( dr Br2 ( dr ) 5rd '’ (29)
42833 N 2dSy; 128 _ §(d5u)2d2511 B 252 425,
dr? r dr r2 5\ dr dr? 5r2 dr2
4 rdSi\® 125, /dSi\2 853
5?"( dr ) 5r2 ( dr ) 5rd (30)
Solving these, we obtain
_ 1 B 3 3 3 Cy B 1 2 o
S = Tw“ﬁ“ﬁ, S33 = 88T8+-5—?3+5T2+T—4, 31_m12?"8+5r5 7"2(3 )
1

To carry out the asymptotic matching, we substitute r = 1 + €£ in the expressions

for Si1, Sa1, 933, -+ -, expand the solution in powers of €, and match it to the boundary



3 3 54 3
_ 2 222, 2 p
*'{ 83,8 T 55 55r4'+'5r2] 3(C°SQ)>

-+115([ 1901 1739 5589

184807 ' 2310711 21175710

1766 972 776 1470911
T 155 1o | Gomrs 1016400?2]00 6
179 7256 2274 523
+Lﬁ%MM+8%MH—3Www_2%ﬂ
624 152 72781521 106
+ 9757 T 75% 2382380078 T 752
1945 2291 87 205
PEMM&M+OMWH'%&M_iwﬂ

(32)

}I%(cos@)

%_240 51393 68 24 10 Pufcost)) +
7T 43472016 2175 | 1171 2172| ° ‘

From this we can determine the first function of (18):

So(f) = —%U cosf — mz%U?’ cos @ + %Ung(COS &)

14693 1560249 31857
115[—- 0 Pa(cos ) —
cosv+ (c038) ~ 517360

24200 3403400 °
The maximum flow velocity is attained on the equator and is, to leading order in ¢,

(33)

P5(cosﬂ)] 4+

uge(1, 1) = 3U/2 + 0.626136U° + 1.56961U°

34
+5.1816107 4 19.9015U° + 26.8951U" + - - -, (31)

where we have here included terms up to order U, The flow (34) reaches the speed
of sound if the far field velocity U is approximately 0.415. An idea of the accuracy
of this value of U, is obtained by comparing it with the final term of (34), which for

U, = 0.415 15 0.0017. The result also agrees very well with the numerical calculations

10



of §5 for small &, By comparing 0.415 with 2¢/3 =
the importance of compressibility in determining U, in the condensate model.

The O(¢) contribution to the mainstream solution satisfies the following equations

RyR; = =V 5, - V5, (35)
9RyR1V2S, + REV2S, + 2V (RGR;) .VSo+VRZ VS, = 0. (36)
We substitute the first equation of this system into the second to obtain the equation

for Sy and expand S as in (27) to the U® term. The first few terms of the resulting

mainstream solution are

Si(r, 8) zU%cosﬁ—i—U?’([m;mm — + r_] cos
37)

[ng _ 1204 - 6D1

Dy
44r® brd 512 + "7;1‘} P;(cos B)) 4o

The unknown constants are found by matching the boundary layer solution (23) to
(37). We substitute 7 = 1 + €£ in (37), expand the solution in powers of €, and
notice that the last term in (24) is O(£) for £ — oco. We expand the corresponding
term of S, for large £ in powers of U and in the Legendre polynomials, and set the
coefficients of the resulting expansion equal to the corresponding coeflicients at the

order ¢ in the expansion of (37). This defines the constants in (37) as

3 132 1863
Dlz_m; D2$_——_\/:: D3:"""”wm"m_a
NG 5 220v/2
4414007 _ 1352579157 24662449 (33)
t T T 338800v2 5 T 47647600v/2° T 7607602
On the equator of the sphere the € term of the expansion of ug is
urg(1, 3r) = 2.121320 + 3.16591U° + 11.58255U° + - - -. (39)

The interesting question is whether the S; term increases or decreases U,. This
raises the philosophical point touched on in §1: is the Landau criterion precise when

we go beyond the leading term in the u expansion of the mainstream by including
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the
it is; because of the upward curvature of the dispersion curve associated with the
condensate model, the speed of long wavelength sound plausibly sets the stability
limit for all disturbances. We therefore now set ug(1, 37) = ¢, where uy includes (34)
and (39). For € = 0.1 resulting U, is approximately 0.37, which is less than the value
(U, 2 0.39) suggested by the numerical calculations of §5, whereas ugy alone gave a
value greater than (.39, i.e., the zeros and first approximations bracket the correct

answer for U, at finite ¢.

4 Asymptotic expansion for the cylinder

In considering the shedding of line vortices from a moving cylinder, Frisch et al.
(1992) gave an argument for the critical velocity that we shall now test through an
expansion of the same type as that of the preceding section. Instead of (27), we now
use a Fourier expansion in 8, which is one of the cylindrical coordinates (r, 8, z), with
# = 0 parallel to U:

So = USy1(r) cos @ + U(Ss;(r) cos 0 + Sza(r) cos 36) -+ - - -. (40)
The mainstream solution is found to be

Solr,8) = — U(T + %) cos @

1 1 13 1 1
3
+ U [(_W + ﬁ — 6;) cosé + (—173 -+ g) COSSle
7 3 43 35 479
5 0 209
- oo - 0
U K 300 T 27 125 6 607~) €08 @)

Y (O B SO B Y
36r? 1577 295 0 3073 0 12r
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~ 4
So(0) = — 2U cos § + U? (—5 cos 8 + —:1; cos 30

S’

67 2
+U° (—B cos 0 + gcos%’ —  cos 59)

251 203933 80113 11
7| 4ol _ h+ — N.
+U [ 75 cos 6 + 18500 cos 3 18900C085 —%—1400579 + O(U7)
(42)
The maximum flow velocity, which occurs on the cylinder equator, is
ugo(l, §7) = 2U + TU? /3 + 176U° /15 + 79.9809U7 (43)

+ 552.1810° + 4471.18UM + - - -

This reaches the velocity of sound for U = U, = 0.30. (To illustrate the convergence
of (43), we note that the U term is only 0.0066 for U = 0.30.)

According to Frisch et al. (1992), criticality is reached when, in our nondimen-
sional units, the velocity exceeds p/2 anywhere in the mainstream. In applying their
criterion, they assumed that the maximum velocity can be well approximated by
its value, 2U, in incompressible flow, and it followed that at criticality U, ~ 0.302,
which is in agreement with their numerical integrations. A similar critical velocity
was obtained by Winiecki et al. (1999). Although this result is close to the value of
the critical velocity we derived above, (43) shows that the assumption of incompress-
ibility does not provide a good estimate of the maximum velocity. In fact, when (43)
is used, the argument of Frisch et al. (1992) gives a critical velocity of U, ~ 0.26,

which is very different from the results of the numerical integration.

5 Numerical calculations

In this section we present some results from numerical calculations for the axisym-
metric flow around the sphere and the nucleation of vortex rings from it. We used a

different non-dimensionalization of (1):

x v ax, t— @M/, v— (B/aM)U, ¢—>(¢me*iUZ)¢, (44)
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st of which removes a2 uniform flow —v1, everywhere, so tha
h - 1 as T — 00. (45)

Equation (1) becomes

o 8
—2‘1—8%1 + ina—f = V3 + (1 — [¥]?), (46)

the solution to which must satisfy (45) and
=0 on r=b/a (47)

We employed a finite difference scheme to solve (46) in the axisymmetric case in

which 1" depends only on r and #, and in which therefore

- 2
5% L i cos oy, — 202y, = L L 290
At r or:2  r or (48)
cotd & 1 62
coth ¢ Y1 — [P,

72 0 rZoer

The integration box was chosen as [b/a, 1] %[0, 7]. One of the main considerations in

choosing the integration scheme was that outgoing sound waves should escape from
the integration box. We used the Raymond-Kuo (1984) radiation boundary condition
on r = r1. In time stepping the leap-frog scheme was implemented with a backward
FEuler step every 100 steps to prevent the even-odd instability. In space we used
a 4th order finite difference scheme together with a 2nd order scheme close to the
boundary » = r;. The code was tested against the agymptotic solutions of §3. The
initial condition for velocities slightly larger than U, was chosen as 9 = tanh(£/v/2).
The numerical scheme does not conserve energy but the dissipation of energy is very
small. When the reflective boundary conditions were used instead of the radiative
ones, the energy loss due to the dissipative character of the scheme did not exceed
10~*% per 1000 time steps.

Our numerical work strongly suggests that the value of U, (=~ 0.415) obtained
in §3 for € = 0 is correct. We also found that U, decreases with increasing ¢, in

agreement with the analysis of §3.
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Figure 1 shows the formation of the ring from a sphere of radius 10 movin
with the supercritical velocity U = 0.42. After the ion emits a vortex ring, the
flow associated with the ring at first makes the total mainstream velocity subcritical
everywhere. The self-induced velocity of the ring is less than the velocity of the ion,
so that the ring gradually falls astern of the ion and the total fluid velocity builds up
until it again reaches criticality on the surface of the ion. The vortex ring emission
follows the same scenario as that observed by Frisch et al. (1992) for vortex pair
nucleation from a cylinder; see §1. What came as a surprise is that, although the
maximum velocity of the compressible flow is always attained on the equator of the
sphere, the vortex ring nucleates from the sphere downstream of the equator, at
8. > ;m. This is clearly seen in Figure 1(a), which shows the birth of the first vortex
after the motion of the ion has been initiated. The first nucleation seems to be the
result of an instability of the critical flow (obtained from §3, as described above).
The second nucleation is influenced by the presence of the first ring; see Figure 1(b).
It is therefore takes place at a different location on the ion surface, as is readily seen
in Figure 1(c) and Figure 1(d).

It is difficult to extend the theory of §3 to cover the time-dependent supercritical
state that arises when vortices are nucleated. Tt is however comparatively easy to
generalize (18)-(21) for the healing layer. We find that

'§G — gﬂ(gst)a (49)
where
PRy = 5 , 08\ 08,
% menfieo- (B oS oo
The relevant solution is
Ry = g(0,t)tanh(g(6,1)¢/v2), (51)
where now
85\2 085
_ 2 0 _ 0
g(ﬁ,t)—\/[l-i-U (8§) zat]. (52)
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The 85;/8¢ term in (52) is highly significant: as
of the healing layer tends to co and the assumptions we made in our asymptotic
expansions break down. Our numerical integrations indicate that the nucleation of
a vortex ring occurs near latitude 6, after time t., when

_ Og _
g(0c,t.) =0, 5@(9& t;) = 0. (53)

Thus, the nucleation of a vortex ring represents a breakdown of the healing layer.
This may be traced to the growth in importance of the first term in (8) at 6, and the
concomitant decrease in significance of the final, quantum pressure. This decrease
implies that, at nucleation, OR/O¢ at @, is no larger than VR in the mainstream, i.e.,
the mainstream and healing layer have become temporarily connected. This provides
the channel through which the vortex escapes from the ion. It may be noted that
the breakdown (g = 0) of the healing layer on the supercritical ion is not directly
linked to the criterion (Jv| = ¢) used to determine the critical state for the steady
subcritical solutions. This explains why 6, > %7{, even though the maximum wuy on
the sphere still occurs on the equatorial plane (6 = 7/2).

As it is impractical to extend the theory of §3 for the mainstream to the time-
dependent case, and then to determine §0 and g by matching to the healing layer,
we must determine §g and g from the numerical results for small e. Figures 2 show
how g evolves when ¢ = 0.1 and when the velocity of the ion is 0.42. The first vortex
begins to form when g becomes zero at 0, &2 120° at t, ~ 3b; see Figure 2(a), where
a second minimum in g can also be seen on the ¢ = 34.5 curve near ¢, ~ 110°.
This second minimum develops, becomes zero, then the next vortex is nucleated; see
Figure 2(b). The breakdown of the healing layer is very evident in Figures 2, and
is responsible for the two blips seen on the sphere in Figure 1(a) and, at different
f—locations, in Figure 1(c). It is also clear that, as the healing layer thickens at @,
it provides the core of the nascent vortex. The angle 6. at which the vortex rings
are nucleated is shown in Figure 3 as a function of U; 8., refers to the first vortex
ring and 6., to the second. For U < 0.435, the frequency of nucleation is so low that
the second ring is formed at a time when the first ring has moved so far downstream

that it has only a small effect on the nucleation process; 6., is therefore only slightly
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thn Frannancer Aaf nnnla i i
, the frequency of nucleation increases, and the first

5]

less than 8,. As U incrcase
ring is near enough the ion to be influential when the second ring forms. In fact, as
U approaches 0.435 the two minima of g(#) become zero almost simultaneously, so
that the second ring can be formed almost equally easily at two different locations
on the sphere. When U > 0.435, the second minimum of g(#) takes over from the
first, and the difference between 8., and f., becomes substantial. Figure 4 supports
this argument by showing how the time that elapses between the emission of the first
and the second rings initially decreases rapidly with increasing U.

As the velocity of the ion increases the average frequency of nucleation of vortex
rings increases also and the closer proximity of the vortex rings to each other and
to the ion enhances their interaction with one another and with the ion. The result
can be remarkable (Figure 5): a ring can lose momentum and gain speed, causing it
to overtake the ion, strike it, enlarge itself, and again fall behind the ion.

6 Conclusions

We have used the Bose condensate model of superfluid helium to clarify the process
through which a moving ion generates vortices if its velocity, v, exceeds a certain
critical value, v,, of the same order as the Landau critical velocity (which for the
condensate, which has no roton minimum on its dispersion curve, is the speed of
sound, ¢). To some extent, v, depends on ¢, the ratio of the healing length to the
sphere radius. We have determined v, analytically to leading order in ¢ by equating
to ¢ the flow velocity at the equator of the ion. This does not mean, however, that the
vortex ring is emitted from the equator when v > v,, as was supposed by Strayer et
al. (1971), Muirhead et al. (1984), and Frisch et al. (1992). This was demonstrated
through direct numerical simulations for small but finite e. We have shown, through
asymptotic analysis, that the vortex rings emerge from singularities that develop
irregularly in the healing layer at some particular latitudes #,. We have found that
g, increases with », i.e., the point of detachment moves towards the rear stagnation

point (6 = 7).
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The development of the singularity is intimately linked to the time-dependence of
the mainstream supercritical flow, which fluctuates as the vortices move downstream
to join the train of rings following the ion. We have not analyzed what happened the
first time that a vortex ring is created, but we surmise that in this case the singularity
develops as the result of the instability of the mainstream flow. Thereafter, time-
dependence is assured through the ring (and later rings) trailing behind the ion.

The breakdown of the healing layer is the analogue for the superfluid of boundary
layer separation in high Reynolds number viscous flow, and this explains the choice

of subtitle for our paper.
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Figure 1: The density plot in a cross section of the solution of (48) for the flow around a sphere
of radius 10 moving to the right with velocity 0.42 at (a) t = 68, (b) t = 124, (c) ¢ = 212, and (d)
t = 268. Vortex rings appear as white circles close to the sphere and gradually fall astern of the

ion.
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Figure 2: Time evolution of g(#)? defined in (52) for the flow around a sphere of radius 10 before
the nucleation of the first (a) and the second (b) vortex rings; U = 0.42, 8 in radians.
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Figure 2(b)
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Figure 3: The values of § at which the first two vortex rings nucleate from the surface of the ion,
as a function of the velocity, U, of the ion, when ¢ = 0.1. The first angle of nucleation, 6., {solid
dots), increases with I7. The flow velocity on the surface of the ion is reduced by the first vortex
ring, and the next nucleation therefore takes place at a smaller value, 6., (circles), of 8. The 8.,
curve has two continuous branches (see text).
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Figure 4: The time interval, T, between the nucleations of the first and second rings as function
of U for e =0.1.
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Figure 5

Figure 5: The density plot in a cross section of the solution of (48) for the flow around a sphere
of radius 10 moving to the right with velocity 0.47. The dynamics of the turbulent wake is shown
through time snapshots. Initialy a vortex ring is born at #, = 124°; shortly afterwards a second ring
of larger radius is nucleated at #, = 107.5°. The close proximity of these two vortex rings allows
them to interact with each other and with the sphere. As these two vortices drift downstream a
third vortex ring is born at ¢t = 176. As a result of interactions the radius of one of the rings
decreases, so that it overtakes the sphere, striking it at ¢ = 248,
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