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Abstract

We consider two island dynamics models recently developed for crystal growth
by molecular beam epitaxy: the irreversible aggregation model and the attachment-
detachment model. We examine the well-posedness of these continuum models and
the linear stability of step edges in step-flow growth. We also present some reduced
attachment-detachment models that can be used for analysis and simulation.
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1 Introduction

A class of island dynamics models have been recently developed for the growth of semi-
conductor thin films by molecular beam epitaxy [4, 5, 11, 12]. These models describe the
motion of boundaries of adatom islands as well as the distribution of adatom density. A
distinguished feature of these models is that they remain continuum in the lateral spatial
directions and time, but discrete in the growth direction. Such a model consists of a diffu-
sion equation for the adatom density and an evolution equation for the island boundaries.
Numerical solution of these differential equations has been performed in order to simulate
thin film growth [5, 8, 11, 12].
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We are interested in two island dynamics models. The first one is called the “irre-
versible aggregation” model. The corresponding boundary condition (on island bound-
aries) is that the adatom density vanishes on boundaries of islands, which follows from
the assumption that an adatom sticks irreversibly to a boundary immediately after it
hits the boundary. The second model is called the “attachment-detachment” model. Tt
involves not only the island boundaries and the adatom density but also the density of
edge adatoms — atoms that diffuse along island boundaries — and the density of kinks
along island boundaries. Both the attachment and detachment of adatoms to and from
the boundaries are described in the model. The underlying continuum equations include
the diffusion equation for the adatom density together with a mixed type boundary con-
dition, the diffusion equation for the edge adatom density, and the convection equation
for the kink density. In this work, we apply these models to study the morphology of a
periodic sequence of step edges in step-flow epitaxial growth of a thin film. Our goal is
to understand the mathematical well-posedness of these models and to use these models
to predict the linear stability of a step edge in step-flow growth. We also propose some
reduced attachment-detachment models that can be used for simulation and analysis.

Our method for analyzing the linear stability is standard: we first find a steady-state
solution of the underlying system; we then linearize the system around such a solution;
we further obtain the dispersion relation from the solutions of the linearized system; and
we finally use the dispersion relation to analyze the asymptotic behavior of the frequency
for small and large wave numbers. We find that the irreversible aggregation model is
mathematically ill-posed and that dendritic instability can occur, with a growth rate of
order O(l), for large wave numbers {. But the instability is weak, since the coefficient of
the growth rate is small due to two-sided attachment. For the attachment-detachment
model, we only consider the steady and quasi-steady systems, which is justified by the
large magnitude of adatom diffusion constants for most practical applications. We find for
practically allowable parameters that both systems are asymptotically stable. Moreover,
the frequency is proportional to O ({?) for both small and large wave numbers . The
constants of proportion are solely characterized by the edge Péclet number, an input
parameter which is proportional to both the constant deposition flux rate and the step
width but inversely proportional to the edge adatom diffusion constant. In fact, for small
edge Péclet numbers, both systems are stable for any wave numbers. Note that the
Mullins-Sekerka type instability of a step edge (cf. [1, 6, 9, 10]) is excluded in this model
due to the edge adatom diffusion and kink convection.

For numerical simulation, we propose a simpler attachment-detachment model by
dropping the spatial and temporal derivative terms in the equations of edge adatom
diffusion and kink convection. For better understanding the role of edge adatom diffusion
and kink convection, we propose a reduced model that only involves edge adatom density
and kink density but not the adatom density. We find that the dispersion relation for the
original attachment-detachment model is qualitatively recaptured by our reduced models.

Section 2 describes the two island dynamics models. Stability analysis for the irre-
versible aggregation model is presented in Section 3. In Section 4, we analyze the linear



x=X(y,t)-L x=X(y,t)+L

Figure 2.1. The geometry of step-flow growth of a crystal.

stability for both the quasi-steady and steady systems for the attachment-detachment
model. In Section 5, we propose several reduced models, study their linear stabilities, and
compare them with those of the original attachment-detachment model.

2 Island dynamics models

We briefly describe the two island dynamics models applied to step-flow growth of a thin
film by molecular beam epitaxy. See {4, 5] for detailed derivation of these models.

Consider a simple cubic crystal with latiice spacing a and two of its crystallographic
directions parallel to Oz and Oy axes, respectively. The geometry of step-flow growth of
the crystal consists of a sequence of periodical steps that move as time ¢ increases. See
Figure 2.1. Each step is of one atomic layer lower than its preceding one. Edges of these
steps are nearly flat and almost parallel to one of the crystallographic directions, say, the
Oy axis. We represent these step edges by functions

z=X(yt)+@+1L =041,

where X(y,1) is a smooth function and L > 0 is half of the step width. For each point
(z,y) on a step edge, we denote by # = 8(y,t) the signed angle between the tangent of
the step edge and Oy axis,

tanf = —0, X, —-m/2 <0 <m/2. (2.1)



The curvature s = (y,t), the unit normal n = n(y,t) pointing from the upper (marked
by +) into lower {marked by —) terrace, and the normal velocity v = v(y, ) of the step
edge are given respectively by

k= 0,0, n = (cos,siné), v = X cost, (2.2)

where 8, is the tangential derivative in the y direction. By (2.1) and (2.2), we have

n= - (1,-8,X) and b= o

1+ (8,X)? J1+ (8,X)2

Note that the sign of # has been changed from that used in [4]. This avoids a minus sign
in the definition of curvature .

(2.3)

2.1 The irreversible aggregation model

This model involves the step edge function x == X(y,t) and the adatom density p =
p(z,y,t), which is assumed to be periodic in 2 with periodicity 2. The model consists of
the adatom diffusion equation on the steps together with boundary conditions and jump
conditions along step edges. On a typical step defined by X (y,t) - L <z < X(y,t) + L,
these equations and side conditions are

Op—DVip=F for X(y,t)— L <z<X(y,t)+1L, (2.4)
p=0 atz=X(yt)xL, (2.5)
Dn - [Vp| = —a v, (2.6)

where D is the adatom diffusion constant, F' is the constant deposition flux rate, [u]
denotes the jump for a function u defined by [u] = u; — v with u, the restriction of u
on the edge X £ L, n is the unit normal to the edge given in (2.3), and v is the normal
velocity also given in (2.3).

2.2 The attachment-detachment model

Besides the step edges represented by z = X (y,t), there are three physical quantities in
this model. They are the adatom density p = p(z,y,t) defined on steps, the edge adatom
density ¢ = ¢(y,1) defined on all step edges, and the kink density k = k(y, t) also defined
on all step edges. The function p = p(z,y,t} is periodical in the variable x with periodicity
2L. Introducing the density of right-facing (or up-facing) kinks k, = k.(y,t) and that of
left-facing (or down-facing) kinks k; = ki(y, t), we assume that

kr + k= k,

b, — ky = a—Ltan®. (2.7)



The attachment-detachment model consists of a set of evolutionary equations together
with boundary conditions and a set of constitutive relations. On a typical step defined
by X (y,t) — L < z < X(y,t) + L, these equations and boundary conditions are

dp—DVip=F  for X(y,t)— L <z < X(y,t)+1L, (2.8)
vpy +Dn-Vp, =—f, at z = X(y,t)+ L, (2.9}
vpo_+Dn-Vp. = f. at z = X(y,t) — L, (2.10)

Bup— ol = [y + - — fo, (211)

Ok + Os(w(k, — k;)) = 2(g — h). (2.12)

Here, Eq. (2.8) describes the adatom diffusion on terraces, in which D is the adatom
diffusion constant and F is the constant deposition flux rate. Eqs. (2.9) and (2.10) are
the boundary conditions for the adatom density p, in which p; and p_ are the restrictions
to the step edge from upper and lower terraces, respectively, and fi. = fi(y,t) and f_ =
f—(y,t) are the net fluxes to the step edge from upper and lower terraces, respectively.
Eq. (2.11) describes the diffusion of edge adatoms along step edges, in which d is the edge
adatom diffusion constant and fy = fo(y,t) is the net loss term due to attachment of edge
adatoms to kinks. Eq. (2.12) describes the convection of kinks, in which, w = w(y, ) is
the kink velocity, and g = g(y,t) and h = h(y, t) represent, respectively, the creation and
annihilation of left-right kink pairs. Notice that left-facing kinks and right-facing kinks
move in opposite directions with velocity w and —w, respectively.

The quantities fi, fy, w, g, b, and v are determined by the following constitutive
relations

fy = aap, — 4, (2.13)
f- =aap_ — B¢, (2.14)
fo=v(¢r+ a”?), (2.15)
w = a® (1186 + aa(lypy +lap-)], : (2.16)
g = a@ [mif¢ + aa(mapy + map-)], (2.17)
h = a’k.ki [ B + aa(nepy +nap-)], (2.18)
v = awk cos f, (2.19)

where o = a2D is the hopping rate of an adatom on a terrace, 8 = o 2d is the hopping
rate of an edge adatom along or off an edge, and all [;, m;, n; (1 = 1, 2, 3) are positive (but
not necessary integer) paramecters. (Note that the notation n; is used here for a constant
parameter in (2.18). It is neither the first component nor the first order perturbation of
the unit normal n.) The relations (2.13), (2.14), and (2.16) — (2.18) are determined by a
mean field theory [3, 4], (2.15) is derived from the conservation of mass [4], and (2.19) is
a generalization of the classical Burton-Cabrera-Frank theory [2, 7).

Note that for simplicity, a number of physical effects have been neglected. They
include desorption of adatoms into vapor, nucleation of islands on steps, and step-edge
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asymmetry. Note also that in [4], the parameters are fixed to be (l1,5,13) = (2,2,1),
(m1, ma, m3) = (2,4,2), and (n1,ny,n3) = (2,3,1).

3 Stability for the irreversible aggregation model

Let us first find a steady-state solution for the system (2.4) — (2.6). To do so, we consider
flat step edges determined by Xoy(y,t) = vt with vy > 0 the constant normal velocity.
The corresponding unit normal of the step edge is ny = (1,0). We seek pp = polz, y,t)
that satisfies (2.4) — (2.6) with X and p replaced by X, and py, respectively. By the
change of variable & = z — wvgt, we obtain for po(Z, y,t) = po(z,y,t) that

Opo — voOspp — DV3py =F  for —L <i <L,
fo=0  atd==%L,
D [83f0] = —a™ vy,

where the jump [-] is defined by the limiting values at & = +L. Assume that gy is
independent of y and t. Then, we can solve the above system to get

vo = 2a°FL and fg = by + b1 & + bpe ™%, (3.1)

where

1

A=D", b= (20%) " coth(AL), by =—(20°L) ", b= (2a*sinh (AL)) .

To derive the linearized system around the steady-state solution (3.1), we set
X=Xg+eX;, p=pot+epm, n=nyg+em, v=1u+ev.

From (2.3), we get that n; = (0, —9,X;) and v; = J;X;. Inserting the expansions for X
and p into the system (2.4} — (2.6), using the solution (3.1), and comparing the terms of
order O(¢), we obtain by a series of calculations the linearized system

Oypr —DV%p =0  forwt—L <z <wt+L,
p1+X13mpg = a.t$:T}gt:f:L,
D[0p1) + DXy [82p0] = —a720: X1,

g

where the jumps are defined using the limiting values at ot = L. With the change of
variables & = z - wot and pg1(%,y,t) = p1(z,y, t), this system is equivalent to

6“51 - ‘anrcﬁ]_ — DV2ﬁ1 =0 for —L<z< L,

" +X1ﬁf) =0 at £ = +L, (32)
D[8:p] + DX [py] = —a 7?9, X1,



where ' denotes the derivative with respect to Z and the jumps are defined using the
limiting values at +L.
To find the dispersion relation, assume that 5, and X, are periodic with respect to y

with periodicity p. Then, we can find solulions of the above linearized system (3.2) as

follows
)51 — (ﬁ+e&+i‘ 4 ﬁMea_i) ewt+zly,
O wtil
Xl = X]_B y,

where pl/2m is an integer and all py, &y, X, and w are constants. Insert the expression
of p; into the first equation in (3.2) and use the solution (3.1), to obtain

D& + vodey — (w+ DI?) =0, (3.3)
D&2 +wa- — (w+ DI?) =0. (3.4)

Moreover, from the second and third equations in (3.2), it follows that

prett + p_etT + Xy (L) =0,
pre 4 p e 4 Xy (—L) =0,
9D [é, py sinh(@, L) + é_p_ sinh(a_L)] + DX; [fi(L) — fi(—L)] = —a 2wX;.

Hence, there exist nontrivial solutions g; and X, in the given forms if and only if the
coefficient matrix of the above system of linear equations for g, p_ and X is zero, i.e.,

A(L)
e~ o+l e 4-L o(—L) = 0.
2Dé. sinh{é, L) 2Dé&_sinh(&_L) D[gy(L) — py(—L)] + a 2w

By a simple calculation, this leads to

[coth(d L) — coth(a-L)] { D [3(L) — fy(—L)] + aw} + D (6 — by) (3.5)
[Bo(L) + po(—L)] + D By (L) — po(—L)] [64 coth(&-L) — é.. coth(&, L)] = 0.

The three equations (3.3) — (3.5) determine &, = & ({), &. = &_(I), and w = w(l) for
each wave number [.

Proposition 3.1 For the the irreversible aggregation model, the growth rate w satisfies
w(l) = woll| + of|I]) as |l| — oo, (3.6)

where
wo = 2D (L) + By(~L)] > 0.



Proof Observe from (3.5) that w is of order not greater than O(d.). But by (3.3) and
(3.4), &, and &_ are the two roots of the same quadratic equation. Hence,

i ) w + DI?

d'+ -+ Ga_ = _B and d+0£_ = — D .

It follows that &, and &_ have the leading order terms |I| and —{{|, respectively. Then,
from the leading order terms in (3.5), we obtain the desired asymptotic expansion (3.6)
by a series of calculations. By (3.1), we can verify that (since AL > 0)

. . AL cosh(AL) — sinh(AL)
4 f -
Po(L) + Po(—L) 2 Lsnh(OL) > 0.

The proof is complete. Q.E.D.

4 Stability for the attachment-detachment model

In this section, we consider the quasi-steady system obtained from the original system by
replacing the diffusion equation (2.8) and the corresponding boundary conditions (2.9)
and (2.10) in the attachment-detachment model by

—-DV?p=F for X(y,t) - L<z<X(y,t)+L, (4.1)

Dn-Vp,=—-f;, atz=X(yt)+1L, (4.2)

Dn-Vp_=f_ at z = X(y,t) — L, (4.3)

respectively. We also consider the steady system consists of the above Eqs. (4.1) — (4.3)
and the steady equations

—d&¢ = fy + f- — fo, (4.4)

s (w(k, — ki) = 2(g — h), (4.5)

together with the constitutive relations (2.13) — (2.19). In this system, the time derivatives
for ¢ and k have been omitted and the dynamics is only retained in the equation for the
boundary position X.

4.1 Steady-state solutions

To find steady-state solutions

X =Xo(y,t), p=polz,u.t), &=doly,t), k=k(y1),

we consider flat step edges moving with a constant velocity. So, as before, we define
Xo{y, t) = vyt with vy > 0 the constant normal velocity of step edges. It follows immedi-
ately from (2.1) and (2.2) that the corresponding angle, curvature, and unit normal are
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given by g = 0, kg = 0, and ny = (1, 0), respectively. Since Xo(y,t) is in fact independent
of y, we assume that the adatom density is also independent of y, so, gy = po(z,t). We
also consider constant edge adatom density ¢ and constant kink density kq. By (2.7), the

correspouding lefi-facing and right-facing kink densities are given by ki = ko = ko/2.
Now, by (4.1) — (4.3), (2.11) and (2.12) (or (4.4) and (4.5)}, and (2.13) - (2.19), we
obtain for both the quasi-steady and steady systems the steady-state solution

Xﬂ(y:t) = ’UOt:

vg = 2a°FL,
_F > 21, PP+ FL

pg(l',t)———ﬁ [(m—vot) —L ] +T forvgt — L <z <wt+ L,

Joo = 2f40 =2f-0=2FL,

b = 2FL (46)
Wy

Wy = 612(11235% + I3 F'L),

go = ado(misPo + Moz F L),

1
ho = ZGng (naasBeoo + nosFL),

Go = hU)
where for convenience we have used and will use the notation
&j = ¢ + g; and  Gx =G+ ¢+ g

for g == I, m, or n. Note that the last equation determines ¢y which, together with rest of

the equations, determines all other quantities.
Define the edge Péclet number P, = 2a*FL/d = 2aFL/B. Set

H(E,P) = €(2maga€ +maaP)(2lasé + g P.)? — P2(2n125€ + noga ), £ R.

It follows from the above expressions of kg, wy, go, fg, and the equation gy = hg that
8
H(G,QBQ, Pe) s a—ﬁ-‘gwg(gg - hg) = 0,

But one easily verifies for each fixed P, > 0 that H(0,P,) < 0, H(,, FP.) — +oo as
£ — 00, and g—;H (&, P,) > 0 for all £ € R. Hence, a¢q is the unique positive solution
of H(,,P,) = 0 for the fixed P,. The steady-state solution (4.6} is therefore unique.
Moreover, since a¢, depends only on P,, we can see from (4.6) that aky, wy/(a8), age/5,
ahgy/f also depend only on P,. In particular, we have by the ky and wp equations in (4.6)
that

2F,

 2ygsady + I P

a.k{)



Proposition 4.1 We have that

n 1/3 - 1/3
abo= (2 ) PP L OB) and aky=(12U2) T P40 (P29) (4)
\451’23?’1’1123/ ) \ 4’”&123 J N ’

as P, — 0. We have also that

2 41
ado = oo+ 1P, + 0 (P%) and akp = — — —220

L-tgenio()

as P, — 00, where

21
fer T3 and lezag(ﬂwm@“——l—z).

=72
I53mip3 o3 a3 las

Moreover, if o1 < 0, then agy is a strictly increasing function of P, in (0, 00) and adg — 0o
as P, = 00; if 01 > 0, then there ezists a Py > 0 such that ady as o function of P, sirictly
increases in (0, ), agy > oy in (P, 00), and age — o as P, = co.

Proof Both (4.7) and (4.8) can be obtained by a direct calculation based on the
fact that H{a¢y, P.) = 0.

Set £ = agy as a function of P,. Differentiating both sides of the equation H(£, Pe) =0
with respect to P,, we obtain by a series of calculations that

P,

_‘f’(Pe) =
£
Tas P3 — 12,93 P3€ -+ Al1a3(2003m193 + li2aMig ) P& + 1602,3m03 €

Nas P3 + 2la3(lasmigs + 2l19amigs) P2E2 + 81103 (2losmiss + lioamins) Pe&® + 241353my 0364

Consequently, &(P,) > 0 if £ < gy. Moreover, if oy < 0, then £'(F,) > 0 for large F..
Otherwise, if o; > 0, then &(P,) < 0 for large P.. These properties, together with (4.8),
imply the rest part of the proposition. §.E.D.

We remark that the case when ls3 = ma; = nes = 0 18 included in our reduced model
1 in Section 5, cf. (5.2). In Figure 4.1, we plot the graphs of a¢y and ek as functions
of the edge Péclet number P, with (I1,1z,4) = (2,2,1), (mi,me,m3) = (2,4,2), and
(n1,mn2,m3) = (2,3,1). These are the parameters used in [4]. They satisfy that oy < 0.

4.2 Linearized systems

Let us formally expand a solution (X, p, ¢, k) around a steady-state solution (Xo, po, ¢, ko)
as follows:

X =Xo+eXy, p = po+ €py, ¢ = o + €1, k= ko + €ky,
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Figure 4.1. The steady-state solutions of the edge adatom density and kink density as
functions of the edge Péclet number P, with (I1,1s,13) = (2,2,1), (mq,mg,m3) = (2,4,2), and
(nl,ng,ng) = (2, 3, l).

where ¢ is a small parameter, and X; = X (y,t), ;1 = pi(2,9,1), o1 = ¢1(y,t), and
k1 = ki (y,t) are some smooth functions. Expanding also formally

0 = By + by, K = Ko -t €K1, n = ng + eny, v = vy + €vq,

where all #;, k1, n;, and v, are functions of (y,t), we obtain by using the relations (2.1)
and (2.2), and comparing terms of order ¢ that

91 = —ayXl, K1 = 8391, n; = (0,91), M = 8tX1. (49)
Notice that from Eq. (2.7),

1

bike = 5 (bt k) — (= k)] = 3 (K =0 tan?6) = 340 (). (410)

For convenience, we also expand the related quantities as follows.

f+ = fro +efi, fo=feotefo, Jo = foo + €for,
‘U)Z’U}g-i-ﬁ’wl, g:gg+eg1, h:h0+6h1,

where all quantities with subscript 1 are functions of (y,t).
Now, for the quasi-steady system, insert all the above expansions into Eqs. (4.1) —
(4.3} and (2.11) — (2.19). Using the steady-state solution (4.6) and the expressions for 8,
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k1, ny, vy in (4.9), we then obtain

Vip =0 for vyt — L <z < vt + L,

Doy —FXy+ fa =10 atx — vt -+ L,

D3p .~ FX; - f_1=0 at x = vt — L, (4.11)
By — A2 = fa1 + fo1— fou,

C%k]_ — G._l’ll)()aszl = 2(91 — h1)1
and the constitutive relations

fr = apry — B —a ' FLX),
f1=aapi_ — Bd1+a ' FLX,
Joo = —voded, X1 + a7, X4,

w1 = aD(lap1y + l3p1) + Liddy + (Is — b)aFLX,, (4.12)
g1 = Deo(mapis +mapr_) + (amlﬁ% + 'q%q) ¢1 + (mg — ma) F Lo Xy,
0
1 1 2h 1
hy = JaDkj(napuy + napr-) + Tk + k—“kl + 5 (na = m)aF LKS X,
0

atX]_ == aw0k1 + ak{)wl.

The linearized system for the steady system (4.1) — (4.5) and (2.13) — (2.19) is the
same except the two time derivative terms 8;¢; and 8;k; are dropped from the ¢, and &,
equations in (4.11), respectively.

4.3 Dispersion relations

Let us assume that solutions of the above linear system (4.11} and (4.12) are p-periodic
with respect to y for some p. We have from the first equation in (4.11} that p; has the
form

p1 = [y cosh(iz) + & sinh(lz)] e+, (4.13)

where 71,51 are constants and pl/2m is an integer. Set

where ¢;, k,, and X, are constants. Inserting (4.13) and (4.14) into the two boundary
conditions in {4.11), the equations for ¢; and k; in (4.11), and the last equation in (4.12},
using all the other relations in (4.12), we obtain, after a series of calculations, that

o [azl cosh(IL) + asinh(lL)] $—F (1 -+ a‘lL) X, =0,
a [a’Lsinh(IL) + acosh(IL)| & — B¢ = 0,
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2aacosh(IL)iy — (28 +di* + w) é1 + (—vodol® — ¢ 7%w) X1 =0, (4.15)
aG, cosh(IL)7, + oG, sinh(IL)3; + Gedy + (Gr — w)kr + (Gx — a™ wol?) Xy =0,

A

/

-~

-
Irya . T7 1 [ VAN

wVy Cost 1( 1~;-uvsbuih( LLj5] T Vg T VER ;—'r—( Vi —w leﬂ,
where
1
G, = 2mgaa’o — Enzaa“’kﬁ ;
1
Gs == 2(m2 — mg)ﬂ2¢0 — 5(?12 - ng)a3k§,
1
Gy = 2myafeo + s §n1dk§, (4.16)
0
4hg
G, =
k ko
1
GX = 2(m3 - mz)FL¢O — 5(?13 - ng)angL,
and
Vi = lzsa%n,
Vs = (52 - 53)34160?
% = lladko, (417)
V;c = aWg,

Vx = (Is — Ib)a?kg F L.

There is a nonzero solution (X1, p1, ¢1, k1) of the form (4.13), (4.14) if and only if the
determinant of the coefficient matrix of the above linear system (4.15) for (74, &1, é1, kl, X 1)
vanishes. Notice that this determinant is zero if I = 0. Assume now ! # 0. Factoring
acosh{lL) and asinh(IL) from the first and second columns of the determinant, respec-
tively, we see that the condition that the determinant is zero becomes

0 a*lcoth(IL) +a 0 0 —~F(1+a7lL)
a?ltanh(IL) + a 0 - 0 0

2a 0 — (Zﬁ +dI? + w) 0 —'U[)QSOIQ —a 2w | =0.

GT Gs G¢ Gy —w Gx-— a“lfwglz

V: Vs Vy Vi Vy —w

(4.18)
This determines the dispersion relation w = w(l) with I 3 0 for the quasi-steady system.
For the steady system, we obtain similarly that

0 a’lcoth(lL} + a 0 0 —-F(l+e'L)
a®ltanh(IL) +a 0 -f 0 0
% 0 —(@B+d?) 0 -—udol®—atw | =0, (4.19)
G, G, Gqs G Gy~ a‘lwglz
V; V; V¢ Vk VX W
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which determines the dispersion relation w = w(l) for { # 0 in the steady case.

A simple manipulation of the above determinants using the fact that all vy/(af),
wg/ (aﬁ) aqﬁg, and aky depend only on the edge Péclet number P, shows that these
uibpeuuuu relations are of the form WU} — ﬁg (u/u, 1'g,y u,n), where S is a function of three
variables. In particular, the dispersion relation is independent of the adatom hopping rate

« for both the steady and quasi-steady systems.

4.4 Asymptotic analysis

Denote for each I > 0 by w = w(l) the root of the linear equation (4.19) and by w; =
wi (D), ws = wa(l), and wy = ws(l) the three roots of the cubic equation (4.18). Assume
that wy (I) is always real, and w;(0) = 0 since w = 0 is a solution of (4.18} for I = 0.

Proposition 4.2 For the steady system, we have

w(l
w(l

) = —a*upol? +O (1Y) asi—0, (4.20)
) ”“w“l? +0(1)  asl— oo (4.21)

For the quasi-steady system, we have
wi(l) = —a?vopol? + O (1) asl— 0, (4.22)
and
wi(l) = —di* + O(),
wy(l) = Ro +iwel + 0 (I71), (4.23)
wa(l) = By —iwel + O (I7),

as | — oo, where 1 = /—1 and

Baky
4

Moreover, Ry < 0 for small edge Péclet number P,. A sufficient condition for Ry < 0 for
all P, > 0 is that

By = [(Is — Iz — nag) Pe ~ 219300 — 201 Peagho] . (4.24)

l3 - lz — T3y S 0, (425)

and a necessary condition for Ry < 0 for all P, > 0 is that

(l3 — lz — nzg)lggmgg — 2},‘17’123 S 0. (426)
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Proof Consider first the steady system. By (4.19) we have w(l) = A({)/B(l), where

0 a*lcoth(IL) + a 0 0 —F(l+atL)
a’ltanh(IL) + a 0 ' - 0 0
A(l) = 2a 0 - (Zﬁ -+ dlz) 0 —’Uggbgp ,
Gy G, G¢ Gk GX = a‘lwgl2
| A Vs Vs Vi Vx
0 a?lcoth(IL) + a 0 0 0
a*ltanh(IL) + a 0 —f 0 0
B{l) = 20 0 —(26+d?) 0 a?
G, G, G, G 0
Ve Vs Vo Vi 1

By expanding A(l) and B(l) along the first row and the last column, respectively, we
obtain that

A(D) = a’vgdpgel® + O(1*) and B(l) = —qu+O(*) asi—0,

where
a —f8 0 1
@ =|Gr Gy Gy |=4la'Bho+ 2mizsa®Bdowy + —2-~n2364kgwoFL >0,
Vi Vo W 0
and that

Al = a*Buwdl® + O(1Y) and B(l) = a*BGi* +O(1*) asl— oco.

These imply (4.20) and (4.21) immediately.
Consider now the quasi-steady system. Notice first that w{l) — wi(0) =0as ! — 0.
By a series of calculations, we obtain from (4.18) that

do (wl(l) & a2v9¢022) +0 (34) +0 (l2w1(l)) +0 (wl(l)z) =0 asl—0,

implying (4.22).
Observe from (4.18) that |w(l}] — oo as | — oo0. A simple manipulation of the
determinant (4.18) leads to

— (28 +dI? + w) 0 —wvpol? — a 2w
Gy Gy —w Gx—alwpl? | +0(u])+0 (/1) =0,
% Vk VX — W

for large {. Consequently,
W+ dlPw? + (28 + 072V, — G — Vi) w? + (wf — dGy — dVx + Vigvodo) Pw
+dwl + Owl) + O (Jwl/1) + O (1F) =0 asl— oo, (4.27)
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It then follows immediately that there exist constants ¢; > 0 and ¢z > 0 such that
el < w(l)] € cpl*  for large [

If |w(){/12 is bounded below by a positive constant for large [, then (4.27) implies that
wl) =—dPF+0(1) asl-»oc. (4.28)

If on the other hand, up to a subsequence of {I}, w(l)/I> — 0 as | = oo, then we must have
that w(l) = O(l), for otherwise, we would have a contradiction from (4.27). Therefore,
the highest order terms in (4.27) are those of {2w? and {*. Consequently, we have

w(l) = R{l) +iowel  as — 1, (4.29)

where R(I) is a bounded function of [ and o =1 or —1. If we plug the above expression
back into (4.27), we then have

RI)=Re+0(I"")  asl— oo, (4.30)

where Ry is defined by (4.24). Now, (4.23) follows from (4.28) — (4.30).

Finally, the fact that Ry < 0 for small edge Péclet number P, follows from (4.7). The
condition (4.25) is obviously sufficient for Ry < 0 for all F,. The necessary condition
(4.26) follows from the asymptotic expansion for agy in (4.8). Q.E.D.

5. Model reduction

We present three reduced attachment-detachment models and study their linear stability.
Skipping details of the analysis which are similar to those for the original model, we
summarize the stability result in Section 5.4.

5.1 Reduced model 1

This model is the same as that of the original attachment-detachment model except that
the expressions of w, g, and h in (2.16) — {2.18) are simplified as

w=hdd, g=maB¢?,  h=nidpkk, (5.1)

which result from the assumption that I = I3 = my = m3 = ng = ngz = 0.
The steady-state solutions of Xy, vq, s, f+0, f-0, and fy are the same as given in (4.6),
but those of ¢q, kg, wy, go, and hy are given by

_ _ (4m )1’ ’ 2
aPy = Ay (ako)”, ako = (hni Fe J (5.2)
w a ah 1
a—g = liag, *gg = ma{ado)”, 73‘9 = an(agbg)(ak@)z, (5.3)
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where P, = 2aFL/8 is the edge Péclet number. Notice that ado, ako, wo/{(af), age/B, and
ahy /8 are still functions of P, only. But they are no longer bounded.

The linearized system for the guasi-steady system is the same as that given in (4.11)
and {4.12) except the equations for wq, g1, and /iy are simplified as

wi=hdb, g =2mefledr, b= ymdki + smddokoks.  (5)
The linearized system for the steady system can be obtained from (4.11) and (4.12) by
dropping the two time derivative terms 8;¢; and 8;k; in the ¢, and k; equations in (4.11),
respectively, and replacing the expressions of wy, g1, and h; there by those in (5.4).
Assume that the solutions to the linearized systems are periodic. Then, p; is given
by (4.13) and (¢, k1, X1) has the form (4.14). Consequently, by a series of calculations
similar to those in Section 4, we obtain the following dispersion relations

a*ltanh(IL) + a -8 0 0

2a — (28 +dP* +w) 0 —vodol® — @ %w | _ 0 (55)

0 %?’L}dké —(ﬂ1d¢0k0 -+ w) —Cl-ml’w{)l2 o )

0 lladkg aty —w

and

a’ltanh(IL) +a -8 0 0
2a — (26 + di?) 0 —vpol? —a 2w | 0 (5.6)
0 %nldkg “““"‘ﬂ]_dgbgk'ﬂ —a“lwglz o |
0 lladkg atwy —

for the quasi-steady system and steady system, respectively. They are again of the form
w(l) = BS (L/a, P.,al) with S a function of three variables, and are independent of the
adatom hopping rate a. From (5.6), (5.2), (5.3), and (4.6), we obtain for the steady
system that

B[(al) tanh(iL) + 1] [3”—1?3 + (22’ (a) ] (al)? + 2 (wg) (al)? tanh(iL)

w(l) = — [(al)ta,nh(ll})-l—l]{ n Po(ako) + 2 Py(al)?] + 22 P, (al) tanh(IL) - B7)

5.2 Reduced model 2

For the simplicity of numerical simulation, we now propose the second reduced model by
further dropping all the derivative terms in the ¢ and k equations in the first reduced
model. So, this one is the same as the first reduced model except that the ¢ and %
equations (2.11) and (2.12) are replaced by

f++f-=f and g=h,

respectively.
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The steady-state solution of this system is the same as that of the steady system of
reduced model 1. The corresponding linearized system consists of equations (4.11) and
(4.12) with the ¢; and k; equations replaced by

fr+fa=fu and g1 = hy,

and the wi, g1, and hy equations replaced by (5.4), respectively. As before, we assume
that the solutions to the linearized systems are periodic. Then, p; is given by (4.13) and
(¢1, k1, X1) has the form (4.14). The dispersion relation is given by (cf. (5.5})

c?ltanh(IL)+a —f 0 0
2a —28 0 — el ~ a%w | 0
0 %Tﬁdk?} —'n.ld(,‘bgkg 0 o
0 lladko ag -

which leads to
3l1a*vodoko [al tanh(IL) + 1] 12

)= — :

w(l) 3l ko [al tanh(IL) + 1] + 41 tanh(IL)

This is also of the form w(l) = 85 (L/a, P.,al) with S a function of three variables, and
is independent of the adatom hopping rate «.

(5.8)

5.3 Reduced model 3

Motivated by the observation that the dispersion relation is independent on the terrace
hopping rate « for the quasi-steady and steady systems, we now develop the third reduced
attachment-detachment model that does not involve the adatom density to study the
stabilizing role of the edge diffusion and kink convection. By assuming that the adatoms
diffuse infinitely fast and attach uniformly to step edges, we have that the adatom density
on steps is p = 0 and that the total flux to a step edge is f + f_ = 2F L. By assuming
also that there is no detachment of atoms from an edge or a kink to a step, we get from
the original attachment-detachment model that

Op — d8%¢ = 2F L + fo,
Otk + 05 (w(k, — k) = 2(g — h),
v = quwk cos ,

where f, is given in (2.15), k, and k; satisfy (2.7), and w, g, and h are given in (5.1).
Equivalently (cf. (4.10}),

O — d02¢ = 2F L+ v ($0,6 — a™?),

Ok — 1,053, (90,X) = 2mi0f — smddF +SmBHOX):  (59)
v = liadgk cos 6.
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These are the governing equations of this reduced model for edge adatom diffusion and
kink convection.
For this model, the steady-state solutions Xy, vg, ¢y, and ky are the same as those in
reduced modei 1. The linearized system around the steady-state soluilon Is given by
2 -2 2
Oshr — dO,¢1 +a™ 0 X1 — vogod, X1 =0,

1
§n1dk§¢1 — Oyk1 — nydgokek, + llaﬁgﬁgﬁle =0, (510)

lladkoqb; + llad¢0k1 - 8tX1 =0,

Setting as before P .
(1, k1, X2) = (fo, b, Xy) e+,

we then obtain the following dispersion relation

W+ dlZ 0 a‘zw + 'Ugt?sglz
%nldkg — nldt;.’s{)kg —llaﬁnglz = 0,
lyadk, liaddy vy

which is equivalent to
wl® m P, w\)’ n
(—) + [(az)2+ Lo +zl(ak,o)} (m) + {[—11:;+P3+z§(a¢0)2] (al)’
/6 51 ;6 ll
3’!’31

+gn1Pg(ak9)} %’ + [%pg(az)ﬂ + zf(agbo)?(az)‘*] ~0. (5.11)

If we drop the terms 8;¢ and 8;k in (5.9), we obtain the corresponding steady system.
It has the same steady-state solution. And the corresponding linearized system can be
obtained by dropping the two terms 8;¢; and 8;k; in (5.10). The dispersion relation in
this case can be obtained explicitly as

(1) = _llﬁ(aqﬁo)(al)z [21; (al}? + 30y P.(ako)?]
- ny(ako) [2(al)? + 311 {ake)}

(5.12)

Notice that the dispersion relation for both the steady and unsteady systems of this model
is of the form w = BT (P,,al) with T a function of two variables.

5.4 Stability results and comparison

As for the original attachment-detachment model, we denote by w = w(l) the frequency
function determined by (5.7}, (5.8), and (5.12) for the steady-systems of the reduced
models, respectively. We also denote for each I > 0 by wy = wi{l),ws = wey(l), and
ws = wa(l) the three roots of the cubic equations (5.5) and (5.11) for the quasi-steady
system of the reduced model 1 and 3, respectively. We can assume as before that w; ({) is
always real and w;(0) = 0. We summarize our stability results for the reduced models as
well as the original attachment-detachment model in Table 5.1.

19



Model

Steady System

Quasi-steady System

original

w(l) = —a®upl® + O (1) as 1 — 0
w(l) = —2%e2 4+ O(1) asl -

wi () = —a?vpdpl®* + O (I*) as =0
wi{l)=—dP?+0(1)asl —

dahp
wall) = Ry +iuwgl + C{I7") asl —
wy{l) = Ry — dwel + O (I71) asl — oo
w{l) <0 foralll>0 w1 (0) =0, Re(w;(0)) <0 (j =2,3)
wi(l) = —a?vedl> + O (I*) as 1 = 0 | wi(l) = —ave@pl®> + O (1*) asl — 0
w(l) = —ERE 4+ 0() as I — o0 wil) = ~dl* +0(1) as | — o0
1 wa(l) _%»BPB(PE + %1“)
+iwgl + O (I71) as 1l — oo
wa(l) = —3BPe(Pe + 1)
—twpl + O (I71) as - oo
w(l) <0 foralll >0
2 w(l) = —a?vedpl® + O (1*) as 1 = 0
w(l) = 3222+ O(l) as | — o0
w(l) <0 foralll>0 w1(0) =0, Re{w;(0)) <0{(5=2,3)
w(l) = —a®vuedl? + O (I*) as 1 =5 0 | wi(l) = —a®vogel2 + O (I*) asl— 0
w(l) = — 2P 4+ 0(1) as L -+ oo wi(l) =—dl* +0(1) as | — oo
3 w(l) = —LBP(P, + 1)

+z’w0l~+««0(£ Basl— oo
) = —LBP(P, + )
—dwpl + O (I~ ) as [ — oo

Table 5.1. A summary of the stability results.

In Figure 5.1, we plot the graphs of frequency vs. wave number for various models
with a same set of parameters: (a) the steady systems for the original, reduced model
1, and reduced model 3; (b) the quasi-steady for the original and reduced model 1, and
the unsteady system of the reduced model 3; {c) the quasi-steady system for the reduced
model 1 and the unsteady system of the reduced model 3; and (d) the steady system for
the original and reduced model 2. In (b) and (¢), wy, is the maximal value of the real
part of w;{l),i=1,2,3.
We can now draw several conclusions from our analysis.

o All the leading terms in the asymptotic expansions of w = w(l) and w;(I) ( = 1,2, 3)

for small and large wave numbers are of the form —fu(P,

}(al)? with u(-) a single

variable function and ¢ > 0 an integer. Thus, the asymptotic stability depends only
on the edge Péclet number P, and edge adatom hopping rate 3.

e For all the steady, quasi-steady, and unsteady systems of all the models, we have the
same asymptotic expansion of the frequency for small wave numbers. The coefficient
of the leading order term —a?vy¢p comes from the curvature term in the expression
of fo (cf. (2.15)). Hence, for small wave numbers, the stability is determined by the
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geometric effect. However, for large wave numbers, the stability is dominated by
the edge diffusion and kink convection.

For parameters in practice, the original attachment-detachment model is mathe-
matically well-posed. Our numerical calculations with typical parameters further
show that the frequency function w(l) is always negative for any [ > 0 for the steady
system (cf. Figure 5.1 (a, d}), and that the real parts of wy ([}, wa(l), and ws(l) for
any I > 0 are always negative as well for the quasi-steady system (cf. Figure 5.1
(b)). Therefore, for parameters in application, particularly those used in [4], both
the steady and quasi-steady systems of the original model are stable for all the wave

numbers.

o All the reduced attachment-detachment models are mathematically well-posed. In
fact, their steady systems are stable for all wave numbers. Our numerical calcu-
lations show that, for parameters in the range of application, their quasi-steady
system are also stable for any wave numbers, cf. Figure 5.1.

e The reduced model 2 is always stable. Recall that this model is obtained from
the reduced model 1 by dropping all the derivative terms in the edge diffusion and
kink convection equations. Thus, the presence of the edge adatom density and kink
density in an attachment-detachment model seems to be more essential than their
evolution in stabilizing the system. Meanwhile, the reduced model 2 can provide
possibly a good model for numerical simulation, since it needs only to solve the
differential equation of the adatom density and the algebraic equations of the edge
adatom density and kink density.

e The asymptotic expansions of the dispersion relation for the reduced model 1 and 3
are exactly the same. In particular, for the steady system, the coefficients of the {2
term in these expansions for large wave number [ are the same in form as that for
the original model. (Note that A has a different expression for the original model.)
Consequently, the reduced model 3 is an accurate approximation model for studying
the edge diffusion and kink convection.
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