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Abstract

We present numerical results for different finite difference schemes of first and second order
applied to special cases of Euler equations. In these numerical simulations we used a model
of a shock tube {piston problem) and a simplified injection system of the Diesel engine or
gasoline engine. Several cases that include friction in the pipe are considered.

1 Introduction and mathematical background

In the last five years, a rapid technical development of the Diesel and gasoline injection systems
and anti block systems had been started. The resulting systems have a complex technical structure
consisting of several complicated subsystems [2]. A simplified model of a gasoline injection system
consists of a reservoir, a connected pipeline, and a valve. The mathematical modeling of these
systems leads to conservation laws with special initial and boundary conditions. The interpretation
of the conservation laws as an evolution equation for cell averages in the finite volume discretization
appears to be particularly well suited and physically motivated. The continuity, the momentun,
and the energy equations with special source terms (that we call fundamental equations) describe
the state of flow in such a model of injection system. The fundamental equations are mathematical
relations among the pressure p, the velocity v, the specific internal energy e, the friction forces ¥,
the density p and the heating flux ¢.

The numerical simulation of the injection system is very important for technical interpretations.
For injection systems as well as for anti block systems, the aim is to prevent cavitation and
strong shocks. Cavitation as well as shocks damage the pipes or valves. Reasonably fast methods
with high accuracy are needed for the numerical simulation. For injection systems, numerical
simulations with high accuracy help to optimize the injection process in order to save fuel, to
optimize the combustion process and to replace unreasonable and costly experiments.

Usually finite difference schemes are used for the simulation in commercial tools. Finite differ-
ence schemes of first order, e.g. Lax-Friedrich scheme (LxF), include high damping effects for a
large number of time steps. First order Godunov type schemes are considerably more difficult to
implement since they require the solution of Riemann problems, and due to the CFL-condition
(Courant-Friedrich-Levy), a large number of time steps is necessary to maintain high accuracy.
Damping effects are also included. To achieve higher resotution, higher order schemes are needed.
Three-point finite difference schemes of second order on fixed uniform grids lead to oscillations.
Recently, five-point nonoscillatory finite difference schemes were developed by E. Tadmor et.al.
starting with [17, 12]. The main idea behind the construction of these central finite difference
schemes is to use more precise information of the local propagation speed. Beyond these CFL re-
lated speeds, no characteristics information is required and in particular, the costly (approximate)
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Riemann solvers are avoided. In this case the conservative formulation is used. The scheme can
be implemented in a straightforward manner as black-box solvers for different applications. The
other approach to the second order finite difference schemes considered in this paper is described
in [9] for the special case of Euler equations. It can be applied to weak shocks, and after switching
to the first order locally, also for strong shocks. Since the scheme is strongly oriented towards
the physical behavior of the model, the pressure-velocity-temperature (p-v-T) formulation is used.
The velocity v and the pressure p vary on the 1- and 2-characteristics C* and C™. In contrast,
the temperature varies on the path of a particle. Injection systems include several mathematical
challenges: On one hand, the functional relation between the pressure, density and temperature
is not algebraic. On the other hand, shocks and low Mach-numbers can appear in a subdomain of
the computational box.

The paper is organized as follow: In this section, the complete system of equations are presented.
Section 2 deals with the numerical methods. In Section 3 the simulation of two models - the piston
problem and the injection problem - are presented. The final discussion appraises the numerical
results and gives an overview for further research problems.

Let us consider unsteady flow of compressible liquid in a finite interval w C R and a time interval
(0,T) with 0 < T < oo. The integral form of the conservation laws for a pipeline with a weak
variable cross-sectional area A = A(z, 1) reads:

i} a _
j'; Bg(pA)dz+fm gg(pwl)dz =0,

f%(p’u,‘l)dz—lwf gw(puzA+pA) dz—/pg—Adz,-——fPAFdz (1.1)
W

/aat[p*‘l( )] dz + f [Pvfi(e+ + )]derf —dzwfq'ﬁddz.

The function v denotes the velocity of the fluid, p is the pressure, p is the density, F' describes
the friction forces', and g is the heating flux per area with the dimension {N/(ms)]. We assume
that the cross-sectional area A4 is a circle. The friction force is defined as a function of the shear
stress on the wall A;,, the diameter d of the pipe and the velocity v, i.e.

)\'Eﬂ

The value A, i8 a function of the Reynolds-number, Re, so that the laminar as well as turbulent
flow is modeled, [4]. In addition to the system (1.1), the thermo-dynamical and calorical equation
of state is given. Since A = A(z,t), the conservative system (1.1) admits additional low order as
source terms on right hand side. In this case we write (1.1) as

j(gt“'*' f(u)) dz:[ﬂg(u)dz, (1.3)

where u is the three dimensional vector of conservative variables and is given by
u = (Ap, Apv, Ap(e +0%/2))T.
The Hux function f is
puA

flu) = pu?A+pA
1)2
puA (e + % + 7)
and the right hand side becomes
0

gluy = | pAF +p32

gmd — p‘f

1friction forces on the wall of the pipe
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The system (1.1) is the general integral representation. It is augmented with several boundary
and initial conditions depending on which technical application is considered. In general, the
boundary conditions are ordinary differential equations. For simplicity we consider elementary
boundary conditions with prescribed boundary values.

A simplification of (1.1) is a (2 x 2) so-called p-system, where the dissipation does not lead to a
significant increase in entropy. We shall consider this system in Section 2.1.

In order to prevent rounding errors, the differential equations are purposely scaled. Therefore
we fix a reference length Ly, a reference diameter Dy for the other geometrical values, e.g. the
cross-sectional area, a reference pressure pp, a reference density po, and a reference sound speed

Co-

2 Numerical methods

In this section we present the basic ideas of the different numerical methods used below. One of
the goals is to implement high-resolution schemes that work very fast and are easy to implement
in complex simulation tools. The challenge of the numerical simulation is: Using coarse simply
structured grids to achieve high resolution in a short computational time.

In our calculations below we used & characteristic method, three different types of first order finite
difference schemes, and two finite difference schemes of second order. The four first-order schemes
include the well-known Courant-Isaacson-Rees {CIR), Lax-Friedrichs (LxF) and its localize version
(ILxF) and a first order characteristics based schemes. We turn now to second order schemes.
The first scheme AFVM (adaptive finite volume scheme) is based on a three-point stencil. To get
a second order scheme, the domain of dependence is adapted to the state of flow. As mentioned
above, three-point difference schemes of second order on fixed grids lead to oscillations. Since
for a weak compressive liquid the density p and the value pv vary only on a small interval, the
scheme AFVM is based on the p-v-T formulation of the equation (1.1). In contrast, the pressure
p varies on a significantly larger scale. The scheme is stable and does not need the CFIL-condition
to satisfy the stability condition. Therefore it is very flexible for simulations. We do not restrict
time-stepping. A detailed introduction to the scheme AFVM is given in [9]. We use uniform
mesh in space {z;} and time {{,}. The discrete values of space and time dependent functions for
instance, the discrete values of pressure p, are denoted by p(2j,t,) = p}. The time step is denoted
by At, the space step by Az. The explicit AFVM scheme for (1.1) is a two-step scheme of the
form:

it =pu — HoT (prURAR — prurdL)
i 2(zr — zp) Apburco
Ar
ot = + L vrRAR — prvrA
i M 2(zr — zr)pm Aprco (prvrdn = prozds)
AT 2 2
_ vpAr — prvid
2(zR—zL)pMAMCO(pR Rén —pvpds) (2.1)
2on — z)pmAuco 00 RO
AT AT
+ An—A + —F
2(ZR—ZL)PMAMCD( a = Avlpm 2e0"
ntl _ amTnr AT — o F
Tt =Tt oo (o= pa) + g (gu — var Far)

with ¢, = (grd)/(pA) denoting the heat flow per mass union. The values with the indices . and
R indicate the values along the respective left and right characteristics. The values with the index
M ave defined by the path, see Figure 0.1. The term A is the time step defined by AT = At- ¢,
where ¢y is a fixed reference sound of velocity mentioned above.
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Figure 0.1: Computational procedure for AFVM

We now turn to the other second order scheme introduced by Kurganov and Tadmor [12] which
is based on the conservative formulation given in (1.3). We will use the semi-discrete formulation
which is very flexible and can be used in explicit or implicit forms. The CFL-condition with the
CFL-number Acrr = A7/Az < 1/Amax 18 necessary to guarantee the stability of the scheme. To
write the scheme in a compact form, several notations are introduced. The term u} denotes the
discrete values of the vector of the conservative values on mesh introduced above. To evolve in
time, we introduce the midvalues:

DNz Az
+ — - —
uj+1/2 s u;-"+l - TDU?Jr_l, uj+1/2 s 11;:" -} TDII? (22}
Here, the midvalues u® are obtained as endpoints of piecewise linear reconstruction based on
the nonoscillatory numerical derivatives Du. The numerical derivative of the function u is com-
puted component-wise. Here is a library of such nonoscillatory numerical derivatives, {12]. For a
numerical approximation of the numerical derivatives on the grid point (z;,tn) we use

no_u? u?—u?
Du?xMz‘nMod(ujH 5% uﬁ'“l).

AV Az

In order to ensure that the scheme is non-oscillatory, we use the MinM od function, given by
. 1 . .
MinMod(z,y) = 5 (sgn(z) + sign(y)min{| & |, |y 1}, =y eR

If z and y are vectors, then the MinMod function has to be implemented for each component.
This choice of numerical derivative may over smear a strong discontinuity, where the order of
accuracy is less significant. Other possible choices for Du} are given in [10, 17]. We denote the
Jacobian of the flux function f by D¢ F. The values A7, are the eigenvalues of three dimensional
matrix Dy f{u}). The maximal eigenvalue in each cell is given by

nooo= »
a’j+1/2 - 3331'3;‘2{{-1 2211?’2)'{3{| ’\z,s |}

The Kurganov Tadmor scheme (KT) takes the form

du; 1 _ _
”“”5;2’ =- m (.f(u;'*“+1/2) + f(uj+1/2) - f(u;'!m_y‘g) - f(uj_l/g))
1 _ n - n 2.3
T 3ha (a?+1/2{u§+1/2 — ) — @i (Wi — uj-—-l/z)) +g(uy) 2.3)
= Fy(u"); + g(u3).
Here u™ denotes the vector of discrete points on the time level n. The right hand side of (2.3} iz a

second order approximation of f(u), + g(u). If we use a forward finite difference to approximate
the time derivative, we get an explicit first order Euler scheme. For higher order dicretizations in



2 NUMERICAL METHODS 5

time we may use for instance Runge-Kutta-methods or related methods. In this case, we will use
the Heun scheme which is given by the predictor and corrector step

u;‘f = u;’,-" + At [Ff (u_ﬁ’,,-") + g(u?)] )

n+1 n At n n * * (24)
! = uf o+ S ((Fp(u™); -+ 9(uF)) + (Fr(w); + 9(a5)))

for details see [11, 15]. The present approach is considerably simpler than second order upwind
Godunov type methods, which requires the complete knowledge of a single Riemann solution and
special transformations between the representation in Euler and Lagrange coordinates, [1]. If the
source term is stiff, then the scheme can be formulated as an implicit one for which several methods
of solution are derived. Using Crank-Nicholson scheme for {2.3), we have

uf =l 4 921' [Fr(u?) + g{u])],
n+1 Ot n-t-1 7 n+1/2 At n (25}
it — Tg(uj ) =} + AtFy(a i+ “émg(uj).
The KT scheme (2.3} is a five-point difference scheme. Due to the influence of the boundary
values on the numerical solution it is necessary to approximate the conditions very accurately.
The boundary conditions consist of a strong reflection on the right and an outflow boundary
condition on the left side of the computational box. For staggered grids, non-oscillatory boundary
treatments were developed in {14]. Similar formulas exist for non-staggered grids. There are
different approaches to handle the boundary conditions including three-point stable schemes which
are used on the boundary. In this case one has to guarantee that the scheme is stable. The
boundary conditions propagate along the characteristics to retain high accuracy of the inderior
scheme.

To compare the different numerical properties of first and second order schemes the numerical
tests are done with six different schemes. We use a typical upwind scheme by Courant-Isaacson-
Rees CIR [19, p.362], the adaptive finite volume scheme given in (2.1), the well-known first order
Lax-Friedrichs scheme

nbl _ W TUEa Acrr At

1 (f(u?+1} - f(u;}—l)) , ACFL = Ay’

J 2 2
the first order local LxF (ILxF) scheme

A
wpt = up — SO (Fuf) — Fufy)

ACFL
2L (a2 ol — ) — @y o (uf — uf )

and the KT scheme given in (2.4). Finally, a second order method of characteristics (SCM), [3],
is implemented for further comparison of numerical results. A general review on upwind schemes,
high resolution and limiters is given in [18].

2.1 The KT scheme applied to a liquid and gas flow

We assume that the cross-sectional area A4 of the pipe is constant. The p-system with the friction
force on the wall and the time 7 == ¢gt 18

%(£)+%(pv§ip):(p%)' (2.6)

We apply equation {2.6) to an initial boundary value problem of a liquid flow and gas flow. The
increase in entropy due to the friction force is neglected.
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A straightforward computation gives the eigenvalues of the Jacobian D; f:

>

)~ (I s
and Ag =
Co Co

L3

A =

Applying {2.3) for each component we get:

00“5: = T9Az ((Pv)j+1/2 + (P’U)H_;/g - (pv)jfg/g - (P'”)j_lfg)

+ "2"21&2 (af+1/2 (p}nﬂ/z - p;+1/2) — Gj-1/2 (Pj:_l/g - P;_l/g)) )

8(pv)} 1 _ _ 2.7
Co 5r Lo Y ((fwg 'E‘P);:H/g + (P'U2 +p)j+1/2 - (P’U2 +P);;1/2 “” (PUZ +p)j—1/2) @7)
1 - ~
Y (a"+1/2 ((pv);ﬂ/ﬂl . (p”)j+1/2) ~ Ai-1/2 ((p”)ﬁuz - (P“)j—l/z))
+ {pF)7.

Further we have

ap12 = max {| (v —c); || (w+ )5 |, | (v —)gur |, | (0 +)jes [}

The discretization in space is of second order. Explicit discretization in time of second order, e.g.
the Heun scheme or Runge-Kutta scheme, lead to a complete second order discretization.

We briefly discuss the initial and boundary problem for a weak compressive fuel. The KT scheme
computes the density p and the velocity v on a fixed grid. The pressure p has to compute by
p = p(p; T) using the inverse function or an iteration process. For a liquid, the functional relation
between the speed of sound ¢, the pressure p and the density is measured by experiments, [8]. In
contrary to the KT scheme, the AFVM is based on the primitive variables p and w, which are
computed in each computational step, consult Section 3.2

The gas flow is considered without friction. In addition to the p-system with zero right side, the

equation of isentropic state
p &
o) =m (2)
Po

is used, where k = ¢,/c,. The value ¢, is the specific heat at constant pressure and ¢, at constant
volume respectively. The values pg and pp are fixed values.

3 Numerical results

In this section numerical results for different numerical methods on two important technical models
are presented. All methods are implemented in FORTRANY() code. The figures are done in
MATLAB code.

3.1 A pipe with a periodic working piston

We consider a pipe of length L == 10 m with a periodic working piston on the left side. For short,
it is called the piston problem. The pipe is filled with an ideal gas (air). We are interested in the
values of pressure on the right side which is denoted with K3. From the technical point of view it
is very important to compute the pressure p dependent on K 3. The left boundary is denoted by
K1. Figure 0.2 contains the model of the pipe with the piston and the computational domain.
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The boundary condition on K1 is the velocity
P P | -~
ni

, =0 v
TSCO) - K3 K3

Vg = Umay SiN

n+1
which is the model of the oscillating piston. The n L 1] [
value T, is the period of oscillation and vmay s
the maximum of the speed. For the numerical ex- . Qg
ample we chose different vnax and Ty. The sound
of velocity for air is ¢p = 330 m/s. The acceler-
ation at 7 = 0 has the maximum b, (r = 0) = >
27 Umax [ Ts. It depends on the boundary and ini- 0 L 2
tial conditions whether shocks appear or not. In ‘_,&EEI
the case of a shock, the beginning of the shock 7,
can be computed analytically, i.e.

7
¢ path of piston

Figure 0.2: Piston problem

2
2 o

T T K 15,(0)

The following numerical schemes are implemented:

first order Lax-Friedrich scheme {LxF)

local first order Lax-Friedrich scheme (1LxF)

second order characteristic method (SCM)

first order Courant-Isaacson-Rees scheme(CIR)

second order adaptive finite volume scheme (AFVM)

second order Kurganov-Tadmor scheme (KT)

There are several methods to compute the solution from the time level ¢ to t™*!. On one hand,
we use a fixed CFL-number Ac-pr. On the other hand, the CFL-number is chosen ag large as it is
possible for each time step in order to save time steps. The first strategy is used for the LxF, the
ILxF and the KT schemes. The second strategy is used for the CIR scheme where a large number
of time steps is saved.

The CFL-condition is satisfied for the SCM automatically. Using the ¢, v-formulation, we get the
compatibility conditions of the SCM

£—1
c-+

» = const on Ct-characteristic,

k—1 . L.
v = const on O -characteristic

c —

For this reason, the ¢, v-formulation implemented in the method of characteristics is used when
comparing the numerical results with the results by IxF, ILxF and KT schemes for the piston
problem.

Let us denote the number of points in space as #N and in time as #71'.
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Lxie

Figure 3.1: LxF scheme with Az/At = 2: Pressure on K3 and stability number

method | Ypmax Tg Az FAY S CFL-number | #N | #T order
- m/s 8 m m - - -
CIiR 15 | 5.53e-2 | 2.5e-2 | 2.120e-2 optimal 80 440 first
SCM 15 | 5.53e-2 | 2.5e-2 | 2.500e-2 - a0 200 | second
LxF 15 | 5.53e-2 | 2.5e-2 | 6.250e-3 0.5 80 961 first
ILxF 15 | 5.53e-2 | 2.5e-2 | 1.325e-3 0.5 80 961 first
KT 15 | 5.53e-2 | 2.5e-2 | 1.325e-3 0.85 80 570 | second

CIR 15 2.78¢-2 | 1.25e-3 | 1.223e-3 optimal 80 440 first
SCM 15 2.78e-2 | 1.25e-3 | 1.250e-3 - 80 200 | second
LxF 15 2.78e-2 | 1.25e-3 | 3.125e-4 0.5 80 961 first

ILxF 15 | 2.78e-2 | 1.25e-3 | 1.250e-4 0.5 80 961 first
KT 15 2.78%-2 | 1.25e-3 ; 1.250e-4 0.6 80 800 | second
CIR 50 | 5.53e-2 | 7.he-4 | 7.251e-4 optimal 80 653 first

SCM 50 | 5.53e-2 | T.he-4 | 7.500e-4 - 80 second
LxF 50 | 5.53e-2 } 7.5e-4 | 1.875e-4 0.5 30 961 first
ILxf 50 | 5.58e-2 | 7.be-4 | 7.500e-5 0.5 80 961 first
KT 50 1 5.53e-2 | 7.he-d | 1.125e-4 0.6 &0 800 | second

CIR 172 | 5.53e-2 | 3.75e-5 | 3.610e-5 optimal 320 | 3400 first
SCM 172 | 5.53e-2 | 3.75e-5 | 3.7b0e-b - 320 | 1600 | second
ILxF 172 | 5.53e-2 | 3.75e-5 | 1.875e-b (.25 320 { 7680 first

1Lxf 172 | 5.53e-2 | 3.75e-5 | 1.875e-5 320 - first
KT 172 | 2.78¢-2 | 3.75e-5 | 1.875e-5 0.15 320 | 13530 | second

Table 1: Numerical results for the piston problem

The first, second and third cases in Table 1 are typical situations for technical tools in pneumatic
systems.

The last case of the Table 1 corresponds to the resonance case. In this situation, the main difficulty
is to handle the shocks due to the increase of the shock strength. As a result of this behavior
the CFL-nmumber has to be chosen very small in order to guarantee the stability of the schemes.
Figure 1 contains the CFL-number as a function of the time 7 and the space. For further time
steps the stability number (which has to be < 1 in each computational time step)

AT f|u]+e
AT/AZ*Amax—E( o )

becomes greater than one, so that the stability is not guaranteed any more.

There is & main difference between the finite difference schemes and the method of characteristics.
The finite difference schemes do not compute the exact position of reflections on the boundary K3
and shocks in the pipe on a coarse grid. The speed of propagation is too fast. The perturbation
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Figure 3.4: Pressure on K3: #N = 160 and #N = 320 for vpax = 172 m/s and T; = 5.53e — 2 5
- case of natural resonant frequency
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provoked by the piston reaching the boundary K3 in a time 7 = 10 m. The SCM identifies this
time point accurately. If we increase the number of grid points in z-direction, the KT scheme
localizes the reflection on the boundary K3 at 7 = 9.65 m which is a more precise time than
7 = 8.2 m in the case of #N = 80, see Figure 3. On the other side, finite difference schemes are
very flexible schemes which are easy to implement.

3.2 The Common Rail Diesel injection system

The simplified Common Rail Diesel injection system consists of a reservoir with a constant pres-
sure, a pipe of the length L = 1.5m and a controlled valve, see Figure 0.3 where the model and the
computational domain is given. The valve on the right side called X3 is controlled. The pressure
in the combustion chamber following the valve is fixed by pc. = 78 bar.

The valve opens at t = 0 and the opening cross-sectional

area increases linearly up to t, = 2ms. It starts clos-

ing with t,, = 7.66ms and is completely closed at

te = 9.33ms. All geometrical data of our model are T A A,
taken from an injection system of a medium-speed large
Diesel engine. The time difference t, — ¢ influences the
maximal pressure occurred in the process. The pressure K1 | ¢'-Chor

in the reservoir varies from p,., = 550 bar to 750 bar for O
the numerical simulations. We assume that the pressure
is congtant during the simulation process. Using conser-
vative variables, the pressure p has to compute by the 1
functional expressions p = p(p;T) and ¢ = ¢(p; T") with
the inverse funetion or in the case that it is not an an-
alytical expression by an iteration process (bisection or >
Newton procedure). The iteration procedure has to be Z
chosen very carefully due to the derivative p, is very res. gVG
small for large values p in the case of a fuel. For our
numerical simulation, the following ansatz is used:

c |- K3

Figure 0.3: Common Rail system

p=a;+app+asT +asp® + asTp+ agT? + arp® + asp®T + agpT” + 43077,

where T is a fixed temperature and a; are real values depending on the fuel. They are determined
by experiments. The p-system is implemented where additional properties are considered in the
programuing code:

1. a cavitation model,

2. the friction forces on the wall, ses (1.2)
3. the elasticity module of the pipe,
4

. the leakages by vortex as a result of contraction of the flow at the inlet (reservoir - pipe) are
considered by a one-dimensional model, see [7] for details,

5. rate of detached air in the liquid, the ratio - mass of air and mass of liquid - is given by
1078,

The chosen cavitation model is a simple thermodynamical model found in the literature, see [6].
In contrast to many other codes, e.g. AMESim {13] we compute the steam production on the
basis of the thermodynamical equilibrium. In the case of cavitation the value psteam = 0.08 bar
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for T' = 304 K have been taken for water, see [16, p. 449], due to the respective value for fuel is
not given in the literature.

Due to the boundary conditions and the properties of the liquid a low Mech-number problem is
available; when we recall Ma = 2 with ¢* = g?%@- for fuel. Low Mach-number problems are
treated in [5]. We do not want to discuss that problem in detail. Using the conservative variables
can lead to ill-conditioned problems and due to this fact, formulations in primitive variables are
preferred. In Figure 6, the stability number for A7 = Az and the Mach-number Ma are plotted.
Thus, the finite difference schemes IxF and KT need a CFL-number Agpr < 0.6 to guarantee
numerical stability.

Let us denote the number of points in space as #N and in time as #T. The computational time
is denoted by ct.

method | Pres | tse Az AT CFL-number | #N | #T ct
- bar | ms m m - - - hour

AFVM | 550 | 7.66 | 5.90e-3 | 5.90e-3 - 150 | 4050 | 0.8
KT 550 § 7.66 | 5.90e-3 | 2.95e-3 0.5 150 | 8000 | 1.8
LxF 650 | 6.66 | 5.90e-3 | 2.95e-3 0.5 150 | 8000 | 1.8
SCM 650 | 6.66 | 5.90e-2 | 4.69¢-3 - 150 | 4050 | 0.7
AFVM | 650 | 6,66 | 5.90e-2 | 4.69e-3 - 150 | 4050 | 0.8
KT 650 | 6.66 | 5.90e-3 | 2.95e-3 0.5 150 | 8000 | 2.3
Lx¥F 650 | 7.66 | 5.90e-3 | 2.95e-3 0.5 150 | 8000 | 1.8
SCM 650 | 7.66 | 5.90e-2 | 4.60e-3 - 150 | 4050 | 0.7
AFVM | 650 | 7.66 | 5.90e-2 | 4.69¢-3 - 150 | 4050 | 0.8
KT 650 | 7.66 | 5.90e-3 | 2.05e-3 0.5 150 | 8000 | 2.3
IxF 750 | 7.66 | 5.90e-3 | 2.95e-3 0.5 150 | 8000 | 1.8
SCM 750 | 7.66 | 5.90e-2 | 4.69e-3 - 150 | 4050 | 0.7
AFVM | 750 | 7.66 j 5.90e-2 | 4.69e-3 - 150 | 4050 1 0.8
KT 750 | 7.66 | 5.90e-3 | 2.95e-3 0.5 150 | 8000 | 2.3

Table 2: Numerical results for the Common Rail system

The difference of the numerical results computed by SCM and AFVM differs by 1.2%. Due to this
fact, we define the solution computed with AFVM as the exact solution in order to compare the
numerical solutions computed with LxF and KT schemes.

We compare the numerical solutions. The first example with p,..s = 550 bar includes cavitation
due to the computed pressure p becoming smaller than the stream prossure Prieqm = 0.08 bar for
T = 304 K see Figure 7. The differences in the numerical solutions are the maxima of pressure,
the wave period being smaller and the influence of the cavitation process being greater for the KT
scheme than for the AFVM.

Figure 5 contains the results for pp.; = 650 bar and 0 < 7 < 40 m for SCM and AFVM; for
the LxF scheme and the KT scheme. Two essential differences appear in the results. First, the
maxima of the pressure p computed with LxF and KT schemes are greater than those for the
ATFVM or SCM respectively. The difference amounts approximately 12%. Second, the velocity of
the phase is greater for the LxF and KT schemes in contrast to the AFVM. Further, in Figure 7
we compare the numerical results for p,.., = 750 bar up to a time 0 < 7 < 50 m for the LxF, KT
scheme and AFVM. In this case, similar differences in the numerical results between the schemes
appeat.

Several difficulties appear in the numerical simulation of the injection systems using conservative
variables:

1. The computation of the pressure p in (2.6) by p = p{p; T') using an iteration process. There-
fore the functional relation between p and p for fixed temperature T has to be known,
for details see Figure 9. In the case of a variable temperature (increased by a shock) the
functional relation is a two-dimensional surface.
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Figure 3.5: Pressure on K3: pres = 650 bar, p,. = 78 bar, f,, = 6.566 ms and £, == 7.66 ms
#N =150
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Figure 3.6: Stability number and Mach-number for py., = 850 bar, p.. = 78 bar and {,. = 7.66
ms
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Figure 3.7: Pressure on K3: pr.s = 550 bar and p,.; = 750 bar, p,. == 78 bar, t;, = 7.66 ms,
#N =150
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Figure 3.8: Functional relation between the pressure p and the density p for T = 303 K

9. The cavitation model based on information of the steam pressure psteam is difficult to im-
plement due to the computation of the pressure p by an iteration process which requires
additional computational time. Further, all experimental data are given as a discrete func-

tion p = p(p; T).

3.3 Final discussion and further research problems

It is obvious that the finite difference schemes, except the LxF scheme, lead to the same numerical
results for small amplitudes of pressure and large wave periods, compare Figure 2, In the case
of higher pressure maxima and smaller wave periods larger differences in the numerical solutions
appear.

In contrast to the first order schemes, the KT scheme resolves the shocks with a higher accuracy.
On the other hand, due to the CFL-number, the numerical computations require a larger number
of time steps than for SCM or AFVM. For the piston problem, the central difference schemes as
well as the characteristic method and the AFVM lead to nearly the same results. One difference
is the computational speed which is lower in the case of the central schemes. The largest benefit
of the central schemes (especially the second order schemes) are the resolution of shocks and the
easy implementation.

The injection model contains the low Mach-number problem which is difficult to handle. The
formulation and simulation using the primitive variables is more effective than the formulation
in conservative variables and leads to a fast simulation procedure for this problem. Due to the
computation of the pressure by an iteration process the computational time increases.

For the simulation of technical applications three issues are decisive

1. the flexibility of the numerical algorithm,
2. the accuracy of the numerical results for large and small computational scales,
3. and the computational speed.

All tested algorithms do not optimize the three demands. The finite difference schemes CIR, 1LxF,
LxF, KT are very flexible but for a high accuracy the computational speed is low. The SCM and
AFVM have a high accuracy but the algorithms are not very flexible in contrast to the other
schemes. The challenge is the construction of numerical algorithrs which combine the properties
mentioned above.

The simulation of injection systems with a complete cavitation model, e.g. with the implementa-
tion of the Henry low, is a further challenge. Additional to the modeling problem of cavitation,
the low Mach-number problems appears. The sound speed drops from ¢ = 1200 m/s to 40 m/s in
a very small subdomain of the computational area. In this case, local refinement of the computa-
tional mesh in an a posteriori process is necessary.
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