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Abstract. We propose a multiphase level set algorithm for solving the minimal
partition problem for image segmentation. Our starting point is the piecewise-
constant Mumford-Shah model for segmentation. The proposed method can also
be viewed as an extension and generalization of an active contour model without
edges based on a 2-phase segmentation, developed by us earlier (Chan and Vese,
1999). Our multiphase level set formulation is new and of interest on its own: by
construction, it automatically avoids the problems of vacuum and overlap; it needs
only log n level set functions for n phases; it can represent boundaries with complex
topologies, including triple junctions.

Keywords: energy minimization, segmentation, level sets, curvature, PDE’s, de-
noising, edge detection, active contours, multiphase motion.

1. Introduction

The method introduced in this paper extends and generalizes the
active contour model without edges based segmentation using level
sets, previously proposed in (Chan and Vese, 1999). In those papers, to
obtain an active contour model for object detection, the basic idea was
to look for a particular partition of a given image into two regions, one
representing the objects to be detected, and the second one representing
the background. The active contour was given by the boundary between
these two regions. It turned out that the model is a particular case of
the minimal partition problem proposed (Mumford and Shah, 1989) for
segmentation of images , which looks for a piecewise-constant optimal
approximation, and the induced partition, of the given image. For the
implementation of our earlier active contour model, the level set method
of (Osher and Sethian, 1988) was successfully used, together with a
particular numerical approximation, which allowed to automatically
detect interior contours. The method can easily be extended to vector-
valued images (Chan, Sandberg and Vese, 2000), and to several spatial
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2 T. Chan and L.Vese

dimensions, such as volumetric images (Chan and Vese, 2000), and is
robust with respect to noise. In this paper, we generalize further this
active contour model to segment images with more than two regions, by
proposing a new variational multiphase motion by level sets for solving
the minimal partition problem, as formulated by (Mumford and Shah,
1989).

Let us first give our main notations and terminology. Let £ C R?
be open and bounded, and let C be a set of curves in §2. The connected
components of &\ € are denoted by £;, such that O = U;0; U C. We
also denote by |C| the length of curves making up C. Let ug : & —» IR
be a bounded image-function.

The segmentation problem in computer vision, as formulated by
(Mumford and Shah, 1989}, can be defined as follows: given an observed
image ug, find a decomposition £; of £, such that the new “segmented”
image u varies smoothly within each €);, and discontinuously across the
boundaries of Q;.

The simplest case is obtained by restricting the segmented image
u to piecewise-constant functions, i.e. © =constant ¢; inside each con-
nected component €);. Then the problem is often called the “minimal”
partition problem, and in order to solve it, (Mumford and Shah, 1989)
proposed to minimize the following functional:

FMS(y, 0} = Z/ﬂ |lup — ;> dzdy + v|Cl. (1)

Here, v is a positive parameter, having a scaling role. It is easy to see
that, for a fixed C, this is minimized in the variables ¢; by setting

¢; == mean{ug) in ;.

So the minimization is reduced to only with respect to the set of
boundaries or curves C.

We mentioned in {Chan and Vese, 1999) that the active contour
model without edges is in fact a particular case of the Mumford-Shah
energy (1). It is then natural to extend our level set algorithm from
(Chan and Vese, 1999) to the general case of piecewise-constant opti-
mal approximations, and this is the main goal of the present paper.
This extension should include images with triple junctions for exam-
ple. When working with level sets to represent triple junctions and
more than two phases, the general idea is to use more than one level
set Tunction. There are several choices for the representation of the
different phases and their boundaries by level sets. A first idea was
proposed in {Zhao, Chan, Merriman and Osher, 1996) (and then ap-
plied in {Samson, Blanc-Féraud, Aubert and Zerubia, 1999)): a level
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Image segmentation by level sets 3

set function is associated to each phase or each connected component
Q;. But then natural problems of vacuum and overlap appear. These
have been solved by adding additional constraints (see (Zhao, Chan,
a different multiphase level set representation, and by definition, the
distinct phases are disjoint (no overlap) and their union is the domain
2 (no vacuum); also, we need fewer level set functions to represent the
same number of phases.

To summarize, in this paper we propose: (1) an extension and gen-
eralization of the previous active contour model without edges based
segmentation (introduced and studied in (Chan and Vese, 1999)), to
the minimal partition model (1); the proposed model can identify in-
dividual segments in images with multiple segments and junctions, as
compared with the initial model (Chan and Vese, 1999}, where the
detected objects were belonging to the same segment; (2} we also pro-
pose a new representation for multiphase motion by level sets (requiring
only log 2™ level set functions for n segments or phases), allowing triple
junctions, for example. Finally, the model inherits all the advantages
of the previous active contour model without edges: detection of edges
with or without gradient, detection of interior contours, automatic
change of topology, robustness with respect to noise. The model can
perform active contours, in parallel with segmentation, denoising and
edge detection.

Many other authors have studied the minimization of the Mumford-
Shah functional and related problems for segmentation, both in theory
and in practice. The existence of minimizers of (1) has been already
proved in {Mumford and Shah, 1989); then in (Morel and Solimini,
1988), (Morel and Solimini, 1989), (Ambrosio, 1989), (Dal Maso, Morel
and Solimini, 1992), for a weak formulation of the general Mumford-
Shah problem. General results of existence and regularity, in any di-
mension, in the piecewise-constant case (1), can be found for instance
in (Massari and Tamanini, 1993}, (Tamanini, 1996), (Tamanini and
Congedo, 1996), {Leonardi and Tamanini, 1998). Approximations to
the Mumford-Shah functional have been proposed and studied in (Am-
brosio and Tortorelli, 1990), (Ambrosio and Tortorelli, 1992), (March,
1992), (Chambolle, 1992), (Chambolle, 1995), (Koepfler, Lopez and
Morel, 1994), (Zhu, Lee and Yauille, 1995), (Zhu and Yuille, 1996),
(Shah, 1996}, (Chan and Vese, 1997), (Vese and Chan, 1997), (Shah,
1999), {Chambolle and Dal Maso, 1999}, (Bourdin, 1999), {Bourdin
and Chambolle, 2000), and many others. In the context of image seg-
mentation, partition and perceptual organization, we would also like to
refer the reader to (Shi and Malik, 2000). Other papers related to the
topic of this paper are: (Zhao, Chan, Merriman and Osher, 1996) for a
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4 T. Chan and L.Vese

variational multiphase transition model by level sets, {Samson, Blanc-
Féraud, Aubert and Zerubia, 1999} for an application of the technique
in (Zhao, Chan, Merriman and Osher, 1996) to image classification,
(Paragios and Deriche, 1999) for a coupled geodesic active regions
model for image segmentation, and (Sharon, Brandt and Basri, 2000)
for a fast multiscale image segmentation; finally, we also refer the reader
to {Yezzi, Tsai and Willsky, 1999) and (Yezzi, Tsai and Willsky, 2000)
for related coupled curve evolution approaches for image segmentation.

For general expositions for segmentation of images by variational
methods, both in theory and algorithms, we refer the reader to (Mum-
ford, Nitzberg and Shiota, 1993} and (Morel and Solimini, 1994}. Also,
for an exposition of geometric PDE’s and image processing (including
snakes, active contours, curve evolution problems), we refer the reader
to {Sapiro, 2001).

The outline of the paper is as follows: in section 2 we present the
general terminology for level sets and we recall the active contour
model without edges. In section 3 we present the general model for
segmentation. In section 4 we validate the model on several numerical
results, and we end the paper by a concluding section.

2. Preliminary notations and terminology

2.1. REVIEW OF THE LEVEL SET METHOD

(Osher and Sethian, 1988) proposed an effective implicit representation
of evolving curves and surfaces. Giving a curve C, as the boundary of
an open set w, we represent the curve € via the zero level set of a scalar
Lipschitz function ¢{z,y) (called level set function) such that

dlz,y) >0inw
{ $lz,y) <0in Q\ w
#(z,y) =0 on dw.

(see Figure 1).

A typical example of level set function is given by the signed Euclid-
ian distance function to the curve. Using this representation, geometri-
cal quantities, properties and motions can be expressed. For example,
using the Heaviside function H(z), equal with 1 if z > 0 and with 0 if
2z < 0, the length of C and the area of w can be expressed respectively
by ({Evans and Gariepy, 1992})):

C1= [ IVE@), ol = [ H(@)dody. @)
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Image segmentation by level sets 5

¢<0

Figure 1. A curve given by a level set function ¢, partitions the domain into two
regions: {¢ > 0} and {¢ < 0}.

We mention that the first integral is in the sense of measures.

Considering any C' approximation and regularization I, of the
Heaviside function as ¢ — 0, and denoting by 8. = H. (an approxima-
tion to the one-dimensional Dirac delta function &y}, we can formally
write the associated Enler-Lagrange equations obtained by minimizing
the above functionals with respect to ¢, respectively:

(qb)dw(lgzl) =0, &(¢)=0.

In (Osher and Sethian, 1988), a rescaling is made replacing 6.{¢) by
|V¢|, and the gradient descent flows are considered, giving:

¢
at ]V¢|7 ( Z,Y, 0) = QSO(m)y)' (3)
(motion with constant speed, minimizing the area), and
5‘¢>
div 0 . 4
= [Veldiv (5 ¢1) $(2,1,0) = do(z,9) (4)
{(motion by mean curvature, minimizing the length).
In the previous equations, 3%%}7{ represents the unit normal to the

curve at a point (z,y) € C, and div(l-g%(%’—%) représents the curvature

of the level curve passing through (z,y).

For more recent and general expositions on the level set method
and applications, we refer the reader to (Sethian, 1999) and (Osher
and Fedkiw, 2000).

2.2. REVIEW OF THE ACTIVE CONTOUR MODEL WITHQUT EDGES

We now recall the active contour model without edges from (Chan and
Vese, 1999). Given the curve C = dw and two unknown constants ¢
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6 T. Chan and L.Vese

and ez, denoting (1 = w, §l2 = O\ w, we minimize the following energy
with respect to ¢1,cp and C:

. . f C . o
Faler,e,C) = jg luolz, y) — 1| dzdy (9)

1w

+ f luo(z, y) — C2|2d$dy + v|C|,
Qa=0\w

or in the level set formulation, with C = {{z,v)|¢(z,v) = 0}, (Chan
and Vese, 1999):

F2(Clac2)q§) = f |’U.g($,y) - C1|2d$dy + [ |ug(sc,y) - C2|2d$dy
$>0 $<0

+v|C]|

= [ uo(a,y) = erPH(@)dody + [ fuo(z,y) = cal’ (1 — H(g))dady
94 Q

+v [ [VH@)

Minimizing the energy Fb(cy,c2, ¢) with respect to ¢ and cp, we
obtain: ¢; = mean(ug) in §;, for i = 1,2.

Considering again H, and &, any O approximations and regulariza-
tions of the Heaviside function H and Delta function dp, as € = 0 and
with H! = §., and minimizing the energy with respect to ¢, we obtain
the gradient descent flow:

d¢ Vg

5 = 0e(¢) [Vdi"(w) — o — ex|* + Jup — 02|2]-

We also use
[ 1VE@)ldzdy = [ 5.(8)IValdady,

with H! = d.. This model performs as active contours, looking for a 2-
phase segmentation of the image. A natural generalization is introduced
in the next section.

3. The description of the general model

In this section, we show how we can generalize the previous 2-phase
active contour model without edges (Chan and Vese, 1999). We note
that, using only one level set function, we can represent only two phases
or segments in the image. Also, other geometrical features, such as triple
junctions, cannot be represented using only one level set function. Our
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Image segmentation by level sets 7

goal is to look for a multiphase level set model with which we can
represent more than two segments or phases, triple junctions, and other
complex topologies.

In the classical muitiphase approaches by level sets, as in {Zhao,
Chan, Merriman and Osher, 1996), a level set function ¢; is associated
with each phase labeled i. A region or phase 2; is therefore defined by:

Qi = {(m>y) €8 qﬁt(may) z 0}1

and the boundaries between phases are defined by the union of the
zero-level sets of ¢;, each boundary being represented twice. This for-
mulation allows for triple junctions, for example. Again, each region
or phase has its own private level set function. This function moves
each level set with a normal velocity depending on the proximity to
the nearest interface, thus vacuum and overlapping regions generally
develop (see (Zhao, Chan, Merriman and Osher, 1996) for more details
on this model). In order to prevent vacuum and overlap (i.e. to ensure
2; digjoint and U;); = 1), the following condition has to be always
satisfied:

T

> H(i) =1 for all (z,y) € Q,

=1
which was enforced in (Zhao, Chan, Merriman and Osher, 1996) and
(Samson, Blanc-Féraud, Aubert and Zerubia, 1999} as an additional
term in the energy to be minimized with respect to ¢;, related to a
Lagrange multiplier, of the form:

[ H($) - )Pdad.

This condition has {0 be reinforced numerically, at each step. For prob-
lems of phase transitions for instance, where in general only a small
number of phases are involved, this multiphase model is adequate and
not too expensive. However, for image segmentation, we often need to
represent many more phases, and then this classical approach becomes
computationally expensive,

We now introduce a new multiphase level set representation in order
to minimize efficiently the functional in (1), for any image ug. We will
need only logn level set functions to represent n phases or segments
with complex topologies, such as triple junctions. In addition, our for-
mulation automatically removes the problems of vacuum and overlap,
because our partition is a digjoint decomposition and covering of the
domain £ by definition. This is explained next.

Let us consider m = log n level set functions ¢; : {2 — K. The union
of the zero-level sets of ¢; will represent the edges in the segmented im-
age. We also introduce the “vector level set function” ® = (¢4, ..., dm ),

ChanVeze_CAM_00_14.tex; 7/12/2000; 14:40; ?.7



8 T. Chan and L.Vese

and the “vector Heaviside function” H(®) = (H(¢1), ..., H(¢m)) whose
components are only 1 or 0. We can now define the segments or phases
in the domain 2, in the following way: two pixels (z1,71) and (z2,y2) in
§2 will belong to the same phase or class, if and only if H{®{z1,y1)) =
H(®(z2,2)). In other words, the classes or phases are given by the
level sets of the function H(®), i.e. one class is formed by the set

{{z,y)1H(®(z,y)) = constant vector € H{D(2))},

(one phase or class contains those pixels (z,y) of Q having the same
value H(®{z,v))).

There are up to n = 2™ possibilities for the vector-values in the
image of H{®). In this way, we can define up to n = 2™ phases or classes
in the domain of definition §}. The classes defined in this way form a
disjoint decomposition and covering of §}. Therefore, each pixel (z,y) €
Q will belong to one, and only one class, by definition, and there is no
vacuum or overlap among the phases. This is an important advantage,
comparing with the classical multiphase representation introduced in
(Zhao, Chan, Merriman and Osher, 1996).

We label the classes by I, with 1 < I < 2™ = n. Now, let us
introduce a constant vector of averages ¢ = (e1,...,cn), Where ¢f =
mean({ug) in the class I, and the characteristic function xy for each
clags I. Then the reduced Mumford-Shah energy (1} can be written as:

1
FXS(c,®)= /|U0—0112X1d$dy+b’§ > f|VXI|,
1<I<n=gm 1 1<]<n=2m ¥ 8
(6)

where the length term is given by:
1
Length(C) = = Z/ |Vxrl,
2 T /0

where C denotes the set of edges. In order to simplify the model, we
will approximate the length term by

Length(C) =~ Z [Q |V H ()]

(i.e. the sum of the length of the zero-level sets of ¢;). Thus, in some
cases, some parts of the curves will be counted more than once in the
total length term, or in other words, some edges will have a different
weight in the total length term. We will see that with this slight mod-
ification and simplification, we obtain very satisfactory results (it may
have only a very small effect in most of the cases, because the fitting
term is dominant). Also, the minimization of the Mumford-Shah energy
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Tmage segmentation by level sets 9

is not optimal for image segmentation, because it only allows for triple
junctions with 120° angles, and when an edge meets the boundary of
the image, it has to be only a right angle.

Therefore, the energy that we will minimize is given by:

Fu(c,®) = 3 / luo — crPxrdzdy + Y v f IVH(). (7)
1< <ngm i 1<i<m 79

Here, the set of curves C' is represented by the union of the zero level
sets of the functions ¢;.

Clearly, for n = 2 {and therefore m = 1), we obtain the 2-phase
energy (5) considered in our active contour model without edges. For
the purpose of illustration, let us write the above energy for n = 4
phases or classes (and therefore using m = 2 level set functions; see
Figure 2):

Fi(e,®) = [ funle, ) - exs (1) H(ga)dudy
+ [ Tuola, ) = exlH($2)(1 — H(go))ddy
+ [ u(e,y) - enP( - Hg)Hg)dady — (8)
+ [ uol, ) - coaf(1 = H($1))(1 ~ H(go))dady
+ v [ V@) +v [ [VH),

where ¢ == (11, €10, Cot, coo) 18 a constant vector, and ® = (¢, ¢a).
With these notations, we can express the image-function u as:

u = e H(¢)H () + croH ($1)(1 — H(2))
+ co1(1 — H(¢1))H (o) + con(l — H{¢1))(1 — H(2)).

The Euler-Lagrange equations obtained by minimizing (8) with re-
spect to ¢ and P are:

c11 = meanf{ug) in {¢1 > 0, 3 > 0}
c1g = mean(ug) in {¢1 > 0, ¢ < 0}
co1 = meanf{ug) in {¢1 < 0,¢2 > 0}
cgo = meanfug) in {¢1 <0, ¢ < 0},

Ve
)= (0= 0 = s~ o) 0

+((U»o — c10)® — (ug — 600)2)(1 - H(¢2))] },

- 6:(d1){ weliv(
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10 T. Chan and L.Vese

m
A

| S

6250

$1<0
$2<0

Figure 2. Two curves given by ¢1 = 0 and ¢2 = 0, partition the domain into four
regions: {¢1 > 0,42 > 0}, {¢1 > 0,¢2 <0}, {¢1 < 0,¢2 > 0}, {¢2 < 0,2 <0}

Figure 3. Three curves given by ¢1» = 0, ¢ = 0, and ¢3 = 0, partition the
domain into eight regions: {¢1 > 0,2 > 0,¢3 > 0}, {1 > 0,¢2 > 0,¢3 < 0},
{$1 > 0,42 < 0,¢3 > 0}, {1 > 0,2 < 0,03 < 0}, {¢h < 0,92 > 0,¢3 > 0},
{1 < 0,2 > 0,¢a <0}, {1 < 0,2 < 0,03 > 0}, {1 < B¢z <0,¢5 <0}

and
T = detga) {vaiv(2) = (00 = en)? = (0 o)) ()

+((uo —c10)® = (uo — 000)2)(1 - H(qbl))} }
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Image segmentation by level sets 11

We note that the equations in @ = (¢, ¢2) are governed by both mean
curvature and jump of the data energy terms across the boundary.

We show in Figure 3 the partition of the domain £ into eight regions,
using three level set functions.

Remarks:

A standard procedure, as in (Zhao, Chan, Merriman and Osher,
1996}, is to replace &:(¢;) by |V¢;| in the above equations. In our
numerical calculations, we keep d.(¢;) in these equations, and we use
a particular approximation of the Heaviside and Delta functions, pro-
posed in (Chan and Vese, 1999). Our approximations for H and &
are H.(z) = %(1 + 2 arctan (—g)), and 8, = H}, as ¢ — 0. Using these
approximations, interior contours are automatically detected.

It is easy to extend the proposed model to vector-valued functions,
such as color images (following (Chan, Sandberg and Vese, 2000)). In
this case, ug = (ug,1, ..., ug, ) is the initial data, with N channels (N =
3 for color RGB images), and for each channel ¢ = 1, N we have the
constants ¢f = (er3,...,cr,nv). In this case, the model for multichannel
segmentation will be:

N
Ey(er, @) = Z Z/;}IUQ:i—C[,i£2XId$dy+ Z V[Q|VH(¢1)|

1<I<n=2m i=1 1<i<m

Note that, even if we work with vector-valued images, the level set
functions are the same for all channels (i.e. we do not need additional
level set functions for each channel). The associated Euler-Lagrange
equations can easily be deduced.

This method can be extended without difficulty to higher order op-
timal approximations, such as piecewise-linear or piecewise-quadratic.

Finally, it is easy to show existence of minimizers for the variational
problem (7). The energy Fr(c, ®) from (7) can be expressed only func-
tion of x; = H{¢;), 1 < i < m, which are charactersitic functions.
Let’s denote this energy by Fp(x1, - Xm) = Fn{c(x1, ..., Xm), ©}. This
is true, based on the direct methods of the calculus of variations: taking
a minimizing sequence x¥, ..., x5, of 7, (k — oo), among characteristic
functions of sets of finite perimeter in O (i.e. with boundary of finite
length}, based on the lower semicontinuity of the total variation (Evans
and Gariepy, 1992), we can extract a subsequence, still denoted by
x%, ..., x%,, such that each ¥ converges to x; strongly in L'(Q) (where
v; 18 a characteristic function of a set of finite perimeter in {2 almost ev-
erywhere), and [, |Vy:| < liminfy o0 [o |Vx¥|. Therefore, because the
other (fitting) terms are continuous with respect to the L'(Q) topology,
we deduce that Fn(x1, ..., ¥m) < liminfz_eo Frnlxk, ..., x5, ), therefore
existence of minimizers among characteristic functions xi, ..., xm of sets

ChanVese CAM_00_14.tex; 7/12/2000; 14;40; p.11



12 T. Chan and L.Vese

of finite perimeter in 2. From this, the constant averages ¢y can easily
be obtained, and the piecewise-constant image u(z,y) = > erxr(z,y),
where xy, 1 £ 1 <n=2", are constructed from y;, 1 <i <m.

4. Experimental results

We present in this section numerical results on synthetic and real im-
ages. We will not give the details of our numerical schemes except to
mention that we use the same implementation already presented in
(Chan and Vese, 1999), which in particular, allows us to automatically
detect interior contours. In our numerical results, we fix the space step
Az = 1, the time step At = 0.1, ¢ = Az = 1. The only varying
parameter is v, the coeflicient of the length term. We give the cpu time
in seconds for our calculations, performed on a 140MHz Sun Ultra 1
with 256 MB of RAM. In our numerical algorithm, we first initialize
the level set functions by ¢?, then we compute the averages ¢s, and we
solve the PDE’s in ¢;. Then we iterate these steps.

We show in particular that triple junctions can be represented and
detected using only two level set functions, that interior contours are
automatically detected and also that the model is robust in the presence
of noise and complex topologies.

We first show in Figure 4 an example on a synthetic image, seg-
mented using two level set functions with up to four phases. The
image contains three objects of distinct intensities, all correctly de-
tected and segmented. This is an improvement of our 2-phase active
comtour model, with which all three objects would have the same inten-
sity in the segmented image, belonging to the same segment or phase.
We also show that our model inherits all the advantages of the previ-
ous one: robust with respect to noise, automatic detection of interior
contours and change of topology.

Because the energy which is minimized is not convex, and also that
there is no uniqueness for the minimizers, the algorithm may not con-
verge to a global minimizer for a given initial condition. It is then
natural to consider different initial conditions for the same image with
the same parameters, and to compare the steady-state solutions from
our numerical algorithm. This is illustrated in Figure 5, where (a) is
from Figure 4: we consider two additional initial conditions {b) and (c),
and we plot the energies versus iterations (see Figure 5). For (c), we seed
with small initial curves. Only using the initial conditions (a} and (c}
do we compute a global minimizer for this image. For (b), the algorithm
is trapped in a local minimum. For simple images, we think that some
initial conditions like (a) or {b} may converge to a global minimizer. But

ChanVese_CAM_00_14.tex; 7/12/2000; 14:40; p.12



Image segmentation by level sets 13

for real images with more complicated features, we think that initial
conditions of the type {c¢) should be used, which have the tendency to
converge to a global minimizer. This type of initial condition (c) is also
related to the region growing algorithm (Koepfler, Lopez and Morel,
1994). In Figure 5 we see that the energy is decreasing in all cases. We
also note that using (c), the algorithm is much faster (see Figure 6).

In Figure 7 we show a noisy synthetic image with a triple junction.
Using only one level set function, the triple junction cannot be repre-
sented. The classical models use three level set functions ({Zhao, Chan,
Merriman and Osher, 1996) and (Samson, Blanc-Féraud, Aubert and
Zerubia, 1999)). Here, we need only two level set functions to represent
the triple junction. We show their zero level sets, which have to overlap
on a segment of the triple junction. In Figure 8 we show another noisy
image with more triple junctions, forming different angles.

In Figure 9 we show an example of a color RGB image (three chan-
nels) with contours without gradient, or cognitive contours, following
(Kanizsa, 1997). We also see that this result is an improvement of the
result on the same picture from (Chan, Sandberg and Vese, 2000),
where the three objects had the same intensity in the end. Here, the
correct intensities are detected, for each object.

We show next numerical results on two real pictures (an MRI brain
image and a house), in Figures 10 and 11. We use here two level set
functions, detecting four phases. We also show the final four segments
detected by our algorithm. Here, we show how the model can handle
complex topologies. We see in Figure 10 that the four phases identify
quite well the gray matter, the white matter, etc. This is better than
what the human eyes can do.

Finally, in Figure 12 we show how the model works on a color RGB
image, where we use three level set functions ¢1, ¢2, ¢b3, representing up
to eight phases or colors. The algorithm detects six segments. In the
classical approaches, it would have been necessarily to consider at least
six level set functions. Note not all eight possible segments are present.

5. Conclusion

In this paper, we have introduced a new multiphase model for image
segmentation, by variational methods and level sets. The proposed
model is a common framework to perform active contours, denoising,
segmentation, and edge detection. The multiphase formulation is dif-
ferent than the classical approaches, and has the advantage that the
phases cannot produce vacuum or overlap, by construction (there is no
additional constraint to prevent vacuum or overlap), and it minimizes

ChanVese CAM_O0.14.tex; 7/12/2000; 14:40; p.13



14 T. Chan and L.Vese

Figure 4. Segmentation of a noisy synthetic image, using two level set functions.
We show from left to right and top to bottom, simulations at increasing time, as
follows. First two rows: the evolving contours overlay con original image; next fwo
rows: computed averages of the four segments c11, ¢10, €01, coo. The model detects
interior contours and concave shapes automatically. v = 0.0165- 2557, size=100x100,
cpu=30.00sec.
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Figure 5. Three different initial conditions and the corresponding energies versus
iterations.

as much as possible the computational cost, considerably reducing the
number of level set functions. We show in particular that triple junc-
tions can be represented and detected using only two level set functions.
Finally, the model performs well without a priori information on the
classes and their intensities. The model can be applied to other prob-
lems, such as texture segmentation and discrimination. We validated
the model on various numerical results.
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Figure 6. Results with the initial condition (c) from Fig. 5 (same parameters as in
Fig. 1(a)). ¥ = 0.0165 - 255, size=100x100, cpu=8.46sec (very fast).
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image segmentation by level sets 17

Figure 7. Results on a synthetic image, with a triple junction, using two level set
functions. We also show the zero level sets of ¢1 and ¢ {darker region: {¢; < 0}).
v =0.05 - 255%, size=64x64, cpu=3.51sec.

Figure 8. Results on another noisy synthetic image, containing several triple junc-
tions. All the boundaries can be detected and represented using only two level set
functions. v = 0.025 - 2557, size=64x64, cpu=11.35sec.
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Figure 8. Numerical results on a synthetic color pickure. We show in particular that
contours not defined by gradient can be detected. These are called cognitive contours
{Kanizsa, 1997). v = 0.4 x 2557, size=48x100, cpn=42.1Tsec.
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Figure 10. Segmentation of an MRI brain image, using two level set functions and
four phases. » = 0,01 - 2557, size=163x181, cpu=12.86sec.
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Figure 12. Segmentation of a real outdoor picture, using two level set functions and
four phases. In the bottom row, we show the four segments obtained. The computed
averages are: c11 = 159, cio = 205, epr = 23, and coo = 97. v = 0.01 . 255%,
size=103x89, cpu~7.88sec.

ChanVese_ CAM_00_i4.tex; 7/12/2000; 14:40; p.21



22 T. Chan and L.Vese

Figure 13. Color noisy picture with junctions; we use three level set functions rep-
resenting up to eight regions. Here six segments are detected. We show the final
zero-level sets of ¢1, d2, 3 (darker regions: ¢; < 0). v = 0,02 - 2557, size=100x100,
cpu—~65.45sec.
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