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Abstract

We propose a numerical method for modeling multimaterial flows
where the domain is decomposed into separate Eulerian and Lagrangian
subdomains. That is, the equations are written in Eulerian form in one
subdomain and Lagrangian form in the other subdomain. This is of
interest, for example, when considering the effect of underwater explo-
sions on the hull of a ship or the impact of a low speed projectile on a
soft explosive target. On one hand, high speed fluid flows are tradition-
ally modeled by applying shock capturing schemes to the compressible
Euler equations avoiding problems associated with tangling of a La-
grangian mesh. On the other hand, solid dynamics calculations are
traditionally carried out using Lagrangian numerical methods avoid-
ing problems associated with numerical smearing in Eulerian calcu-
lations. We use the Ghost Fluid Method (GFM) to create accurate
discretizations across the Eulerian/Lagrangian interface. The numeri-
cal method is presented in both one and two spatial dimensions noting
that three dimensional extensions (to the interface coupling method)
are straightforward.
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1 Introduction

Solid/fluid interaction problems are still rather difficult for modern compu-
tational methods. In general, there are three classical approaches to such
problems; one can treat both the solid and the fluid with Eulerian numer-
ical methods, the fluid with an Eulerian numerical method and the solid
with a Lagrangian numerical method, or both the solid and the fluid with
Lagrangian numerical methods.

Certain fluids, e.g. high speed gas flows with strong shocks and large
deformations, are very difficult to solve for with Lagrangian numerical meth-
ods. Lagrangian numerical methods use artificial viscosity to smear out nu-
merical shock profiles over a number of zones in order to reduce post shock
oscillations or ringing. Thus one has to choose the form for the artificial
viscosity which can be both problem and material dependent. In addition,
Lagrangian numerical methods have difficulties treating flows with large de-
formations, since this causes large deformations of the mesh and subsequent
large numerical errors that can only be removed with complicated remesh-
ing and/or mesh generation procedures that tend to be low order accurate.
In particular, lows with vorticity cause the mesh to tangle and sometimes
invert in which case the calculation needs to be stopped. Eulerian numeri-
cal methods intrinsically avoid these mesh associated problems, since they
use a stationary mesh. Furthermore, Eulerian shock capturing schemes cap-
ture shocks in a straightforward way using conservation and robust limiters
eliminating the need for problem dependent artificial viscosity formulations
altogether. This allows shocks to be modeled with as few as one grid cell
(without oscillations) whereas Lagrangian numerical methods usually suffer
from some amount of post shock oscillations until the shock is spread out
over about six grid cells, see e.g. [4] and [3].

While Eulerian numerical methods are superior for high speed gas flows,
they may perform poorly for many solid dynamics calculations. Since Eule-
rian numerical methods capture the properties of a fluid, they are not very
accurate or robust when tracking material properties that are important
for modeling time history variables. Because of this, Eulerian numerical
methods do not give accurate results when dealing with material response
to loading and damage. On the other hand, Lagrangian numerical methods
are extremely accurate and well tested in this area.

At this point, it is obvious that it is preferable to use Eulerian numerical
methods on the fluid and Lagrangian numerical methods on the solid. It
remains to address exactly how these two calculations can be coupled to-



gether in order to model solid/fluid interactions. There are essentially two
techniques for treating this solid/fluid interface. One technique is to smear
out the nature of the numerical approximations using a Lagrangian numer-
ical method in the solid and an Eulerian numerical method in the gas with
some “mushy” region in between where the grid moves with an intermediate
speed in between the Lagrangian mesh speed and the stationary Fulerian
mesh. That is, the grid speed is smoothly varying in between these two re-
gions. This is essentially the idea behind the Arbitrary Lagrangian-Eulerian
(ALE) numerical algorithm, see e.g. [3]. The problem here is that these
variable speed meshes are not well studied and the numerical algorithms
employed here tend to be low order accurate and sometimes suspect. The
other technique for treating the solid/fluid interface is to keep the mesh rep-
resentation sharp so that the Eulerian and Lagrangian meshes are in direct
contact. The problem with this method is that the Lagrangian mesh moves
causing Eulerian mesh points to appear and disappear. In addition, the Eu-
lerian cells tend to have irregular shapes sometimes referred to as cut cells.
These cut cells can lead to numerical errors and stiff time step restrictions,
see e.g. [3] and the references therein, specifically [13], [18] and [17] which
discuss the PISCES, CEL and PELE codes respectively.

We prefer the second approach for treatment of the solid/fluid interface.
That is, we keep the Lagrangian and Eulerian meshes in direct contact in or-
der to avoid special methods for an arbitrary speed mesh. In our approach,
problems with cut cells are avoided by the use of ghost cells for the Eulerian
mesh. These ghost cells are covered (or partially covered) by the Lagrangian
mesh, but are used in the Eulerian finite difference scheme in order to cir-
cumvent small time step restrictions. These ghost cells are defined in a way
consistent with the Ghost Fluid Method [11] so that the interface bound-
ary conditions or jump conditions are properly captured. This method also
avoids the blending problems associated with covering and uncovering of
grid points since covered real grid nodes are treated as ghost nodes and un-
covered ghost nodes are treated as real grid nodes. Our approach is novel in
that the numerical treatment of the solid/gas interface does not compromise
the solution techniques for the solid or the fluid at the interface. That is,
once the ghost cells values are specified, a standard Eulerian code can be
used to advance the fluid (and its ghost nodes) in time. Likewise, once the
Lagrangian boundary conditions are specified, a standard Lagrangian code
can be used to advance the Lagrangian mesh in time.



2 Euler Equations

The Euler equations for two dimensional compressible flow are
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where t is time, x and y are the spatial dimensions, p is the density, u and
v are the velocities, F is the total energy per unit volume, and p is the
pressure. The total energy is the sum of the internal energy and the kinetic
energy,
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E = pe + w (2)
where e is the internal energy per unit mass. The pressure can be written as
a function of density and internal energy, p = p(p, ). For the sake simplicity
only a gamma law gas, p = (7 — 1)pe, is considered in this paper. The one
dimensional Euler equations are obtained by setting v = 0. These equations
are discretized using 3rd order accurate ENO methods. See [22, 12] for more
details.



3 Lagrange Equations

The Lagrange equations are written in nonconservative form with position,
velocity and internal energy as the independent variables. Since the equa-
tions are quite different in one, two and three dimensions we address the
one and two dimensional equations separately throughout this paper. Our
two dimensional numerical method is essentially the method proposed in [6],
[8] and [9] with only minor modifications. In [6], the authors constructed
a Lagrangian numerical method that can treat arbitrary forces in a simple
straightforward fashion. In [8], the authors showed how subzonal pressures
can be used to avoid mesh tangling. And in [9], the authors presented an
edge centered artificial viscosity. Our one dimensional numerical method is
quite standard and can be seen as a straightforward simplification of the
two dimensional numerical from [6], [8] and [9] to a single spatial dimension.
Three dimensional Lagrangian methods are not discussed this paper, but
the interested reader is referred to [7] which is a three dimensional exten-
sion of the method proposed in [6], [8], and [9]. The interested reader is also
referred to [16] and [10].

3.1 One Spatial Dimension

In one spatial dimension the independent variables are z, u, and e. Both
z and u are defined at the grid nodes while e is defined at the cell centers
located midway between the grid nodes. Each cell or zone is split into two
subzones based on the midpoint of each cell. To initialize the calculation,
the mass of each zone, M?, is determined, and then the subzonal masses,
m?, are defined as half the zonal mass. The nodal mass, MP, is defined as
the sum of the neighboring subzonal masses. The nodal, zonal and subzonal
masses all remain fixed throughout the calculation.
Each time step, the location of each grid node is updated according to
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where At is size of the time step. The velocity at each node is updated using
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where F'™ is the net force on the grid node. And the internal energy in each



zone is updated with

6n—|—1 — el H"
INYE (5)

where H" is the heating rate of the zone. One can apply either force or
velocity boundary conditions to the grid nodes on the boundary. Velocity
boundary conditions are enforced by simply setting the velocity of a bound-
ary node to the desired boundary velocity instead of solving equation 4.
Force boundary conditions are applied by adding the boundary force to the
net nodal force F™ in equation 4.

The density of each subzone is determined by dividing the subzonal mass
by the subzonal length. Then the subzonal pressure is defined based on the
subzonal density and the zonal internal energy. For example, in the case of
a gamma law gas p = (v — 1)pe. In one spatial dimension, each zone has two
subzonal pressures that are identical to each other implying that only a zonal
pressure need be defined. However, in multiple dimensions, the subzonal
pressures are not equal and help to avoid mesh tangling [8]. For this reason,
we use subzonal pressures in the one dimensional exposition. Each subzonal
pressure provides a contribution to the net force on the adjacent grid node
as well as a contribution to the heating rate of the zone that contains it. If
the adjacent node is to the left of the subzone, the contribution to the nodal
force is —p and the contribution to the zone heating rate is pu where u is
the velocity of the grid node. Otherwise, if the adjacent node is to the right
of the subzone, the contribution to the nodal force is p and the contribution
to the zone heating rate is —pu.

An artificial viscosity, @, is computed in each zone and used to augment
the net nodal force of the two adjacent grid nodes as well as the heating
rate of the zone. The contribution to the net nodal force of the node on
the left is —Q, while the contribution to the net nodal force of the node on
the right is Q). The contribution to the zone heating rate is Qu; — Qu;41
where u; and u;y; are the velocities of the left and right nodes respectively.
Artificial viscosity is only applied when the zone is under compression, so @)
is set identically to zero if Au = u;41 — u; > 0. Otherwise

Q = (1 - ) (crpeldul + c2p (Bu)?) (6)

where p is the density of the zone determined by dividing the zonal mass
by the length of the zone, c¢ is the zonal sound speed determined using the
density and internal energy of the zone, ¢; and co are constants used to



set the magnitude of the linear and quadratic components of the artificial
viscosity respectively, and % is used to smoothly switch the artificial viscosity
on and off. % is defined as

— 4t
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where r~ = Z; and 7T = % The spatial derivative of the velomty, Ug,
in each zone is defined as Au over the length of the zone. u, and u; are
the derivatives in the zone to the left and to the right of the current zone
respectively. If either the zone to the left or the zone to the right is undefined
because the current zone lies on a boundary, then the corresponding value
of r is set identically equal to 1.

Material strength is applied by putting springs in each zone to connect
the neighboring nodes. Each zone is assigned a resting length, L,, and
restoring forces occur when a zones length, L, is not equal to its resting
length. The restoring force is simply S = _k(L% — 1) where £ > 0 is
some measure of the stiffness of the material. This restoring force makes a
contribution of —S to the net nodal force of the node on the left, S to the
net nodal force of the node on the right, and Su; — Su;11 to the zone heating
rate.

3.2 Two Spatial Dimensions

In two spatial dimensions the 1ndependent variables are X =< z Y >,
V=< u,v >, and e. Both X and V are defined at the grid nodes which
are connected in same fashion as an Eulerian grid producing quadrilateral
zones. Kach quadrilateral zone is split into four subzones by connecting the
midpoints of opposite edges of the zone. e is defined at the zone center which
is located at the intersection of the four subzones and can be computed by
averaging the four nodes that make up the quadrilateral zone. To initialize
the calculation, the mass of each zone, M?, is determined, and then the
subzonal masses, m?, are defined as one fourth the zonal mass. The nodal
mass, MP, is defined as the sum of the (at most four) neighboring subzonal
masses. Once again, the nodal, zonal and subzonal masses all remain fixed
throughout the calculation. The independent variables are updated with
equations 3, 4 and 5 replacing z, v and F" with X , V and F respectively.
Either force or velocity boundary conditions are applied to the grid nodes
on the boundary.



The density of each subzone is determined by dividing the subzonal mass
by the subzonal area. Then the subzonal pressure is defined based on the
subzonal density and the zonal internal energy. Exactly one of the four
corners of each subzone corresponds to a grid node. The two subzonal edges
connected to this grid node are used to calculate the contribution of the
subzonal pressure to the net nodal force at this node. For each of these two
edges, this is done by multiplying the subzonal pressure by the length of
the edge and the unit vector perpendicular to the edge. The dot product
of this force with the velocity of the grid node gives the contribution of the
subzonal pressure to the heating rate of the zone.

In each zone, four separate artificial viscosities are computed, i.e. one
along each edge. For a given edge with nodes designated by subscripts )
and i +1, AV = Vi1 = V; and Ny = 2
the unit vector in the direction of the velocity jump respectively. Let L
designate the length of the subzonal edge that connects the midpoint of the
zone edge to the center of the zone. Let N, designate the unit normal to this
subzonal edge that points from node designated by 7 to the node designated
by i + 1. The scalar artificial viscosity, Q, is multiplied by Ls(N, - Ny/)Ny
to obtain the vector form of the artificial viscosity Q Artificial viscosity is
only apphed when the zone is under compression, so Q is set identically to
zero if N, - Ny > 0. Otherwise, —Q is the contribution to the net nodal
force at the node designated by ¢ and Q is the contribution to the net nodal
force at the node des1gnated by 72 4+ 1. The contribution to the zone heating
rate is Q Vi — Q VZ+1

The scalar artificial viscosity, @, is computed using equation 6 replacing
Au with AV defining (AV)2 as AV - AV. The density in equation 6 is
defined as % where the nodal densities, p; and p;+1, are calculated by
dividing the nodal mass by the nodal area, defining the nodal area as the
sum of the areas of all the adjacent subzones. The sound speed in equation
6 is defined as min (c;, ¢i+1) where the nodal sound speeds ¢;, and ¢;1, are
computed using the nodal density and the nodal internal energy. The nodal
internal energy is calculated by dividing the total internal energy (not per
unit mass) of the node by the nodal mass. The total internal energy of a
node is calculated by summing the total internal energy of all the neighboring
subzones, i.e. summing em, from each subzone.

1) is defined using equation 7 where r— = % and rt = % +‘y DV is
AV-Ny _ |&V] AX
defined as AXNx = |A%| where AX = XZ — X, and Ny = ISk DV
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Once again, if information is missing, then the corresponding value of r is
set identically equal to 1.

Material strength is applied using forces based on springs. While this
trivial material strength model lacks several desirable features, it is more
than adequate for our purposes. Every edge of every zone is assigned a
resting length, L,, and every zone is assigned a measure of stiffness, k£ > 0.
A zone admits a restoring force of § = —k(L% — 1)Nx when the current
edge length, L, is not equal to its resting length. For each zone adjacent to
a particular edge, the restoring force makes a contribution of — S to the net
nodal force of the node at fi, S to the net nodal force of the node at )?Hl,
and S - Y_/; -S. ‘7;4_1 to the heating rate of the zone.



4 Treating the Interface

Boundary conditions need to be imposed on both the Eulerian and La-
grangian grids. Standard boundary conditions can be applied everywhere
except the internal boundary where the Lagrangian grid partially overlaps
the Eulerian grid. These internal boundary conditions are the main focus of
this paper. First the interface itself needs to be defined, and since the La-
grangian grid nodes move at the local material velocity, these nodes can be
used to determine the position of the interface. In one spatial dimension, the
interface is simply defined as the single Lagrangian boundary node. In two
spatial dimensions, a piecewise linear interface is defined by the Lagrangian
mesh lines that connect the nodes on the boundary. The interface divides
the Eulerian mesh into separate regions, i.e. a region populated by real grid
nodes and a region populated by ghost nodes. Interface boundary condi-
tions for the Eulerian mesh are imposed by defining the conserved variables,
i.e. mass, momentum and energy, in the ghost nodes. Interface boundary
conditions for the Lagrangian mesh are imposed by either specifying the
velocity of the grid nodes on the Lagrangian boundary or by specifying the
force applied to that boundary.

Since the interface moves with the local material velocity, it can be
treated as a contact discontinuity for the Eulerian calculation. Then the
Rankine Hugoniot jump conditions imply that both the pressure and the
normal velocity, Vy = V - N, are continuous across the interface while both
the entropy and the tangential velocities are completely uncoupled across
the interface [11]. The interface values of the uncoupled variables can be
captured by extrapolating these variables across the interface into the ghost
cells. The continuous or coupled variables can be determined using the
values from both the Eulerian and the Lagrangian mesh.

The interface normal velocity can be determined by applying any number
of interpolation techniques to the Eulerian and Lagrangian mesh values.
However, one should be careful to define the interface normal velocity in
a way that is consistent with the material in the Lagrangian mesh. That
is, perturbations to the velocity of the Lagrangian grid nodes can provide
enormous stress due to resistive forces such as material strength. For this
reason, in order to determine an accurate (and Lagrangian mesh consistent)
value of the normal velocity at the interface, only the Lagrangian mesh
is used to determine the interface velocity similar to [13], [17] and [18].
However, both calculations use this interface normal velocity so that [Vx] =
0 is enforced. The Lagrangian mesh simply uses the computed velocities of
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its boundary nodes, while the Eulerian calculation captures this interface
normal velocity by assigning each ghost node the interface normal velocity
of the nearest point on the interface.

Since the interface normal velocity is defined as the velocity of the nodes
on the Lagrangian mesh boundary with no contribution from the Eulerian
mesh, velocity boundary conditions cannot be enforced on the Lagrangian
mesh at the interface. Instead force boundary conditions are applied by in-
terpolating the Eulerian grid pressure to this Lagrangian interface. In this
way, the interface pressure is determined using only the Eulerian grid values
ignoring contributions from the Lagrangian mesh similar to [13], [17] and
[18] . However, both calculations use this interface pressure so that [p] =0
is enforced. The interface pressure is captured by the FEulerian calculation
by extrapolating the pressure across the interface into the ghost cells similar
to the treatment of entropy and the tangential velocity Then the interface
pressure can be interpolated from the Eulerian grid in order to apply force
boundary conditions to the Lagrangian calculation. Note that [18] suggests
that it might be better to use some average of the Lagrangian and Eulerian
grid values when determining the pressure at the interface. Actually, for
Lagrangian calculations with artificial viscosity and material strength, the
jump condition implies that the net stress in the normal direction is con-
tinuous, not just the pressure. Therefore, this averaging procedure should
take place between the pressure in the gas and the normal component of
the net stress in the normal direction in the solid. However, this can be
dangerous, for example, when the Lagrangian material is in tension since
near zero or negative stress might be calculated at the interface. While La-
grangian methods can be quite robust under tension, Eulerian methods can
suffer a number of problems when treating near zero or negative pressures
associated with a rarefied or cavitated fluids.

4.1 One Spatial Dimension

The one dimensional interface is defined by the location of the Lagrangian
boundary nodes that are adjacent to real grid nodes of the Eulerian mesh.
This interface location is used to construct a signed distance function in
order to apply level set methods [19] near the interface. The level set function
is defined at every Eulerian grid node with ¢ < 0 for real grid nodes and
¢ > 0 for ghost nodes. For each Lagrangian boundary node on the interface,
¢ is defined analytically as ¢ = +(z — z,) where z, is the location of the
node. The “+” sign is used if the Lagrangian mesh lies to the right and the
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—” sign is used if the Lagrangian mesh lies to the left. Since this is done
for every Lagrangian boundary node on the interface, ¢ is multiply defined.
At each Eulerian grid node, a single value of ¢ is chosen from the possible
candidates by choosing the candidate with the minimum magnitude.

Before defining values in the Fulerian ghost nodes, a check is performed
to see if enough ghost nodes are present. That is, since the Lagrangian mesh
is moving, one needs to ensure that there is adequate overlap between the
two meshes. This is done by examining the values of ¢ on the computational
boundaries of the Eulerian mesh. If the computational boundary is an Eu-
lerian ghost node, then the value of ¢ gives the distance to the interface and
can be used to estimate the number of ghost nodes that exist between the
interface and the computational boundary. Then the size of the Eulerian
mesh can be increased if there are not enough ghost nodes to successfully
apply the numerical method.

The Eulerian ghost nodes are defined by first extrapolating S and p using
the fast extension procedure in [2] (based on the Fast Marching Method, see
e.g. [20]) which extends variables to be constant in the normal direction to
first order accuracy. Then u at each ghost node is assigned the value of u
at the nearest Lagrangian boundary node that lies on the interface between
the Eulerian and Lagrangian grids. Once S, p and u are determined at each
ghost node, the conserved variables are reassembled.

Force boundary conditions are applied to the Lagrangian interface using
the pressure from the Fulerian grid. First, the pressure at the interface is
determined using linear interpolation from the Eulerian mesh. Note that
this linear interpolation requires valid pressure values in both the real and
the ghost nodes. Therefore, the pressure extension step (above) needs to
be carried out before this linear interpolation step. This Eulerian interface
pressure makes a contribution of +p to the net force on the Lagrangian
boundary node depending on whether the Lagrangian mesh lies to the right
or to the left of the interface respectively.

With boundary conditions specified on both the Eulerian and Lagrangian
mesh, both can be advanced one Euler step in time. Note that both the
Eulerian real grid nodes and a band of Eulerian ghost nodes are advanced in
time. These ghost nodes are advanced in time so that they have valid values
of the conserved variables in case they are uncovered by the Lagrangian
mesh, i.e. in case they become real grid nodes at the end of the time step.
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4.2 Two Spatial Dimensions

The two dimensional interface is defined by the line segments of the La-
grangian mesh boundary that are adjacent to real grid nodes of the Eulerian
mesh. This interface is used to construct a signed distance function defined
at every Eulerian grid node with ¢ < 0 for real grid nodes and ¢ > 0 for
ghost nodes. For a particular Eulerian grid node, first the distance to each
line segment on the Lagrangian mesh boundary is calculated, and then the
minimum of these distances is designated as the magnitude of ¢. In order
to calculate the sign of ¢, first a closed polygon is defined by connecting
the two dimensional interface to the part of computational boundary of the
Eulerian mesh that is adjacent to the Eulerian ghost nodes. Then the line
segments of this polygon can be swept through clockwise (or counterclock-
wise) calculating the angle that is made between the line segment connecting
the Eulerian grid node to the first endpoint of the line segment and the line
segment connecting the Eulerian grid node to the second endpoint of the line
segment. If these angles sum to 2r (or —2m) then the Eulerian grid node
is inside the polygon, otherwise these angles sum to zero and the FEulerian
grid node is outside the polygon. The nodes outside the polygon are real
grid nodes with ¢ < 0, while the nodes inside the polygon are ghost nodes
with ¢ > 0. If there is more than one polygon, then this procedure can
be used to determine whether a grid node lies within any of the polygons
in which case it is a ghost node with ¢ > 0. Points that do not lie in any
of the polygons are the real grid nodes with ¢ < 0. This method can be
made computationally optimal by first identifying all the grid points near
the interface, and then applying this method to only those points, i.e. a
narrow band approach. Note that identifying the points near the interface
is easily accomplished by finding the Cartesian grid intersections of each line
segment of the polygonal boundary of the Lagrangian mesh.

Once again, ¢ is examined on the computational boundaries of the Eu-
lerian mesh to ensure that enough ghost nodes are present increasing the
Eulerian mesh size if necessary.

The Eulerian ghost nodes are defined by first extrapolating S, p and
V using the fast extension procedure in [2]. Then the closest point on the
Lagrangian interface is determined by looping through all the line segments
that make up this interface. If the closest point happens to be on the end
of a linear segment, i.e. a Lagrangian grid node, then that velocity can
be designated the closest interface velocity. Otherwise, the closest point is
on an edge connecting two Lagrangian grid nodes, and the closest interface
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velocity is determined using linear interpolation between those two nodes.
Designating the closest interface velocity by V7 and the extrapolated velocity
by Iﬂ/imt, the basis free projection method from [11] is used to combine the
normal component of the interface velocity with the tangential component
of the extrapolated velocity resulting in a ghost cell velocity of

V= (17}-1\7)1\7+ (V‘mt— (17;”-1\7) 1\7') (8)
where the unit normal vector is defined locally at the ghost node as
Ve

N=—2
IVl

(9)

computing the derivatives with central differencing. In the rare case that the
denominator of equation 9 is identically zero, the derivatives are computed
with one sided differencing instead of central differencing in order to obtain
a nonzero denominator. Once S, p and V have been determined at each
ghost node, the conserved variables are reassembled.

Once the Eulerian ghost nodes have valid values for the extrapolated
pressure, force boundary conditions can be determined at the Lagrangian
interface. The midpoint of each linear interface segment is defined as a con-
trol point, and bilinear interpolation is used to determine the Eulerian mesh
pressure at each of these control points. Then this pressure is multiplied
by both the length and the inward pointing normal of the line segment to
determine the magnitude and direction of the Eulerian pressure force on this
segment. Finally, half of this Eulerian pressure force is added to each of the
two nodes that make up this segment.

With boundary conditions specified on both the Eulerian and Lagrangian
mesh, both can be advanced one Euler step in time. Once again, note that
both the Eulerian real grid nodes and a band of Eulerian ghost nodes are
advanced in time in case some ghost nodes are uncovered by the Lagrangian
mesh.
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5 Modifying the Original Ghost Fluid Method

At this point we pause to consider the implications of the last section in
relation to [11]. Consider a contact discontinuity in two phase compress-
ible flow where the pressure and normal velocity are continuous, while the
entropy and tangential velocities are discontinuous. At the contact discon-
tinuity, the discontinuous variables are multivalued and [11] recommends
using one sided extrapolation into ghost cells to capture the interface values
on each side. In [11], the continuous variables are captured using the values
already defined at each node, i.e. pressure and normal velocity are copied
from the real fluid into the ghost fluid in a node by node fashion. This is
in contrast to the last section where one side of the interface (the Eulerian
side) determines the interface pressure while the other side of the interface
(the Lagrangian side) determines the interface normal velocity.

The interface values of pressure and normal velocity need to be deter-
mined using some sort of interpolation technique noting that these variables
are continuous but may posses kinks due to differing equations of state
across the interface. Copying these variables into the ghost cells node by
node, as proposed in [11], corresponds to one choice of interpolation. Using
the fluid on one side of the interface to determine the interface pressure and
the fluid on the other side of the interface to determine the interface veloc-
ity, as discussed in the last section, corresponds to another choice. Different
interpolation techniques lead to O(Ax) differences in the interface values of
pressure and normal velocity which vanish as the mesh is refined guarantee-
ing convergence as dictated by the Rankine Hugoniot jump conditions.

At this point, it is not clear exactly which interpolation technique should
be used, and the answer is most likely problem related. For smooth well be-
haved problems with commensurate equations of state, the method proposed
in [11] is probably superior, while the method proposed in the last section
is most likely superior when one fluid is very stiff compared to the other.

For example, consider interactions between water and air as discussed in
[11] where the air is treated as a gamma law gas and the water is treated
with a stiff Tait equation of state. Since the technique in [11] gives equal
weighting to the values to the pressure and normal velocity on both sides of
the interface, any kinks in these values will be smeared out to some extent
causing small errors in the captured interface values of these variables. Small
errors in the normal velocity of the water create small density errors that
can lead to large spurious pressures oscillations due to the stiffness of the
Tait equation of state. On the other hand, small errors in the velocity of
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the air have little effect since the gamma law gas equation of state is rather
robust. Again, since the Tait equation of state is rather stiff, one can expect
large variations in the pressure of the water near the interface which in turn
lead to poor predictions of the interface pressure. While these errors in the
interface pressure have a relatively small effect on the heavier water, they
can have a rather large effect on the lighter gas.

The aforementioned difficulties can be removed in large part by using
the water to determine the interface velocity and the air to determine the
interface pressure producing a more robust version of the original Ghost
Fluid Method proposed in [11]. When updating the stiffer fluid, pressure is
still copied over node by node in the ghost region while the total velocity and
the entropy are extrapolated into the ghost cells. When updating the fluid
with the more robust equation of state, the normal velocity is still copied
over node by node in the ghost region while the pressure and the entropy
are extrapolated into the ghost cells. Note that this procedure was first
used in [5] on an interface separating incompressible and compressible flow.
There, the compressible normal velocity is a poor choice for the interface
velocity, and errors in the incompressible velocity field can cause large jumps
in the incompressible pressure as this pressure forces the velocity field to be
divergence free.

Numerical results have shown that this new method behaves in a fashion
similar to the original method in [11], except for the increased interface dis-
sipation which leads to greater stability. In order to illustrate this, examples
5 and 6 from [11] are re-examined here noting that the stiffness in example
6 required some tampering of the high order numerical method in order to
increase stability, see [11]. Figures 1 and 2 show the results obtained with
this new robust method using 3rd order ENO-LLF and 3rd order TVD RK
[22] without the scheme tampering required with the original scheme. In
particular, note that figure 2 shows a monotone pressure near the interface,
unlike [11]. Figures 3 and 4 show the same calculations with 100 grid cells
each as opposed to the 500 and 400 grid cells used in figures 1 and 2 respec-
tively. The results in figures 3 and 4 illustrate the robustness of this new
scheme on coarse grids, especially considering that the old scheme produces
spurious cavitation leading to failure of the numerical method on these same
coarse grids.
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6 Time Discretization

Since both second and third order TVD Runge Kutta schemes [21] can be
written as a convex combination of simple Euler steps, see [21, 14], it is
straightforward to generalize the first order time discretization discussed so
far in this paper to third order TVD Runge Kutta which is the scheme
used in the examples section. Mass, momentum and energy are averaged on
the Eulerian mesh using ghost cell values where necessary, while position,
velocity and internal energy are averaged on the Lagrangian mesh.

Adaptive time stepping is used where the overall time step is the mini-
mum of the Eulerian mesh and Lagrangian mesh time steps, i.e.

At = 5min(AtE, AtD) (10)

where we have chosen a CFL restriction of .5.
On the Eulerian mesh, the convective time step restriction is given by

AtE ('“'Ai) <1 (11)

xr

in one spatial dimension and

AtE (‘UZ;C + MAZC) <1 (12)

in two spatial dimensions where ¢ = ,/% is the speed of sound. Note that

AtF is chosen so that equation 11, or 12, is valid at every grid node of the
Eulerian mesh.
For the one dimensional Lagrangian mesh,

At (%) <1 (13)

is enforced at every zone in one spatial dimension and where ¢ = \/? is
the effective speed of sound using the effective pressure p = p + Q + |S|
which includes the effects of artificial viscosity and material strength. Note
that the magnitude of S is used as S can be negative unlike ) which is
always positive. Equation 13 is used in two dimensions as well, although
some of the terms are defined differently than they are in one dimension.
The length of a zone, L, is defined as the minimum of all the edge lengths
and the two line segments that connect the midpoints of the opposite edges
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of the zone. When defining ¢, the density, p, is defined as the minimum of
the four subzonal densities, and the pressure, p, is defined as the maximum
of the four subzonal pressures. A scalar artificial viscosity is defined on each
zone edge using the two dimensional equivalent of equation 6, and then @) is
defined as the maximum of the four scalar artificial viscosities in the zone.
Finally, a scalar material strength is determined by dividing the magnitude
of the material strength on each zone edge by the length of the line segment
that connects the midpoint of that edge to the cell center. Then |S| is
defined as the maximum of the four scalar material strengths in a zone.
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7 Examples

The Lagrangian artificial viscosity was applied with ¢; = 2 and ¢ = 9.
Also, since the Lagrangian code seemed to respond better to smaller CFL
numbers, a CFL of .1 was used throughout.

7.1 Example 1

In this example we compute solutions to “Test B”, “Test C” and the two
cases of “Test D” that were first proposed and solved in [15] and later solved
in [11] using the fully Eulerian version of the Ghost Fluid Method for two
phase flows. In “Test B” a shock wave impinges upon an interface producing
a transmitted shock wave and a reflected rarefaction wave, while in “Test C”
the same shock wave produces both transmitted and reflected shock waves.
The two cases of “Test D” are similar to “Test B” and “Test C” except with
a stronger initial shock wave.

All tests are computed on [0m, 1m] domain with the interface located
in the center of the domain at z = .bm. A fixed Eulerian mesh initially
containing 200 grid points is used on the left hand side of the interface,
while a moving Lagrangian mesh containing 200 grid points is used on the
right hand side of the interface. Note that the exact solutions for density,
velocity and pressure are displayed by a solid line in the figures for the sake
of comparison.

Three fluids are used in the study and each initially starts with u = 0
and p =1 x 10°Pa. Fluid 1 has vy = 1.4 and p = 1%, fluid 2 has v = 1.67

and p = .1379%, and fluid 3 has v = 1.249 and p = 3.1538%.

7.1.1 “Test B”

In “Test B”, fluid 1 is on the left and fluid 2 is on the right. A right going
shock wave is originally located at z = .05m with a post shock state of
p = 1333354 p = 1.5 x 10°Pa and u = .3535V/1052. Figure 5 shows
the computed solution at a final time of .0012 seconds. There is a small
(barely noticeable) glitch in density near z = .2 due to start up errors that
are generated when the exact initial shock profile is resolved by the shock
capturing scheme.

Figure 6 shows the results with fluid 2 on the left and fluid 1 on the right
with a left going shock wave initially located at z = .95m (of course the post
shock velocity is then u = —.3535\/@%). Note that the start up errors
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in density near z = .8 are significantly worse for the Lagrangian scheme.
Also note that there are some low amplitude pressure and velocity waves
near the interface. These low amplitude waves seem to be related to start
up errors and are caused by the changes in the numerical shock profile as
the shock wave moves from one grid to the other, especially since different
numerical schemes are used on the different grids. In general, these low
amplitude waves seem to be significantly worse for shocks crossing from the
Lagrangian grid to the Eulerian grid than they are for shocks crossing from
the Eulerian grid to the Lagrangian grid. This is fortuitous since strong
shocks usually form in highly deformable reactive materials that are best
modeled with an Eulerian scheme, and one is interested in the effect these
shocks have on inert materials with strength that are best modeled with a
Lagrangian scheme, i.e. in the physical problems of interest the strongest
shocks tend to travel from the Eulerian grid to the Lagrangian grid.

7.1.2 “Test D”, Case 1

The first case of “Test D” is similar to “Test B” except that the shock
strength is increased using a post shock state of p = 4.3333%%, p=1.5x

106Pa and v = 3.2817v/10° . The results for the right going shock are
plotted in figure 7 at a final time of .0005 seconds. Note that the errors in
all variables near z = .2 are start up errors. Note too that there are small
“overheating” errors on the left hand side of the interface.

Since the left going shock case significantly compresses the Lagrangian
mesh, the size of the domain is increased to [0m, 1.5m] by adding 200 more
Lagrangian mesh points to the right of £ = 1. The results for the left going
shock are plotted in figure 8. Once again the behavior of the Lagrangian
scheme is less than ideal, although many of the errors are start up errors,
i.e. those near z = .45 in density and near £ = .75 in all variables. The only
errors due to the shock interface interaction are the overheating errors in
density to the right of the interface and the mild undershoots in all variables
on the left hand side of the rarefaction fan. Note that the overheating errors
are much worse in this case than they were for the right going shock case.

7.1.3 “Test C”

“Test C” is similar to ‘Test B” except that fluid 2 is replaced with fluid 3.
The results for the right going shock are plotted in figure 9 at a final time
of .0017 seconds. While the start up errors are negligible, the numerical
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method seems to have some difficulty with the reflected shock wave. While
the reflected shock wave is in the correct spatial location, there are low
amplitude waves in pressure and velocity to the right of this wave.

The results for the left going shock are plotted in figure 10. Note that
the Lagrangian scheme seems to resolve the reflected shock wave without
low amplitude pressure or velocity waves in the vicinity. However, the shock
wave is in the wrong location although moving at the correct speed. Also
note that the errors near = .65 in all variables are start up errors as are
the density errors near z = .75.

7.1.4 “Test D”, Case 2

The second case of “Test D” is similar to the first case except fluid 2 is
replaced with fluid 3. The results for the right going shock are plotted in
figure 11 at a final time of .0007 seconds. The errors near z = .3 and x = .7
are start up errors, while the errors in density to the right of the interface
are overheating errors.

The results for the left going shock are plotted in figure 12. Here the
errors near £ = .3 and x = .7 are start up errors while the errors in density
near the interface are overheating errors. Note that the wave locations
perform rather poorly in this instance, but fortunately, we have little interest
in treating strong shocks crossing the interface from the Lagrangian grid
to the Eulerian grid. In order to demonstrate convergence in this case,
figures 13 and 14 show the computed results under one and two levels of
grid refinement respectively.

7.2 Example 2

In this example, we repeat the right going shock case from “Test C” of
example 1, except that material strength is added to the material on the
right using k£ = 2.5 x 105%. The computed results are shown in figure 15
at a final time of .0017 seconds. For comparison, the exact solution for
“Test C” without material strength is also shown in the figure. Note that
there is a jump in pressure at the interface. The higher pressure in the fluid
on the left is needed to balance out the material strength expansion force
of the compressed material on the right. In order to show the behavior of
the computed solution under grid refinement, figures 16 and 17 show the
computed results under one and two levels of grid refinement respectively.
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7.3 Example 3

Here we consider “Test C” in two spatial dimensions. Consider a rectangular
domain of size [0, 1] x [0,.25] with initial conditions for “Test C” specified in
the z-direction and constant initial data in the y-direction. The interface is
at = .5m and the initial 100 x 50 grid point Eulerian mesh is to the left of
the interface while the 100 x 50 grid point Lagrangian mesh is to the right
of the interface. While the left and right boundaries of the computational
domain are unaffected, the top and bottom boundaries need to have bound-
ary conditions specified. Constant extrapolation of all variables is used to
fill fictitious ghost cells on the top and bottom of the Eulerian mesh, while
the top and bottom of the Lagrangian mesh are treated with a fixed velocity
boundary condition that forces the edge velocity to be equal to the velocity
of the closest non-edge node. For example, the velocity at (¢,n) on the top
of the Lagrangian is mesh is set equal to the velocity at (i,n — 1), while the
velocity at (i,1) on the bottom of the Lagrangian mesh is set equal to the
velocity at (3,2).

Figure 18 shows the pressure at a final time of .0017 seconds. One can
see that the solution stays one dimensional as it should. This is an im-
portant test, since many Lagrangian calculations break down and become
multidimensional (although Eulerian calculations tend to stay one dimen-
sional). Furthermore, this test shows that our interface treatment allows
the calculation to stay one dimensional as well. Figure 19 shows a side view
of the same calculation. For the most part, the data in the y-direction are
uniform and one can only see the edge of the grid in this side view. Note
that the exact solutions for density, velocity and pressure are displayed by
a solid line in the figures for the sake of comparison.

7.4 Example 4

Consider a rectangular domain of size [0, 1] %[0, .75] divided into three regions
by the two lines y = .25 and y = .5. The regions with y < .25 and y > .5 are
modeled with separate Lagrangian meshes and filled with fluid 3 with added
material strength set by £ = 2.5 x 105%. The region in between the two
Lagrangian meshes is modeled with an Eulerian mesh and filled with fluid
1. Similar to “Test D”, fluid 1 contains a right going shock wave initially
located at x = .05m with a post shock state of p = 4.3333% ,p = 1.5x10%Paq
and u = 3.2817v/10% . The Lagrangian mesh initially located in the region
defined by y < .25 has a fixed zero velocity boundary condition applied to
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the left, right and bottom edges while the other Lagrangian mesh has the
same boundary condition applied to the left, right and top edges. The post
shock state is used to apply a fixed inflow boundary condition to the left
hand side of the FKulerian mesh while constant extrapolation is applied to
all variables on the right hand side of the Eulerian mesh.

The calculation is carried out using an initial Eulerian grid of 100 x 25
grid points and Lagrangian grids of 100 x 25 grid points each. Figures 20, 21,
22 and 23 show the location of the Eulerian/Lagrangian interface at times
t = 0, .0002, .0004 and .0006 seconds respectively. Figures 24 and 25 show
the velocity field at ¢ = .0004 and t = .0006 seconds respectively. In order to
illustrate the effect of material strength, figures 26 and 27 show the interface
location and the velocity field at ¢ = .0004 seconds for the same calculation
without material strength, i.e. with k& = 0.
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Figure 23: Interface location at ¢ = .0006 seconds.
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