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Abstract. Inspired by the recent work of Bertalmio, Sapiro, Caselles, and Ballester [Technical
report, ECE-University of Minnesota (1899)] on digital inpaintings, we develop general mathemat-
ical models for local non-tezture inpaintings. Inside smooth regions, inpaintings are connected to
the harmonic and bi-harmonic extensions, and inpainting orders are defined and analyzed. For in-
paintings involving the recovery of edges, we propose variational models that are closely connected
to the total variation (TV) restoration model of Rudin, Osher, and Fatemi [Physica D, 60 (1992),
pPp. 259-268] and the Mumford-Shah segmentation model [Comm. Pure Appl. Math., XLII (1989),
pp 577-685]. Emphasis is put on the TV inpainting model due to its simplicity in theory and its
efficiency in computation and applications. We demonstrate the applications of the inpainting mod-
els in restoring scratched old photos, disocclusions in vision analysis, text removal from images, and
digital zoomings.
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1. Introduction. Perhaps the best way to explain inpainting is to quote the first
paragraph of the very recent paper of Bertalmio, Sapiro, Caselles and Ballester [1] on
digifal inpaintings:

“The modification of images in & way that is non-detectable for an observer who does
not know the original image is a practice as old as artistic creation itself. Medieval
artwork started to be restored as early as the Renaissance, the motives being often
as much to bring medieval pictures “up to date” as to fill in any gaps [15, 44].
This practice is called refouching or inpainting. The objective of inpainting is to
reconstitute the missing or damaged portions of the work, in order to make it more
legible and to restore its unity [15].”

That is, inpainting is to fill in image information on a blank domain I (or several
domains), based upon the image information available outside {see Figure 1.1). On
such domains, the original painting or picture has been damaged or erased due to ag-
ing, scratching or special effects such as objects disappearance. Therefore, inpainting
falls in the general category of image restoration, of which, denoising and deblurring
are the two more familiar classical examples.

The significance of inpaintings in image processing can be clearly seen from its
wide applications in:

(a) digital restoration of ancient paintings for conservation purposes [15, 44j;

{b) restoration of old photographs or films with scratches or missing patches [22, 23];
(c) text removal and objects removal in images for special effects [1];

(d) disocclusion in computer vision [27, 32};

(e) digital zooming (Section 9).

* Tony Chan is with Department of Mathematics, UCLA, Los Angeles, CA 90095-1555,
chan@ipam.ucla.edy; Jianhong Shen is with School of Mathematics, University of Minnesota, Min-
neapolis, MN 55455, jhshen@math.umn,.edu. Research supported by grants from NSF under grant
number DMS-8973341 and from ONR under N00014-96-1-0277.
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Fra. 1.1. Inpainting is to paint the missing ufD on an inpainiing domain I} based upon what
is availoble on D°,

Despite the apparent importance of inpaintings in all these applications, their
appropriate mathematical modeling is much less obvious.

On one hand, inpainting is not completely strange to us. It is closely connected
to some familiar topics in mathematics, all centered around the task of inferring or
restoring the missing information from what is available. Perhaps the two most related
examples are:

(a) reconstruction of curves and surfaces based on discrete samples and regularity
constraints.

(b) boundary value problems (BVP) which recover functions or distributions in the
interior of a domain from the knowledge along its boundary.

On the other hand, inpainting is not simply function interpolation nor a boundary
value problem due to the complexity of image functions. For natural images (clutters),
Mumford proposed to model them by distributions, or “things which can be measured
by sensors (i.e. test functions)” [29]. For most texture images, the functions usually
contain very rich statistical content, but are far more complicated than the simple
samples of some common random fields. In classical linear wavelet analysis, images
are believed to be in the space of L? (Daubechies [12], Strang and Nguyen [41], for
examples), which is also popular in the Fourier method. In the scale-space theory
based on anisctropic diffusions, images are considered as in the functional space of
bounded variations (Rudin, Osher, and Fatemi [38], and Chambolle and Lions [5]).
For most images of man-made objects, piecewise smooth functions are good enough
approximations and convenient to work with. Realizing such complexities of image
functions helps understand the challenge of the inpainting problem, and the necessity
of putiing the two restrictive words “local” and “non-texture” in the title of the
current paper.

First, this paper shall only discuss inpaintings of non-texture images. That is, we
do not intend to work on images with rich texture structures, nor on natural images
(clutters), since the inpainting of such images inevitably involves their statistical mod-
eling, which is beyond the scope of the current paper. However, numerical examples
in the current paper show that the models and algorithms work well for most real
images without sophisticated textures. For texture inpaintings, some recent sample
works can be found in Wei and Levoy [45], and Igehy and Pereira [19].

In addition, our models shall only handle local inpaintings. Locality, in our opin-
ion, is a crucial concept and we will discuss it in the next section.

The main results in this paper can be summarized into:

(1) For inpaintings of smooth image functions, we define the concept of inpainting
orders. The introduction of such a simple but necessary concept, can be very
useful for any quantitative study on inpaintings, as in numerical analysis and
approximation theory.
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{2) We establish the basic role of Green’s Second Formula for smooth inpaintings,
which leads to the harmonic and bi-harmonic inpainting models. Inpainting orders
are rigorously established regardless of the topological complexity of inpainting
Aninina

(3) We propose three general principles for any low-level realistic non-texture inpaint-
ing model. They are {a) being local; {b} the capability of restoring narrow broken
edges; and (c) robustness to noise.

(4) Based on these general inpainting principles, we propose the total variation (TV)
inpainting model, which is very similar to the classical restoration model of Rudin,
Osher and Fatemi [38] in both theory and algorithm. The model makes it possible
to directly inpaint noisy images. It is closely connected to the one proposed by
Masnou and Morel [27] in the context of disocclusion, and is simpler and much
easier to be implemented digitally, and robust to noise. The variational method-
ology is distinct from Bertalmio et al.’s approach based on the mechanism of
transportation of information from the given data into the inpainting domain [1].
We also present the digital implementation of the TV inpainting model based on
numerical PDE’s. The linearization technique and a Gauss-Jacobi type of itera-
tive scheme lead to a stable lowpass filtering process, which is typically faster and
more stable than schemes based on direct time marchings, and applies easily to
digital domains with involved shapes.

{(5) We discuss a natural modification of the Mumford-Shah [30] segmentation model
for a segmentation based inpainting scheme. We also discuss its link to the TV
inpainting model, their common drawback, and the recent work by Chan and
Shen [8] on the CDD inpainting scheme, which is designed to overcome such
drawback.

(6) We make the connection between digital inpaintings and digital zoom-in’s. The
variational methodology for inpaintings developed in the paper provides a natrual
framework for direct digital zoom-in’s in the pixel domain.

(7} We develop a new innovative application of inpainting for image compression
based on edge coding.

The paper is organized as follows. Section 2 clarifies the meaning of locality and
its significance. Connections to computer vision are also made through two familiar
classes of examples. Section 3 introduces the Helmholiz postulotion in computer vi-
sion. It is the philosophical bedrock for the variational approach. In Section 4, we
study the models and accuracy analysis for inpainting smooth images. Our starting
point is Green’s Second Formula, which leads to linear and cubic schemes realized by
the harmonic or bi-harmonic inpaintings. In section 5, we propose three inpainting
principles for a realistic low-level inpainting model. In this spirit, the total variation
(TV) inpainting model is formulated in Section 6, which extends the classical TV
restoration model of Rudin, Osher and Fatemi [38]. The digital implementation of
the TV inpainting model is also presented. In section 7, we propose a segmenta-
tion based inpainting scheme, as inspired by the celebrated segmentation model of
Mumford and Shah [30]. Section 8 discusses the last inpainting principle, and briefly
introduces the recent work of Chan and Shen [8] on inpaintings based on curvature
driven diffusions (CDD). In Section 9, we make the link between digital zoom-in's and
digital inpaintings. A digital zoom-in model almost identical to the continuous TV
inpainting model is constructed based on the self-contained digitized PDE method
developed by Chan, Osher and Shen [7]. Section 10 explains the new important ap-
plication of the inpainting technigue for edge decoding and image compression. The
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last section demonstrates the computational results in restoring scratched old photos,
(local) disocclusion in computer vision, texts removal from images, digital zoom-in’s
and edge decoding,.

2. Why Local Inpaintings?. The word “locality” in this paper has two layers
of meaning. It implies that both the class of inpainting problems we are targeting at
and the class of inpainting schemes we intend to develop are local. We now clarify
them from both the viewpoint of numerical mathematics and that of vision analysis.

First, in terms of numerical mathematics, locality is necessary for a faithful re-
construction of the missing image information. The situation is well explained by
Shannon’s Sampling Theorem {33]: if one expects an accurate reconstruction of a
(band-limited) signal, then the sampling distance has to be small enough {according
to the band-width). The same rule applies to inpainting problems. If an inpainting
domain is too large, generally (except for the case when the image contains only low
frequencies and thus is very smooth and flat), we have already lost some visually
meaningful “high-frequency” contents {or small scale features). As a result, any given
inpainting scheme can only output a pessible painting, instead of a visually meaning-
ful approximation to the original image. Since inpainting qualities are mostly judged
by human eyes, sometimes a posséble painting (which is not guaranteed to be close to
the original whole image) makes little sense. Inpainting a normal human face with
the left (or right} eye region as the inpainting domain is such a good example. Any
local inpainting scheme (see the discussion below) can only ontput a horrible human
face with the missing eye region filled in by the surrounding facial color. Thus in this
paper, we shall only consider inpaintings whose inpainting domaing have small sizes
compared to the scales of the missing features.

Secondly, locality in inpaintings is also closely connected to two problems in vision
analysis: local inference and the factor of scale. Similar discussion can be found in
the literature of computer vision and human vision (see for example, the psychologist
Kanizsa's artistic book [21]}).

Local Inference. The locality condition means that our models do not rely on global
feature or pattern recognition. Inpainting is thus based on local (with respect to the
inpainting domain) information only. For non-texture images, a pattern is a class
of spatial or color symmetry, such as mirror symmetry, translation invariance, and
periodicity. For example, most human faces are nearly mirror symmetric along the
mouth-nose central line. Though apparent to human visual perception, such patterns
are much more difficult and expensive to be caught by digital intelligence, due to their
rich variations in scales and structures.

Embedded

E
The inpainting domains are both !

Fia. 2.1. A local inpainting scheme does not require global paitern recognition.
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Here is a classical example in vision analysis to clarify what we just discussed
(refer to Figure 2.1). In the left image to be inpainted, the inpainting (or occluded)
domain is the square at the center. To humans, we immediately “see” a black cross

Anceita 4-1-..-. vataning aandan and thia HI1 e tha Wlnalr anlaw ATAod .-.f e nmpunn thot dhis
UCDIIUG IG HLOO LI E bUnVUl, ALY UllhD AL AEL LG IGLD LUV, LYLUDL UL U u.g.u::c VILL LILED

18 the best guess. In the right image, we embed the left image into a larger structure.
This time, we easily recognize the check-board pattern, and thus fill in the white
color. 1t is called the completion of spatial symmetry. The example discussed earlier
on inpainting a human face belongs very much to the same category. Without the
capability of recognizing global patterns, such outputs cannot be expected.

The complexity of human visual perception parallels that of inpaintings. Any
high-level inpainting scheme must be able to carry out pattern recognition. In this
paper, the inpainting models should be considered as a low-level one — the inpainting
results are independent of global patterns. Therefore, even for the latter case with
embedding, the output from the inpainting models shall still be a black cross.

The Factor of Scale. Scale plays a universally significant role in vision analysis and
image processing. So it does in the problem of inpainting,.

HE 3" or IIBII ?

F1G. 2.2. The effect of the inpainting scale L

Consider Figure 2.2. In the left image, the inpainting scale L is much larger than
that of the characteristic feature {denoted by {}, and the left part “E” and right part
“3” seem to be more uncorrelated. We thus tend to accept the figure as two separate
letters “E 3”. In the right image, on the other hand, the inpainting scale L is smaller
than (or at least comparable with) {. Accordingly, we are mare likely to believe that
the figure is a broken letter “B.” In this example, the non-uniqueness is not caused
by global patterns, but by our guess on the correlation among features left there.
The controlling parameter is the concept of scale. The TV inpainting model and the
segmentation based inpainting model developed later output the same results as our
human vision does. (However, as discussed in Section 8, sometimes the Connectivity
Principle must be and can be enforced regardless of the scale factor.)

3. Helmholtz's Postulate in Vision Analysis. In vision research, the follow-
ing postulate belonging to Helmholtz plays a fundamental role:

The Helmholtz Postulate. What we perceive is our best guess as to the state of
the world given the sensory date.

This “best guess” principle, in terms of statistics, is the familiar Bayesian view of
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the world (see, for example, the well-known paper by the Geman brothers [16]}). On the
other hand, in terms of the deterministic methodology, such “best guesses™ are realized
by optimizing energy {(or cost) functionals i28]. The difficulty is to come up with

nmm.-mhmp“ mnnq:viﬁ-rnl Avamo A‘rnﬁnrnln For imace scomoentation +ha A onmmfaed
iJUJ.\oUFIJuu I.J' ALEVLCLLL L. Exux \.al.lbl.&., AUALGUEULLCLID AT 1111“5‘.’ D\./SJ.LJ.U lIJ(.l;IJJ.UJJ., UVELL AYIRLLLRAWS LWL

Shah [30] functional has proven to be a very successful one. For image restoration
involving denoising and deblurring, the Rudin-Osher-Fatemi 38] TV functional is
another successful example (flat {37, 38] or non-flat features [9, 36, 42, 43]). For the
edge completion from T-junctions in automatic disocclusion, Nitzberg, Mumford, and
Shiota [32] recommended Euler’s elastica functional.

In this paper, the major inpainting models have been closely inspired by the above
existing results on segmentation and restoration, and follow faithfully the Helmholtz
Postulate. This is the main difference between our work and Bertalmio et al.’s [1],
which is based on the transportation mechanism using a third order differential equa-
tion. In the context of computer vision, the mechanism of variational disocclusion
first appeared in [32], and has been recently extended by Masnou and Morel {27].

4. Smooth Inpaintings and Green’s Second Formula. To develop a rigor-
ous mathematical framework for inpaintings, we start from a simple setting, in which
the accuracy of inpainting can be studied. This is the case when the target image
function is smooth, or the inpainting domain is contained in the interior of a smooth
2-D object. Besides, studying this simple case can also shed light on the more realistic
case coming later.

Let 4 be a smooth image function defined on a 2-D domain ( (a rectangular
domain, typically). Denote by D the domain to be inpainted and d its diameter.
Write the restriction of u® on D by u°| p- Then inpainting is to find a function up
defined on D such that up is a good approximation (or “best” guess) to u°] D

An inpainting scheme is said to be linear if for any given smooth image u®, as the
diameter d of the inpainting region D tends to 0,

lup —u®}plle = O(d?). (4.1)
Similarly, an inpainting scheme is said to be of k-th order if
|[en — “OiD”oo = O(d*+1). {4.2)

In this section, we first study such smooth inpainting models.

4.1, Smooth inpainting via Green’s Second Formmula, Recall that for the
1-dimensional case, harmonic functions on an interval have to be linear functions.
Therefore, 1-D linear inpaintings may be carried out equivalently by harmonic exten-
sions. This provides the key for 2-dimensional smooth inpaintings. Here we propose
to apply the tool of Green’s Second Formula.

Let A denote the Laplacian

Py BPu
Ay = — 4+ —.
Y e + y?
Green’s Second Formula on D is
dv ou
L(UA'U — vAu)dzdy = /P(u% - vé—l—l—)ds, (4.3)

where,
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(a) u and » are any C? functions defined on the closure of D;
(b} n is the outward (w.r.t. D) normal direction of ', and s the length parameter.
Take G(zp,2) to be the Green’s function for the grounded Poisson equation on

N MThnt ic far nme Hanaipen W omniwt v — . N~ Y £ WY na o -f-'-"—.nt:n Af +ha
AL FREELsIT] lﬂ’ ARSL (.Irll‘y OUULE VG yuilll‘ ‘lu —_— \lDU’ yu} - ‘-’, u\bu,b}, s Cu LULLivbiwsl, AT IR TF L)
“feld” point z = (z,y) € D, solves
—AG = §(z — 2p), G =0
T

Applying Green’s Second Formula to (v = u?{z),v = ~G(zp, 2)), we have

UGZ-: UOZSMMS Z—UOZ A
o) = [weo) G2 [ 6o (0@ (@)

where dz = dzdy. (More rigorously, we should have used the symbol (dz A d7)/2i.)
In Eq. (4.4), denote the first term on the right by u”(z), and the second term by
. u®(2p). Then u” is the harmonic extension of f = u°|. and

_ Gl

dw, n

is the harmonic measure of I' associated with a source point zp (Nevanlinna [31]).
The anti-harmonic component u® :== u® — u” satisfies the Poisson equation

Aus(2) = Au’(2), z €D and u*| =0. (4.5)
r

Numerically, the Poisson equation is favored over the direct integration formulation
since one can profit from many numerical PDE schemes and their fast solvers.

To establish a rigorous result on the inpainting accuracy for smooth images, we
turn to the geometry of a 2-D domain encoded into its associated Green’s function.
The following results on Green’s functions are standard, but they are indeed fresh
for applications in image processing and computer vision, and standard proofs are
therefore put down here for completeness. We believe that the complex potential
theory will find its wider applications in digital signal and image processing. (For
example, recent applications in digital filter design can be found in [39, 40].)

THEOREM 4.1. Let d denote the diameter of o domain D and Gz, z) the asso-
ciated Green's function for the Poisson equation. Then

2

d
f Gz, 2)dzdy < —.
D 4

The proof is based upon two simple lemmas.
LEmMA 4.2 (Comparison Lemma). Suppose Dy C Dy, and G1{20, z) and G2(zo, 2)
are their associated Green’s functions. Then for all 23,2 € Dy,

G1(z0,2) < Ga{zo,2).

Proof. For any zy € Dy, define

9(z) = Ga(zo, 2) — G1{zp, 2).
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Then along the boundary of Dy,
9(2) = Ga(20,2) 2 0,

since the grounded Green’s function is always non-negative. Moreover, g{z) is har-
monic inside I because the logarithm singularities at 25 are canceled out. Therefore
g{z} > 0 for all z € Dy due to the extremum principle of harmonic functions: the
minimum i§ always achieved along the boundary {Gilbarg and Trudinger [17]). This
proves the lemma. 0O

LEMMA 4.3. Suppose B is the unit disk centered at 0, and G1(zg,z) its Green’s
function. Then

|2
Ga(ao, oy = 200,
B

for oll zp € By.
Proof. Consider the Poisson equation on By

—Au=1, u

It is easy to see that the unique solution is

1—Jz? 1—2®—¢*
4 4 ‘

uf{z) =
On the other hand, by Green’s Second Formula,
u(zg) = f G1(zp, 2)(—Au(z))dzdy = / Gq{zg, 2)dzdy.
B] Bl

This verifies the lemma. {Note. Since we do know that

-1
Gl(ZQ,Z) = g In

Z— Zp
1-Zz

1

the lemma can also be worked out by evaluating the integral explicitly.) [
Proof of Theorem 4.1. Take any single point w € D, and let B; denote the disk
centered at w and with radius d. Then

D C By.
Let (F4(#p, z) denote the Green’s function for By. Then Lemma 4.2 shows that
G(ZOJZ) < Gd(z(hz)a

for all z5 and z in D. For simplicity, let us assume that w = 0. Then we have the
scaling law

Calzo,2) = Ca(2, 2

d H E)a (46)
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where (31, as in Lemma 4.3, is the Green’s function for By. (This scaling law is true
only for the 2-dimensional case.) Therefore, by Lemma 4.3, for any z € D,

jr G0, 2)dzdy < jf Galzo, 2)dzdy < jr Galz0, z)dzdy
D D Bqg

] Gi(Z, %)dady = &* i G1(F,#)da'dy’
d 1
_ plolwfd? _ &

4 -4’

as asserted by the theorem. (The last step is due to our assumption that w =0€ D
and zg € D. I this is not the case, then simply replace 2z, and 2 by zp ~w and 2z — w,
and the proof still holds.}) This completes the proof.

Based on this theorem, we can easily establish the accuracy orders for inpaintings

based on Green'’s Second Formula.

(a)

(b)

Linear inpainting via harmonic extension. Suppose we inpaing u”| p Simply
by the harmonic extension, i.e. up = u®. We now show that this is a linear
inpainting scheme, i.e.,

"~ w®] plloo = O(d?),

as the diameter d — 0.
According to Eg. (4.4), the error of the harmonic inpainting is exactly the anti-
harmonic component u®. Since u? is a fixed smooth function, there exists a
constant M such that

Aut(z)] < M,
for all z € D. Then for any z, € D, by Theorem 4.1,

M
()l < M [ Glao,2)dz < -
D

This validates the assertion.

Cubic inpainting via Green’s Formula. To improve the accuracy of inpaint-
ings based on Green's Second Formula, we need inpaint the “detail” component
u® missed by the harmonic inpainting.

Let u3 be any linear inpainting of Au®|,, (via the harmonic scheme, for example).

Then we inpaint u“| p by uf according to the integration formula

whlen) = [ Glan, ) -uB@) (47)
D
or equivalently, by solving the grounded Poisson equation

~Aub(z) = ~up(z), z€D; uh) =0.
r

Finally, by adding this new detail to the harmonic inpainting, we derive a more
accurate inpainting up to the original smooth image:

up(z) = u"(2) + uf(2). (4.8)
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THEOREM 4.4 (Cubic Inpainting). If ud is a linear inpainting of Au® on D, then
Eq. (4.7) and (4.8) define a cubic inpainting of 1°, i.e.

= 0(d%)

i

lzn — 1% [l
I iph

Proof. By Green's Second Formula, for any 2, € D,
up(z0) = 0| p(a0) = [ Glaw,2) (~uf) + Au’(2)) dady.
D

Since u8(z) is a linear inpainting of Au’(z), there exists a constant M, indepen-
dent of the inpainting domain D, such that

lup(z) — Au’(2)] < Md?,

for all z € D). Hence,
lup (z0) — 0] (20)] < Md? f Gz, 2)dmdy.
D

The proof is then complete by Theorem 4.1, £

Remark 2. In the above cubic inpainting process, if the linear inpainting u%
of Au°| p is realized by a harmonic inpainting, then the cubic inpainting is in
fact a bi-harmonic inpainting. That is, up(2) solves the following bi-harmonic
boundary value problem:

Az’t,t.D ZO, Unp y AUD

A smooth test Imag;

Hasmanic inpaf

An ideal step edge %o be inpainted Hatmonic inpainting

Fi¢. 5.1. Harmonic inpaintings of o smooth image (u = r = /22 + y2) and an ideal siep edge.

5. Three Principles for a Practical Inpainting Scheme. As in the clas-
sical approximation theory, the smooth inpainting models have allowed us to study
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rigorously the inpainting accuracies. They also shed some light on the nature of the
inpainting problem. In most applications, however, such models are not practical
since:

{a} Images are deferministically not smooth functions. They contain edges and dis-
continnities (see Figure 5.1).

{b) Images are often statistically corrupted by noise,

These properties bring the modeling process back to Helmholtz’s “best guess” prin-

ciple in Section 3. More specifically, a practical inpainting scheme should be able to

find the “best” guess of the clean features in the presence of noise, and the “best”
guess for the missing features from those in existence.

The practice of best guess also appears in disocclusion and the human inpainting
process. In disocclusion, the objects occluded in the scene can only be guessed based
on the parts we can see. Similarly, to inpaint ancient paintings, the inpainter has to
fill in colors and objects based on the features in existence and a best guess for the
missing,

Thus it is natural to build a realistic inpainting model on the basis of the “best
guess” principle. As mentioned in Section 3, in the deterministic approach, a best
guess is modeled by the optimization of some energy or cost functional.

Faithfully modeling the “best guess” is not so simple since one must deal with
high-level vision tasks such as pattern recognition and statistical learning. In the
current paper, we shall focus on low-level inpainting models only, which do not rely
on high-level vision processings.

With all the above discussion in mind, we summarize three important principles
that a low-level (variational) inpainting model must obey. In the coming sections, we
ghall construct two such models, namely, the total variation (TV) inpainting model,
and the segmentation based inpainting model.

{a} Inpainting Principle I. The model shall be local. Since we restrict ourselves to
models which do not require global learning, the inpainting «p must be completely
determined by the existing information of «° in the vicinity of the inpainting
domain D.

(b) Inpainting Principle IL. The model must be able to restore narrow broken
smooth edges. We must take care of edge inpainting, since edges are crucial for
ohject recognition and image segmentation, and in most practical examples, they
are indeed broken or occluded due to the large dynamic range of scales in images.
However, generally, we shall not expect to restore widely broken edges because of
the scale factor discussed in Section 2.

(¢} Inpainting Principle ITI, The model must be robust to noise. This is because
for human vision, it is an easy task (when the noise is below a reasonable level)
to detect clean features from the existing noisy image data and then extend them
into the inpainting domain.

Both the linear harmonic inpainting and cubic bi-harmonic inpainting are models
for smooth images. Hence they do not meet Inpainting Principles II and II1. They
are indeed local since only the behavior of u° near a neighborhood of I" is needed (for
obtaining the traces of u® and Au® on I').

In what follows, we shall study inpainting models that meet these three principles.

6. The Total Variation {TV) Inpainting Model,

6.1. Formulation of the TV inpainting model. Let D be an inpainting
{open) domain with piecewise smooth boundary T, and F any fixed closed domain
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in the complement D¢, so that T lies in the interior of E U D (Figure 6.1). Such a
setting is motivated by the Inpainting Principles of locality and robustness to noise.

E (an extended ring)

(inpainting domair)}

+ Ty borndary)

Fia. 6.1. The TV inpainting model finds the best guess for u|D based on the TV norm on the
extended domain E U D and the noise constreint on E.
We assume that ©°| is contaminated by homogeneous white noise. The vari-

E
ational inpainting model is to find a function u on the extended inpainting domain
E U D, such that it minimizes an appropriate regularity functional:

R[u] :xf r{|Vul|)dzdy, (6.1)
EUD
under the fitting (or denoising) constraint on F
1 012 2
Krea(B) /};|u v’ |*dzdy = o°. (6.2)

Here,
(i} r is an appropriate real function which is nonnegative for nonnegative inputs.
(ii) o is the standard deviation of the white noise.

Remark 3. If D is empty, the above variational formulation belongs to the classical
denoising models such as the H* model if (s} = 5%, and the total variation model of
Rudin, Osher and Fatemi [38] if r(s) == s.

The variational formulation (6.1) and (6.2) have been designed to satisfy Inpaint-
ing Principle I on locality and Inpainting Principle I on robustness to noise. To
meet the second principle on the capability of restoring broken edges, we need to
choose carefully the regularity functional R[u] or r(s). Along a step edge, Vu is a
1-dimensional delta function &, (like 6{z} as a function of x and y). Thus, to be able
to restore a broken step edge, we have to require

/ r(61)dzdy
BuD

to be finite. This implies that if
r(s) = §” + (lower order terms)

for some power o as 8§ — 400, then o < 1. To ensure convexity, o = 1 is the ideal
choice. It leads to the well known total variation {TV) restoration model of Rudin,
Osher and Fatemi [38], where r{s) is taken to be s exactly. In this paper, we shall
also make the same choice, and call the resulting inpainting model the TV inpainting
model. It meets all the three inpainting principles.
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As in the segmentation model of Muraford and Shah [30] and the TV restoration
model of Rudin, Osher and Fatemi [38], it is more convenient to solve the uncon-
strained TV inpainting problem

TaJu] = f [Vujdady + 2 [ I — u°Pdudy, (6.3)
BUD 2JE

where A plays a role of the Lagrange multiplier for the constrained variational prob-
lem (6.1) and (6.2).
The Euler-Lagrange equation for the energy functional Jy is

Vi
V=] + X fu—u") =0, 4
v (|V’U§) {u—u") (6.4)
for all z = (z,y) € EU D, plus the Neumann boundary condition [9, 38]. Here the
extended Lagrange multiplier A, is given by

\= N z€EFE
* o, zeb.
The infinitesimal steepest descent equation for Jy[u] is therefore given by
du Vu 0
Tl v (}Vu}) Ae(u? —u). (6.5)

Since A, takes two different values, (6.4) or (6.5) is a two-phase problem, and the
interface is the boundary I' of the inpainting domain.

From the numerical point of view, in all the above differential equations, we
replace the curvature term

where the “lifted” absolute value is defined by

|8la = /% + @2,

for some (usually small) positive lifting parameter a. This corresponds to the choice
of r(s) = v's2 + a? for the regularizer Ru] in (6.1). We are thus actually minimizing

Teu] =/_;;UD1/a2+§Vu|2d:cdy+ %fEm—uﬂﬁdmdy.

As in most processing tasks involving thresholdings (like denoising and edge detec-
tion), the lifting parameter o also plays a thresholding role. In smooth regions where
|Vu| < o, the model tries to imitate the harmonic inpainting, while along edges where
|Vu| > a, the model resumes the TV inpainting.

From the theoretical point of view, the lifting parameter a also better conditions
the TV inpainting model (6.3). In a noise free situation, (6.3) is reduced to a boundary
value problem:

Vu
V- (W) =0, ¢€D; uly, =1, (6.7)
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As explained in [4], this boundary wvalue problem, unlike harmonic extensions, is
generally ill-posed and may fail to have or to uniguely have a solution. The parameter
a plays a conditioning role as follows. For the lifted model,

Vu 1
V- (Ivula) = |VU!(31 (luyiguwm + |’Mm|iuyy — 2umuyu$y) .

As a second order equation, its local elliptic symbol o, is:

1 Juy |2 muwuy] a? |Vul®
= —_— = I + a
[Vuf2 [—uwuy ual2 | T VaB T [Valg

Tq

where op is the symbol for the TV model. If is then easy to show that
ProprosiTION 6.1 (The conditioning effect of a). The TV symbol oy has eigen-
values 0 and |Vu|™!, while the lifted TV symbol o, satisfies

Vu/fal7® 2
J__MIZ S
a a

Therefore, at each pixel away from edges (where |Vu| is finite), the lifted TV
equation is strongly elliptic; if u has a bounded gradient, then the lifted TV equation
is in fact uniformly strongly elliptic. This is the conditioning effect of a.

Remark 4. Inspired by Mumford’s proposal of Euler’s elastica
f (v + ax®)ds (6.8)
L

for edge completion in disocchision (v and @ are constants, and L denotes a permiss-
able edge connection between two detected T-junciions, and & its curvature), Masnou
and Morel in [27] suggested the disocclusion functional

f IVo|(1 + |x{v)|P))dedy with  v=wu outside D, {6.9)
Q

where,

(a) € is the entire image domain, and D the occluded region;

(b)Y v = v{z,y) is a permissable disocclusion and u the given image;

(¢} r{v) is the curvature of level lines as given by the first expression in Eq. (6.6).
Like the Laplacian Aw, the curvature k(v) is a second-order feature of v. There-
fore, similar to the bi-harmonic inpainting model discussed earlier, the Masnou-Morel
model leads to a fourth order Euler-Lagrange equation, and can be considered as a
high-order correction of the TV inpainting model (when the image is not contami-
nated by noise). This fourth-order equation is highly nonlinear and ill-posed, which
accounts for Masnon and Morel’s preference of the level-line based dynamic program-
ming algorithm over the numerical PDE method.

Remark 5. So far, the T'V inpainting model has been solely inspired by the varia-
tional formulation for smooth inpaintings and the three inpainting principles. We now
further justify the TV norm through a well-known example in human vision phenom-
ena, which may convince us (partially if not completely) that the TV norm does well
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approximate our “best guess” in visual perception. This puts the TV model under
the general framework of Helmholtz’s Postulate in Section 3.

The vision phenomenon we are to discuss is best illustrated through the example
of Kanizsa’s AATATIGIEG
of Kanizsa [21]. Its importance for the mathematical understanding and modeling
of human vision was first emphasized in Nitzberg, Mumford, and Shiota’s systematic
work on disocclusion [32]. We have plotted a simple version in Figure 6.2, and name

it “Kanizsa’s Entangled Man.”

Tttt o d VT s e e AN w2l 3 o -.C.A.}. PR 1 IS :._-...._.t'..._...
YV OTIELTE Wrele fvitTe, VYILIUIL 13 OTi€ G1 uhe llld.ll‘}' aruisvic INvVenulions

Kanizsa’s entangled man

F1G. 6.2. Can the TV inpainting model explain Kenizsa’s Fntangled Man?

Figure 6.2 shows how our visual perception can subconsciously contradict common
knowledge in life. What we perceive is a man entangled in the fence. Knowing by
common sense that he is behind the fence does not erase this false perception. As
Nitzberg et al. [32] wrote, “Simply put, we navigate in the world successfully by seeing
what’s in front of what independently of knowing what’s what.” We now apply the
TV inpainting model to explain such stubborn best guess by our visual perception.

The contradiction occurs inside the circled region in Figure 6.2: the fact is that
the upper body of the man is behind the fence, while our perception strongly suggests
the opposite. Such controversy is apparently caused by the same color shared by the
fence and the upper body. So the puzzle is: why does our vision prefer to assign the
controversial intersection to the upper body?

Kanisza’s original explanation was based on the modal and amodal completion
accomplished by the shortest edge continuation between T-junctions. Here we show
that the TV inpainting model offers another similar explanation. While in practice
the detection of T-junctions often relies on the sharpness of edges, the functional
approach based on variational principles thus seems to be more general.

First we simplify the problem to the left image in Figure 6.3. The vertical and
horizontal bars model separately the upper body and the fence. Notice the length
scales L > I, and in Figure 6.2, L is roughly a triple of {. Assume that the two bars
share the same gray level up == uy = 1/2 (with “b” and “f” tracking the “body” and
“fence” variables). The uncertain region is denoted by D.

Outside D, let us make a small perturbation of the two gray levels:

up=1/2 2 up=1/2+4¢, Uug —+ g = 1/2 — ¢,

for some small positive gray value e (see the image on the right in Figure 6.3). Now
treat D as an inpainting domain and denote by up the optimal solution on D obtained
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Perturbed to

A ——.

L»l

Fia. 6.3. The model for Kanizsa'’s Entangled Man.

from the TV inpainting model with A = co (since there is no noise) and E the
complement of D. A simple calculation shows that

up =1up =1/2+¢, (6.10)

which coincides with our “stubborn” perception. In other words, the TV model is
congistent with the “algorithm” performed by our visual neurons.

In fact, by the symmetry of the entire domain, it is easy to see that the optimal
solution up must be a constant, ¢, say. Then the Maximum Principle [7] requires that
uy < ¢ < up. The TV norm (in the distributional sense) of up on the closure of .2
concentrates along the four edges and equals

2x(|luf—cl*l+|up—c|* L) =[(1+ 2¢)L — (1 — 2e}l] — (L — I}e. {(6.11)

We do not care about the TV norm on £ because it is a fixed quantity for this noise
free inpainting problem. To minimize the TV norm as given in Eqg. (6.11), the only
choice is ¢ = up = 1/2 + € since L > I. This proves the claim.

6.2. Numerical implementation. If the inpainting domain D is empty, then
Eq. (6.4) and (6.5) together is exactly the Rudin-Osher-Fatemi [38] denoising and
deblurring restoration model. Its theoretical study can be found in Chambolle and
Lions [5] and others. Numerical investigations and discussions can be found in [2, 6,
13, 38], and more recent ones in {7, 25, 35]. New applications of the TV model for
restoring non-flat image features such as optical flows and chromaticity can be found
in the recent papers by Perona [36], Tang, Sapiro, and Caselles [42, 43], and Chan
and Shen [9].

In this paper, we have adopted the following numerical scheme for the TV in-
painting model {6.4). Here we look for the equilibrium solution directly, instead of
by the time marching (6.5), which is usually slow due to the timestep constraints for
numerical stability.

As in Figure 6.4, at a given target pixel O, let E, N, W, § denote its four adjacent
pixels, and e, n, w, s the corresponding four midway points (not directly available from
the digital image). Write

Ao = {E,N,W,58}.

Let v = (v',v?) = Vu/{Vu|. Then the divergence is first discretized by central
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FiG. 6.4. A target pizel O and its neighbors

differencing:
ovl O
Vo= e o —— 12
V-v e + By (6.12)
vl —ul vl —f
~-& W 2 6.13
T (6.13)

where h denotes the grid size, which is always taken to be 1 in image processing. Next,
we generate further approximations at the midway points, where image information
is not directly available. Take the mid-point e for example,

1 _ 1 ?_’1_1, —~ 1 U - Ug
Ve = Wud |82, = Vaal B (6.14)
1 2
[Vite| =~ E\/(UE —up)? + {(une +un —ug —use) /4" (6.15)

Namely, we approximate [du/dz]. by the central difference scheme, and {8u/dyl. by
the average of (uxg — ugg)/2h and (uy — ug)/2h. Similar discussion applies to the
other three directions N, W and S.

Therefore, at a pixel O Eq. (6.4) is discretized to

0= 3, ﬁ {uo —up) + A(0) (vo — D), (6.16)
Pehp ?

where, for example, if P = E, then p denotes e. Define

1
= PcA 6.17
'LUP iVuPI » E O! ( )
wp
hop = , 6.18
oOFP ZPEAO wp n )\e(O) ( )
Ae(0)
hoo = . 6.19
R SRR (7) (619
Then Eq. (6.16) becomes

U = z hopup + hoou%, (6.20)

Pcho
with

Z hop + hoo = 1.
Peho
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Eq. (6.20) is in the form of a lowpass filter, which is of course a system of nonlinear
equation since the filter coefficients all depend on u.
Freezing the filter coeflicients (to linearize the equations), and adopting the Gauss-

Tannld lhanndinm nrhamea fan Bnane avatarme nd anch aban o won sndnde (-1} 44 (1)
uo..l..Gui AUTI LblVIL DUl Umc FAVES 11110@1‘ n]nucmn, @t TR DUUF lb, ¥ upua-ul: (£ s o
by:
(n} __ (n-1) (n—1) {n—1} (n-1)
ug’ = Y, hop up ) +hGo us (6.21)
P&Ao

where h("=1) = h(u(?~1)), Since k is a lowpass filter, the iterative algorithm is stable
and satisfies the Mazimum Principle [7]. In particular, the gray value interval [0,1] is
always preserved during the iterating process.

Useful variations of the algorithm can be obtained by altering the definition wp
or {Vu,| in {6.17). For instance, instead of Eq. (6.15), we can also try

|V, | ~ %\/(uE —up)? + [(une —usg)}/2)%

Experiments show that such variations sometimes work better for sharp edges in the
digital setting.

Remark 6.
(a) (Lifting parameter a) In implementation, as in Eq. (6.6), the weights wp’s
are “lifted” to

1 1
Vgl vV a® + |Vuy|*

for some small number o (0.01, for example), to avoid a zero divisor in smooth
regions. Notice that choosing a large e brings the TV model closer to the harmonic
inpainting (especially computationally since the spatial step size h is set to 1, and
u takes values from the finite gray-scale interval [0,1]}. In addition, as a gets
bigger, the convergence of the iteration scheme speeds up.

(b) (Lagrange multiplier A} For inpaintings of clean images, we can choose A
arbitrarily large. The ideal case is A = co, which amounts to requiring that

(6.22)

wp

hop == 0, hoo = 1,

and pixels outside the inpainting domain are thus unchanged. To inpaint a noisy
image, A is determined by the noise level, and its choice and efficient estimation
have been discussed in [2, 7, 38].

(¢) (Complexity of inpainting domains) The TV inpainting model and algo-
rithm both easily handle the complexity of the inpainting domain D). Once the
inpainting domain is specified by the characteristic function (or mask) M

Mo=1, 0OebD, 0, otherwise,
then we take A, in Eq. (6.4) to be
A(0) = A1 — Mp),

and the iteration 6.21 goes without being further bothered by the domain com-
plexity.
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(d) (The extension domain F) The size of the extension domain F is easily de-
termined. If the image is clean, we can simply take £ to be the boundary of the
inpainting domain D. Otherwise, to clean up the statistical noise, and extract

the underlying image information, we need o choose £ with a reasonable size,
e.g. several pixels wide, as well practiced in image processing [18]. If, as for the
inpainting of an old photo, the entire image is contaminated by noise, then we

take I to be the complement of D.

7. Segmentation-Based Inpainting. The key to image inpaintings is the right
model for image functions. Image models play a universally crucial role in all problems
involving image restoration, such as image denoising, deblurring, and segmentation.
In terms of the Bayesian worldview, this is the significance of figuring out an appro-
priate prior model. The link between the Baysian statistical methodology and the
variational approach is clearly explained in Mumford [28].

In the previous section, the inpainting model has been constructed based on
the total variation norm. The main merits of the total variation prior model are
its permission of edges, and its convenient numerical PDE implementation. In this
section, we explore the second important image prior model. This is the segmentation
prior model as appeared in the celebrated Mumford-Shah segmentation model [30].

In the segmentation prior model, an image is considered as the union of a col-
lection of 2-D smooth objects, which meet each other along their edges. Thus in the
variational formulation, the regularity functional is no longer in the simple form of

R[] = fn (V) de,

as in Eq. (6.1). Instead, it imposes the regularity condition on both the edge curves
and individual objects:

Reeglul = fn 7V, [Audardy + plength(T). (7.1)

For examples, in the Mumford-Shah segmenation model, (s,t) is taken to be §2/2.
(Here we have replaced the Hausdorff measure of T' simply by the length for simplicity.)
Thus the unconstrained energy for the segmentation based image inpainting is

A
Inpufu, T = fn\r r{|Vu|, |Au|)dzdy + plength(T") + 3 L\D(u —u®)dxdy, (7.2)

where [} is the inpainting domain. Apparently, it also meets the three principles.

The segmentation based inpainting model is a free-boundary problem. Its algo-
rithm and numerical implementation are much more involved than the TV inpaint-
ing. Among the many exisiting computational methods, here we outline the level-set
method of Osher and Sethian [34], as recently applied to the numerical segmentations
by Chan and Vese [10], where interested readers can find more details.

From now on, we assume that we take r(s,t) = s*/2 in the segmentation based
inpainting, as in the classical Mumford-Shah segmentation model.

The level-set approach for the segmentation based inpainting relies on the active
contour method. Starting with an initially guessed contour I'(0), we let I'(t) evolve to
converge to the optimal edge collection I'. At each time ¢, I'(f) partitions the whole
image domain 0 to disjoint open connected components £2;(t)’s so that

N(E)

a\re) = [J 240,

=1
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where due to merging and splitting, the number N(¢) of connected components also
varies with time. Merging and splitting are crucial during the evolution of the initial
guess, which makes the level-set method an ideal tool for numerically computing the

mrruren avemlavbdoan fne aaddaia Anandanad
LULYT TYUILUbILI] \UJ. L# 0 e o bUrbbUUdf}-

Knowing I'() for each time ¢, we then minimize the inpainting energy Ja ,[u, ()]
on the free variable u, by solving on each conmected component ;(t) the elliptic

equation with Nuemann condition:

Au® + A (z)(u® — ul) =0

autd _
Ty =0
o5;

(7.3)

Here, as in the TV inpainting model, A.(z) denotes the extended Lagrange multiplier:
Ax Iy p. With u(t) and T'(t), we are then able to evolve I'(t) by the gradient descent
method, which is symbolically given by:

dl O\,

a ~ or
It allows I'(£) to evolve a numerical time step A¢. Then for the new I'(t + At}, we can
repeat the process to further advance the evolution T'(¢) and u(t).

In the level-set computational method, of course, I'(#) is always encoded by its
level-set function ¢(z,t), and naturally, the above evolution equation for the edge
collection I'{t) passes on to ¢(z,t). As well known in the literature, the level-set
method eases the merging or splitting of domains and edge curves, thus is suitable for
the segmentation based inpainting problem. We refer to [10} for more details on the
level-set implementation in the context of image segmentation.

Finally, we point out the close connection between the TV inpainting model
and the segmentation based inpainting model. In fact, for images which are nearly
cartoons, ie., on each (2, [Vu;| is negligibly small, the two models almost employ
the same mechanism. To get the point, consider the regularity functionals on a test
image which represents a black (up) disk with radius ry in a white background (u,).
Then, the TV regularity is

TV[u] = .[n |Vu|dzdy = 27r/'§ [wplrdr = 2rrg(u1 — ug),

where we have used the polar coordinates (r, #). Similarly, the segmentation regularity
(for the perfect segmentation) is

Rseglu] = [ﬂ " (| Vul, |Aul)dedy + plength(T) = p2nrg.

Up to a multiplicative constant, the two measures are equivalent. This is true even
for more complex and general image topology as long as the image remains nearly a
cartoon. But in terms of numerical implementation, the TV inpainting model is much
easier.

8. The Connectivity Principle and the CDD Inpainting. Both the TV
inpainting and segmentation based inpainting share one drawback. That is, they
both fail to realize the so called Connectivity Principle in the human disocclusion
process [8]. See Figure 8.1 for a typical case.
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What is behind the box? Answer from most humans  Answer by the TV mod:
15> wi

F1g. 8.1. When ! > w, the TV and segmentotion based inpaintings both act against the Con-
nectivity Principle of human perception — humans mostly prefer to have the two disjoint parts
connected, even when they are faor apart (21, 52[.

The example in the figure easily explains why the TV and segmentation based
inpainting models fail to realize the Connectivity Principle when the inpainting scale
becomes large. Let ug;q and ucon denote the disconnected and connected inpainting
reconstructions as in the figure. Suppose { > w. Then, the TV model perfers u4;5 to
Ucon since

TV{[ucon] — TV[ugys] = 21 — 2w = 2(l —w) > 0,
assuming that the black bar has ug = 0 and the white background »; = 1. In the
same fashion, under the segmentation regularity, we have
Rseg[’u(;on,rcon] - Rseg[ﬂdis,rdis] = ,U:(2l - 2’11}) = 2,(1;([ - ’IU) > 0.

Thus the segmentation based inpainting also biases against the connection.

To overcome such drawback, Chan and Shen recently proposed a new PDE model
based on curvature driven diffusions (CDD), which is inspired by the TV inpainting
model Eq. (6.5). The CDD inpainting model is governed by the following PDE:

ou G(k, ) o
Bt =V [ V] Vu] + A fu” —u), =€, (8.1)

where & is the scalar curvature V - [Vu/|Vull. The new ingredient of the CDD model,
compared with the TV inpainting model, is the new diffusion coefficient G(&, z) which
is given by:

1, z € \D;

g(lsl), =€ D.

The choice of 1 outside the inpainting domain indicates that the model carries out the
regular TV denoising task outside D. Meanwhile, g(s) can be any appropriate function

that “erases” large curvatures and stablizes small curvatures inside the inpainting
domain. In Chan and Shen [8], it is argued that g(s) must satisfy

g(0)=0,  g(+o0) = +oo.

Ak, z) = {

Thus, for example, one can choose g(s) = s*, for some o > 1. Under the condition,
the model stretches out bended level lines inside the inpainting domain, and outputs
connected objects. Thus the CDD inpainting model realizes the Connectivity Principle
(see Figure 11.6, for example). More details on the CDD inpainting scheme can be
found in [8].
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9. Digital Zoom-in and Digital Inpainting. Digital zoom-in has wide ap-
plications in digital photography, image superreselution, and data compression, etc.
Zoom-out is a process of losing details, or in the framework of wavelets and mul-
tiresclution analysis, a process of projections from fne scales to coarser ones [12, 41].
Zoom-in, on the other hand, is the inverse problem of zoom-out, and thus belongs to
the general category of image restoration problems.

There has been a growing literature on zoom-in's in image processing, Here we
shall only focus on its connection to inpaintings in the current paper.

One level of zoom-in from a given digital image u® of size n by m is to reconstruct
a new digital image v of size 2n by 2m (2 is typical but not unique), so that 1 can
be the one level zoom-out of u. Thus it is important to know the exact form of
the zoom-out operator. Typically, the zoom-out operator consists of two steps: a
lowpass filtering (or local smooth averaging) of the fine scale image u, followed by a
subsampling process leading to the zoom-out ©° on a coarser grid, a scenario much less
strange in wavelet theory [41]. In what follows, we shall assume a direct subsampling
zoom-out. That is, the filter is a Dirac 4, and thus the zoom-out is simply a restriction
from a 2n by 2m grid to its n by m double-spaced subgrid.

Unlike for inpaintings on domains, continuous modeling becomes less appropriate
for the digital setting of zoom-in’s. A similar problem has been addressed earlier
by Chan, Osher and Shen [7] for image restorations, where a self-contained digital
theory for the TV denoising has been developed and studied. Here we follow the
digital framework in [7] to construct a zoom-in model based on the digital TV norm,
which is formally, as we shall see below, identical to the continuous TV inpainting
model.

Let @ denote the fine grid on which the zoom-in u is to be defined. The grid
for the given coarse scale image u® is denoted by {ly, which is a subgrid of . As in
the practice of Markov random fields [3], assign a neighborhood system to 3, so that
each pixel a € Q) has its neighborhood N, a collection of “nearby” pixels {excluding
« itself). For example, we can assign a rectangulor neighborhood system so that if
a = (4,7), then N, consists of the four pixels (7,7 £ 1), (z £ 1, j).

At each pixel «, define the local variation as

IVaut= [ D (up—ua)?.
BEN
Also define the extended Lagrange multiplier A, as a function on the fine grid O:

)\E(a) _ {A, a € g;

0, otherwise.

Then the digital TV zoom-in model is to minimize the digital energy J) over all
possible fine scale images w:

=Y Vaul+ 3 Aele)(ua — ud)2. (9.1)
aEfl a&fl
For the purpose of comparison, one may also try the digital harmonic zoom-in model:

T = > —|v ul? + > Aelo)(ue — ud)%. (9.2)

aEQ e}
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As established in [7], the minimization of the digital TV zoom-in energy can be carried
out by repeatedly applying the so called digital TV filter u — v = F'(u): at each pixel
a’

Vo = Fa(u) = Y hop(u)tg + hoalu)ud,
BEN,

where the exact formulae for the filter coefficents h.g’s depend on the input u and ).,
and are worked out in [7]. Starting with an arbitrary initial guess «(®) for the zoom-in,
we polish its quality by iterating the digital TV filter: u(® = F(u(»~1)). As n goes
to oo, u{™ converges to the “best” digital zoom-in of u®. More details regarding the
digital TV filter and its algorithm can be found in [7]. A numerical example showing
these zoom-in schemes is presented in Figure 11.8 of the next section.

As we have noticed, the digital TV zoom-in model {$.1) is almost identical to the
continuous TV inpainting model (6.3). The reason we prefer the self-contained digital
framework lies in the facts that it is independent of numerical PDE schemes one
applies and always permits a solution (since we are working with finite-dimensional
data). The technical difficulty with the continuous modeling is that there may exist no
solution to the cost functional, as discussed by Caselles, Morel and Shert [4]. The most
understandable case is when we choose the H! regularity, analoguous to the digital
version {9.2). Then in the noise free case, the continuous model is equivalent to finding
a harmonic function v on a continuous 2-D domain {2, which interpolates the given
data u® on a finite set of pixels. But for harmonic extensions, it is a well known ill-
posed problem to impose both the boundary condition and the 0-dimensional interior
interpolation constraint.

10. Inpainting, Edge Coding and Image Compression. In this section, we
discuss a very interesting application of the inpainting technique in edge decoding
and image compression. We must say that the work presented below is still very
preliminary.
Eiver since David Marr [26], edge has always been playing a crucial role in vision
and image analysis, from the classical theory of zero crossings to the more recent
theory of wavelets. In image coding, for example, the performance of a scheme is very
much determined by its reaction to edges. This viewpoint is better supported by the
main stream development in the wavelet theory for image coding: Donoho’s invention
of curvelets and beamlets [14], Mallat’s bandlets (Invited talk at 2000 IMA Workshop
on Image and Vision Analysis, University of Minnesota, MN), and Cohen, Dahmen,
Daubechies and DeVore's tree coding scheme [11].
It will be digressing too much if we intend to explore here the vast literature of
image coding and compression. Instead, we now introduce the inpainting approach
to {lossy) image coding and compression based on the edge information.
The encoding stage consists of three steps:
~ (Edge detection E} Apply an edge detector (Canny’s for example) to detect the edge
collection E of a given image u’. FE is typically a set of digital pixels or curves,
without good geometric regularities {see Figure 11.9). In addition, we also demand
the physical boundary (i.e., the four sides of the image domain {1) to belong to the
edge collection.

- (Edge tube T) Next, fixing a small constant ¢, we generate the e-neighborhood T
of the edge collection, or as we prefer to call it, an edge tube. Digitally, T can be a
1 or 2-pixel thickening of F (see Figure 11.9 and 11.10),
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— {Encoding) Finally, we encode the addresses of the tube pixels and use high bit rate
to accurately code the gray values on the tube u"| -

As we see, the encoding scheme creates a large area of “empty seas” where the
tmage information has been wiped ouk, and thus achieves a high compression rate. In
the absence of strong textures and small scale features, the edge collection consists of
1-D piecewise smooth curves. Thus as ¢ tends to zero, the area of the tube T' goes to
zero, which theoretically, leads to an infinite compression ratio. Inevitably, such high
compression ratio brings the challenge to the decoding scheme. Here we employ the
digital inpainting scheme to paint the vast empty seas.

To decode, we apply the digital TV inpainting model to the tube T' and the gray

value data u® .

min Z |V ous| + Z ATT(G)(UQ —-ul)?|, (10.1)
* 12213 acf}

where the extended Lagrange multiplier is:
Ar(a) =X, a€T; 0, oaeM\T.

Unlike JPEG or JPEG2000, here the decoding is realized by a variational reconstruc-
tion, instead of by a direct inverse transform such as the discrete cosine transform or
fast wavelets transform.

The TV norm here has its intrinsic significance. Since during the encoding stage, -
we do not demand any regularity condition on the edge collection, typically E is a
messy set without good geometric regularities. Thus the TV norm in the decoding
process can straighten the messy edges and improve their visual smoothness.

In Figure 11.9 and 11.10 of the next section, we show two examples of image
decoding based on the TV inpainting model 10.1. The test images are again taken
from the publicly available web site of Caltech’s computational vision group.

11. Applications and Examples. All the examples in this section are gener-
ated by the TV inpainting model, the CDD inpainting model, and the digital zoom-in
mode! discussed in the paper. The inpainting domains are given to the algorithm,
We have initially painted the missing domains by random guesses for both the filter
iteration algorithm and the time marching scheme (of the CDD inpainting).

11.1. Inpainting a noisy step edge and occluded bars. See Figure 11.1
and 11.2. In the first example, a noisy step edge has been inpainted faithfully by the
TV inpainting model. For the second, the occluded bars are recovered as expected.

11.2. Inpainting on a topologically complicated domain. See Figure 11.3.
This example can also be found in Bertalmio et al. [1]. One can clearly see that the
missing circular edges have been linearly approximated by the TV model. In high
order models like Masnou and Morel’s for disocclusion [27], a missing circular edge is
approximated by an elastica [32], or a similar geodesic curve.

11.3. Inpainting a noisy scratched photo. See Figure 11.4. The image rep-
resents the scanned noisy data of an old scratched photo of a human’s face. As
promised, the TV inpainting model can simultaneously denoise the available part of
the photo and fill in the missing features. This is the beauty of the TV inpainting: in
both the model and algorithm, denoising and inpainting are coherently integrated.
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The nolsy Image to be inpaintad: SN

inpaltrthng

Fig. 11.1. Inpainting a noisy broken edge (11.1).

Occluded back and whie bars

The TV disccelusien

Fic. 11.2. Inpainting broken bars (11.1}.

11.4. Removal of thick text. See Figure 11.5. The text string “Lake & Me”
has been removed and the original cccluded features are inpainted. Note that the
black rim of the right arm of the T-shirt is not successfully restored by the TV in-
painting. The “failure” is connected to the key concept of scale discussed in Section 2.
The inpainting scale (i.e. the width of a letter in this case) is larger than that of the
feature (i.e. the black rim). In Figure 11.6, we have applied the CDD inpainting
scheme (Section 8) to the same image. For CDD, the Connectivity Principle is en-
forced and therefore the broken rim segments are indeed connected.

11.5. Removal of dense text. See Figure 11.7. The dense text strings have
been successfully removed. We feel that this is a very promising application since (a)
such problems are typically local due to the small size of the letters; (b) the number
of letters and the complexity of their shapes are well handled by the TV inpainting
algorithm since they are easily encoded into the extended Lagrange multiplier A..

11.6. Digital zoom-in. See Figure 11.8. We apply both the digital TV zoom-
in (9.1) and harmonic zoom-in {9.2} to the test image “Lamp” from the image bank
of Caltech’s Computational Vision Group. It is clear that the TV zoom-in model pro-
duces much better visual results in terms of edge sharpness and boundary regularity.
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Twa disks pechuded by a ring

Alior inpainting

Frc. 11.3. Inpainting two black disks occluded by a flower ring (11.2).

The nozy Imaga to bo painied:

Tha inpsinied and dopoiza fmage

Fig. 11.4. Inpointing a noisy real image (11.3).

11.7. Edge decoding by inpainting. In Figure 11.9 and 11.10, we have shown

two examples of the inpainting approach for image decoding based on the edge in-
formation. The edge detector we have employed belongs to Canny, which is now a
standard MATLAB built-in function. The edge thickening width described in the
previous section is one pixel. The lossy coding scheme certainly mollifies the original
image functions, but most importantly, does catch the essential visual information in
the original images.

12. Closing Remarks. We would like to make a few more comments before we

end this paper.

(A)

(B)

The terminology of “inpainting” was first coined by Bertalmio, Sapiro, Caselles,
and Ballester [1]. In the literature of image processing, different groups have used
different words. Some of the most common ones include image interpolation [4,
23], image replacement [19], and disocclusion [27]. We prefer to use the word
“inpainting,” not only because it easily reminds the readers of “restoring (ancient)
paintings,” but also that other terminologies are often either too broad in meaning
or of a too high level in terms of vision analysis.

One important application of inpaintings that has recently come to the authors’
attention is the problem of error concealment in communication systems [20, 24].
In packet based communication networks, the transmission of images or videos
is often degraded by the loss of data blocks. The problem of recovering these lost
data blocks is loosely classified as error concealment. One can read [20, 24] for
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(D)
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Fic. 11.5. Removal of thick text (11.4): The TV inpainting.
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F16. 11.6. Remouval of thick text (11.4): The CDD inpainting.

the typical literature of the field. Apparently, like for digital zoom-in (Section 9),
the continuous TV inpainting model can lead to a new error concealment scheme
by an appropriate digitization.

In terms of level-line connection, both the TV and segmentation based inpainting
schemes discussed in the current paper are only of first order. That is, they
reconstruct smooth missing edges inside an inpainting domain using straight line
segments. Applying Fuler’s elastica can improve the smoothness (Remark 4 or
[271), but at a much higher computational cost. Numerical PDE schemes are
under development by our research group for solving the fourth order Euler-
Lagrange equation.

One important research topic to be done is to develop inpainting schemes which
combine both texture modeling and the variational/PDE approach. The goal is
to inpaint more general images which contain textures.
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