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Abstract. Based on abstract convergence theory for the smoothed aggregation
multigrid method [6], we present a new method for detecting strong connections
{couplings) in matrices obtained by discretization (and subsequent coarsening) of
elliptic problems. Although the coupling evaluation given here has been derived in
connection with smoothed aggregation algorithm, it is fully applicable in any AMG
method, providing zero-energy modes are available in the solver.

1 Introduction

Algebraic multigrid methods have become quite populari5,16,15,6,3] recently.
Based on convergence results for one of these methods, namely the smoothed
aggregation multigrid method [6], we present a new method for detecting
strong connections (couplings) in matrices obtained by discretization (and
subsequent coarsening) of elliptic problems. Although the coupling evaluation
given here has been derived using smoothed aggregation abstract convergence
bounds established in [7,8,14], it is fully applicable in any AMG method,
providing zero-energy modes are available in the solver.

The ideal way of detecting strong connections rests on analyzing the lo-
cal stiffness matrices. If ¢, j are two degrees of freedom associated with one
element T, their coupling can be reliably evaluated using simple formula of

5]

N .1

coup(i, j) = Ty (1)
where Ay = {a;;} is a local stiffness matrix corresponding to the element
T. Since (1) defines the energy cosine of i-th and j-th basis function, the
criterion can be easily extended for evaluating the nodal coupling in case of
nonscalar problems (e.g. using energy cosine of nodal spaces.) Providing the
local stiffness matrices are available, (1) evaluates reliably strong connections
on the finest level. For coarser levels however, the notion of local stiffness
matrix can be reproduced only under strong geometrical restrictions on the
coarsening that are often violated by algebraic methods. For this reason,
finding a reliable way for detecting strong connections using the global (or
coarsened) stiffness matrix remains a challenging problem.
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Our approach is based on a heuristic interpretation of the algebraic as-
sumptions of the smoothed aggregation abstract convergence theory [14]. In
this method, the final prolongator I}, (I + 1 is the coarser level) is con-
structed as a product If b1 S F; of a so-called prolongetor smoother S; and
a tentative prolongator Pii_l, where both components S; and P} are deter-
mined by the identified strong coupling adjacency. If the identified strong
connection adjacency is too sparse, it results in a powerful (but expensive)
tentative prolongator P, (identity in an extreme case) but an ineflicient pro-
longator smoother S;. The opposite extreme gives 5; being a polynomial in
A; (the ideal case} but a tentative prolongator Pf+1 unable to reflect any
anisotropic behavior. Qur proposed technique establishes a “trade-off” be-
tween a weak approximation condition for Pf 41 and a filtering condition on
5. Under certain restrictions, constants in both conditions can be evaluated
computationally, given any proposed strong connection adjacency.

2 Coupling detection algorithm

We describe a strong adjacency detection based on abstract convergence es-
timates for smoothed aggregations methods established in [14]. Although the
coupling evaluation given here has been derived using smoothed aggregation
abstract convergence bounds established in [7,8,14], it is fully applicable in
any AMG method, providing zero-energy modes are available in the solver.
Before formulating the algorithm suitable for solving general nonscalar ellip-
tic problems, we first give its simplified version suitable for scalar problems.

2.1 Coupling detection for scalar problems

This section provides an algorithm for detecting strong connections for ma-
trices obtained by discretizing scalar problems with one dimensional space of
zero-energy modes, In other words, we assume that each row of the matrix A
corresponds to one node and zero-energy modes are given by a single vector
b & R

‘We split the algorithm into two separate parts: a) evaluation function, b)
the detection of strong connections itself. When solving anisotropic problems
by smoothed aggregation method, the aggregates must be formed in accor-
dance with strong connections. To prevent an excessive fill-in of coarse-level
matrices, the prolongator smoothers are carefully filtered so that the nonzero
structure of the prolongator smoother is given by the adjacency of strong con-
nections that is used for generating the aggregates (see Sect. 4.) In the context
of this method, the evaluation function measures “how drastic” the filtering
of the i—th row of the prolongator smoother corresponds to each particular
list of strongly coupled neighbours of i. The case of A; = {j: a; # 0}
corresponds to no filtering at all, and the evaluation function returns zero.



The detection of strong connections itself is then a simple algorithm that
makes decisions based on results of evaluation function for candidate lists of
nodes strongly connected to a center.

Algorithm 1 (EVALUATION FUNCTION). Given an n x n matriz A, vector of

zero-energy modes b € R™, row number ¢ € 1,...,n and o cendidate list of
strongly coupled neighbors
BN C{j: ay#0}, (2)
TELUTR > .
Y, P %
B@GN) = =N 20 (3)

(ZjeN bj) 1/2°

Aside from the essential boundary conditions, the local kernel b satisfies
> ;=1 @ijb; = 0. The evaluation function (3) then indicates how close b is
to the kernel of matrix A with all entries corresponding to weak connections
replaced by zeroes.

Using the above evaluation function, the strong adjacency can be obtained
as follows:

Algorithm 2 (STRONG ADJACENCY CONSTRUCTION). Given ann X n matriz
A, an upper bound A > p{A), vector of zero-energy modes b € R™ and a
threshold « € [0,1], find strong connection adjocency orgenized as a 01

matriz
1if j is strongly coupled to i,
0 otherwise

N ={ni}, ny= {

as follows:
fori=1,...,n
1.  Search among ell lists satisfying (2); find the smallest list N such that

E@i,N) < aX (4)

and denote the resulting list by Nf;.
2.  Create the i—th row of N by

nij:{zifjem,

0 otherwise

end for

Step 1. of Alg. 2 consists of the loop over all subsets of the list of all nonzeroes
in the row ¢ that contain 4. The result of this inner loop is the list of nodes
that are strongly coupled to the node ¢. It requires an access to i—th row
of the matrix 4 and to zero-energy modes vecor b, The outer loop can be



performed in parallel.

Outside the smoothed aggregation framework, the above detection method
can be interpreted as a systematic way of seeking weak connections hidden in
combinations of positive and negative off-diagonal entries using actions of the
stiffness matrix on zero-energy modes. The denominator in (3) and the up-
per bound A > g(A) on the right-hand side of (4) assure a scaling invariance
with respect to both A and b. Fig. 1 shows the situation where criterion (1)
is very sensitive to the magnitude of the threshold since it considerers one
off-diagonal entry only. Assume a) zero-energy modes are formed by a vector
of ones, i.e. 3-; a;; = 0, b) all off-diagonal entries are large in magnitude, c)
sum of off-diagonal entries corresponding to connections of the center with
vertices located outside the ellipse is close to zero.

This situation can be observed in the case of the Poisson equation dis-
cretized using bilinear quadrilateral elements on the rectangular grid. The
rectangular elements stretched to a 1 : 10 aspect ratio yield the coefficient
stencil

-1 19 -1
A=|-39 8 -39/, (5)
-1 19 -1

where the coeflicients —3.9 correspond to a side of relative length 1 while 1.9
corresponds to a side of length 10 [15].

The criterion described in this section correctly selects nodes contained in
the ellipse as strongly coupled neighborhood for a wide range of thresholds.

Fig. 1.

2.2 Generalization for noscalar problems

In this section, we generalize Alg. 2 for nonscalar problems with multidimen-
stonal space of zero-energy modes.



Throughout this section, we assume that the basis vectors of zero-energy
modes are supplied as columns of matrix the n X r matrix B {n = ord(4)),
and both the matrix A and the zero-energy modes B are organized in blocks
corresponding to IV nodes as follows:

An Ay Aza ... Aww B
Ay Ags Asz ... Asw Bs

A= P y B = - . (6)
Any Anz Ana ... AnnN By

Since the notion of “node” in the geometrical sense is not always well-defined
for coarse-level matrices obtained by algebraic coarsening (see Alg. 4), nodes
are understood here as small clusters of degrees of freedom forming a disjoint
covering of the set of all degrees of freedom {1,...,n}. For simplicity, we
assume that each of the nodes consists of the same number of degrees of
freedom ny. Hence the blocks A;; are ny X ny square matrices and the blocks
B, are ny x r rectangular matrices, where r is the dimension of the space of
zero-energy modes.

Using this notation, the evaluation function Alg. 1 can be generalized as
follows:

Algorithm 3 {EVALUATION FUNCTION). (iven an n X n matriz A, n X r ma-
triz of zero-energy modes B orgamized as in (6), node numberi €1,...,N
and e candidate list of strongly coupled nodes N salisfying

{iy c N {j: A4y #0}, (7)
return E(i,N') > 0 evaluated as follows:

1. Set m to be the number of nodes in N and create the the block selections

A:h,i By,
Ajii Bj;

Ug = : , Up= . , Jx €N
A i Bjn

2. Orthonormalize columns of matriz Ug, store the resull in Us.
3. Evaluate E(i,N) = o(UYUg).

Note that the orthonormalization step can be conveniently performed using
QR decomposition.

Using the above evalnation function, the strong connection adjacency can
be obtained by Alg. 2 with n replaced by N and (2) by (7).



3 Smoothed aggregation multigrid method

The smoothed aggregation multigrid method (préposed by Vanék in [10,9]
and further developed in [6,11,7}), builds the prolongator in the form

Ill+1 = SIBE-H: (8)
where Pf+1 is a very simple fentative prolongator satisfying
B = }3{!+1 Bl+1 (9)

where B! is a matrix formed by columns of zero-energy modes basis vectors
and 9} is a Richardson-type prolongator smoother derived from matrix A4; (or
its perturbation}, e.g.,

S =1I (10}

w

o At)AI'

Note that on the finest level, the zero-energy modes B! must be given.

To satisfy (9), we build simultaneously P} and B? so that B! = P} B?. Then
using B2, we construct P} and B®, etc. For details, see Alg. 4.

The purpose of the prolongator smoother S; is to minimize g(A;1 1), where
Arpa = (I},)T A}, . Simple pointwise smoothers eliminate efficiently high-
energy errors. The prolongator smoother (10) is an error propagation op-
erator of a Richardson-type iteration. By applying it to the range of Pll+11
we suppress high-energy vectors, which in turn reduces the “maximal energy
measure” p{Aiyq).

It remains to specify the tentative prolongator Pf, . Assume B' is avail-
able and denote the number of its columns by r. Our goal is to create the
tentative prolongator P, and the coarse-level representation B! of B!
satisfying (9).

Our construction is based on the supernodes aggregation concept. On
each level, degrees of freedom are organized in small disjoint clusters called
supernodes. On the finest level, these clusters have to be specified, e.g., as
the sets of degrees of freedom associated with the finite element vertices, the
coarse level supernodes are then created by our aggregation algorithm. The
prolongator P{_H is constructed from a given system of aggregates {Aﬁ}ﬁ_jl
that forms a disjoint covering of level | supernodes. A simple greedy algorithim
for generating aggregates based on the structure of the matrix A; is given
in [6]. The property (9) is enforced aggregate by aggregate; columns of Ff,;
associated with the aggregate A% are formed by orthonormalized restrictions
of the columns of B! onto the aggregate AL. For each aggregate, such a
construction gives rise to 7 degrees of freedom on the coarse level forming a
coarse level supernode.

The detailed algorithm follows. For ease of presentation, we assume that
the fine level supernodes are numbered by consecutive numbers within each
aggregate. This assumption can be easily avoided by renumbering.



Algorithm 4. For the given system of aggregates {Aﬁ}f__’l and the ny X r ma-

triz B' satisfying P} B! = B*, we create a prolongator Pl |, a matriz B+
satisfying (9) end supernodes on level I +1 as follows:

1. Let d; denote the number of degrees of freedom associated with aggregate
AL, Partition the ny x v matriz Bt into blocks B! of size d; x 7, © =
1,..., NNy, each corresponding to the set of degrees of freedom on an ag-
gregate AL (see Fig. 2).

2. Decompose Bl = Q'RL, where Q% is an d; X r orthogonal matriz, and R}
is an r X r upper triengular matriz.

3. Using the blocks @, i = 1,..., Ny, create the prolongator P}, , as shown

by Fig. 2.

Create B consisting of the blocks RL, i = 1,..., Ny, (see Fig. 2.)

For each aggregate A%, the coarsening gives rise to r degrees of freedom on

the coarse level (the i—th block column of P}, ). These degrees of freedom

define the i—th coarse level supernode.

oA

Fig. 2. The construction of a tentative prolongator Pf+1 and B't!

4 Smoothed aggregation multigrid with perturbed
prolongator smoothers

Solving anisotropic problems calls for a coarsening scheme that follows strong
connections (semicoarsening.) In [7], we analyzed the algorithm that uses pro-
longator smoothers S; being the error propagation operators of Jacobi-type
smoothers derived from the matrices A;. Such prolongator smoothers, when
used together with tentative prolongators that follow strong connections, tend
to canse excessive fill-in of coarse-level matrices. To eliminate this drawback,
we use ([14]) prolongator smoothers (10) with AF in the place of A;, where
AF = A; is a filtered matriz.



In what follows, we give a simplified version of a filtering algorithm that
creates a filtered matrix AT of a given nonzero structure N;. Throughout this
section, we assume that the zero-energy modes b are given by a single vector.
The more general algorithm is given in [14].

Given a list N C {1,...,n}, define a “filter” F(A) : R"* — R” that drops
all nonzeroes at positions i g N, ie.,

x; ifie N
0 otherwise ’

Fv:xeR" o yeR? yiz{ (1

and the projection Qx onto {aFyb, a € R} by

Qu = I~ Fxb (Exb)T(Fyb)) ™ (Fxb)T. (12)

Using above definitions, the filtering algorithm can be written down as
follows:

Algorithm 5 (FILTERING). Gliven the matriz A and the strong connection ad-
jacency N, ereate a filtered matriz AT as follows:

For all nodes i =1 to n do

1. Define the list N = {j: Ni; = 1},

2. filter i—th row of the matriz A: rowl (AF) ¢ QuFy row! (A)

end for

The operator (J 5 in Step 2 ensures that the zero-energy mode is preserved
for the filtered matrix AF.

The abstract convergence bounds for smoothed aggregation method with
perturbed prolongator smoothers are established in [14]. In our notation, a
simplified version of a key abstract result can be written down as fotlows:

Lemma 6. Let A\ > o(A;), 1= 1,...,L. We assume that:

1. There is a sequence of mappings Q; : R — R™, 1= 2...,L, and
e positive constant 4 such that for all levels | < L and all finest-level
vectors u € ™,

(I — P41 Quyr)ullns \/— lalia. (13)
2. The matriz D; = Ay — AF satisfies D\P} =0, and
Lt N2
> (3) 122 < cn. (14)
Aj

j=1+1

Here, |\D,P}|| = \/ Amax ((PHYT DY DiP}) denotes the operator matriz norm

induced by Fuclidean vector norms.
Then the A-norm convergence rate of the smoothed aggregotion method is
bounded by 1 — C/L3.



The assumption (13) is a weak approximation property for disaggregated
vectors. The prolongator smoothers enter the condition (13) only through
the scaling factor 1/ v on its right-hand side. The role of the prolongator
smoothers is to enforce "smoothness” of the coarse spaces by making the
values of A; small. Obviously, a smaller A; allows the approximation condi-
tion {13} to be satisfied with a smaller constant C4.

The condition (14) specifies how much A; can be perturbed while still
preserving properties of a good prolongator smoother. It has a multiresolution
character; the operator norm ||D; P}|| measures the effect of a filtering of 4,
on the coarser levels j > I. Obviously, the weight 1/); increases as j grows;
hence (14) postulates that ||D;P}|| should be small for large j.

The primary goal of detection strong connections is to keep the constant
C4 in (13) small. For this reason, the most straightforward way of introduc-
ing the notion of strong coupling is based on {13); correct strong connections
are simply such that aggregates following those connections result in small
4. This approach naturally leads to an algorithm minimizing the constant
in the discrete Poincaré ineguality on each of aggregates. Since the Poincaré
constant is inversely proportional to the smallest eigenvalue of a correspond-
ing local stiffness matrix, such an appreoach is problematic if only a global
matrix is available. Therefore another approach is needed.

The reason why (14) is difficult to satisfy for anisotropic problems stems
from the fact that anisotropic problems contain low energy modes that are
local in a graph sense. Different approaches for detecting strong connections
can be therefore based on determining a part of the stencil (nonzero struc-
ture) of A; where those local low energy modes are not local anymore. The
adjacency given by the nonzero structure of A; introduces a notion of distance
on the set of nodes. By removing graph edges we enlarge the nodal distance;
the correct strong connections then correspond to a reduced edjecency where
high energy modes are still local but low energy modes that are local in the
original adjacency are not local in the reduced one anymore. This leads to a
splitting

Ay = A + Dy, (15)

where AT is as sparse as possible while retaining all high-energy modes of
A;. The condition (14) controls how much {and in which sense) A; can be
filtered and still give a reasonable prolongator smoother. Since properties of
smoothers are determined by high-energy modes, the filtering condition (14)
provides a tool for splitting (15}.

In what follows, we clarify the relationship of Alg. 2 with the condi-
tion (14). More precisely, we show — though not fully rigorously — that for
Jj>>1, Alg. 2 enforces:

IDuPf|| < Cak, (16)

where « is a threshold used in (4). Note that the value of @ we have in mind
is quite small {e.g. 0.01.)
We start with proving a simple auxiliary Lemma.




Lemma 7. Let AT be the filtered matriz obtained by using Alg. 5 from the
matric A and a strong connection adjacency N. Then the difference D =
A — AF satisfies

row;(D)Fn.b = row; {A)Fn.b, where N; = {7 : Ny # 0}
Proof. The definition of D together with (12) give
row;(D)Fx;b = {row] (A), Fa;b) — (Qw; Fax;row] (4), Fx.b),

where by (12), (Qw; Fy.row] (A), Fa,b) = (Fx,row? (A), Qn, Fa,b) = 0, com-
pleting the proof.

By construction, {see Alg. 4) columns of the composite tentative prolon-
gator P; are orthonormal vectors formed by (scaled) zero-energy modes re-
stricted to the disjoint composite aggregates corresponding to the disaggre-
gation from the level j > [ to the finer level I. Example of such a composite
aggregate in case of semicoarsening is given by Fig. 3. Here, the composite
aggregate A is formed by nodes connected in strong connection adjacency in
such a way that for all nodes 1 except the end-points A and B, their “strong”
neighbourhoods N; are also contained in the aggregate, i.e.

N;CA foralli# A, B. (17)

Denoting the i—th canonical basis vector of ®™ by e, it follows by well-
known arguments that

ID:E| < C  max ||DsPle) (18)

where C depends on overlaps of columns of D;P; (vectors D;P;- e;.) Since the
matrices Dy and A; have the same nonzero structure and columns of P; “do
not overlap”, it is realistic to assume that ¢ is small. Trivially,

| D1 Pleg]| = (DiPlep)s + (D Pler)s + D (DiPler)}.
icinter

We make a (realistic) heuristical assumption that for a large aggregate,
the contribution from the interior points dominates and we can neglect the
boundary nodes A and B. In other words, we agsume that

iDiPleil* <C > (DiPjes);. (19)
icinter

Then we estimate using the fact the P}ek is a zero-energy mode of 4, inclu-
sion (17}, Lemma 7, condition {4} and bounded overlaps of dist = 1 neigh-
borhoods A; as follows:

> (DiPfer)i= ) (row!(Dy), Plex)’ = 3 (rowi (A1), Fi; Pies)
iginter icinter icinter




i\}v “““““““ i

>~ inlerior

Fig. 3. Composite aggregate in case of semicoarsening

= Y BGMFnPlel® <®3F D ||Fw Plel?
icinter icinter
< a3 ||Plexf.

Since (P})T'P! is an identity matrix, we have || Pjei|| = 1, and therefore
||D1F’}ek||2 < 042);;2 e (D;P}ek)f; + (D;P;ek)zB

The last inequality together with {19} and (18) gives (16}.

Thus we see that the strong coupling detection algorithm implicitly en-
forces ( (14)), which is one of the two key conditions in the convergence theory
for the smoothed aggregation multigrid method.

5 Numerical experiments

‘We now give two examples illustrating the behavior of the proposed coupling
detection algorithm in connection with smoothed aggregation multigrid V-
cycle method. In both experiments, multigrid is used as a preconditioner for
conjugate gradients.

The first example is a model Poisson problem discretized using bilinear
quadrilateral elements on the rectangular grid with elements stretched to
a 1 : 10 aspect ratio. The discretization gives matrix A with stencil (5).
Difficulties with coupling detection for (5) are discussed in Sect. 2.

The second experiment has been done with an industrial structural me-
chanics problem on an unstructured mesh discretized using QUAD4 (shell},
HEXA (solid) and BEAM elements. The maximal aspect ratio exceeded 100.

Results are summed up in the following table.



[ Poisson problem | Industrial probler|
Dofs: 160000 612863
Total memory used: 23MB 665.6MB
Memory used/data size] 241% 331.6%
threshold « 0.01 0.01
Achieved accuracy: 5.4812 x 10~ 1.5394 x 10~°
Iterations done: 6 23
conv rate: 0.07 0.558
setup time: 20s 339s
iteration time: 10s 424s
Architecture: 2xRB000, 95MHz| 2:x R8000, 95MHz

The convergence rate of 0.07 for the model problem is quite satisfactory.
Even though the convergence rate for the industrial problem is quite a bit
larger, it is in fact quite good considering the difficulty of the problem.
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