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POINT VALUE MULTI-SCALE ALGORITHMS FOR 2D
COMPRESSIBLE FLOWS *

GUILLAUME CHIAVASSA AND ROSA DONAT t

Abstract. The numerical simulation of physical problems modeled by systems of conservation
laws is difficult due to the presence of discontinuities in the solution. High order shock capturing
schemes rombine sharp numerical profiles at discontinnities with a highly accurate approximation in

smooth regions, but usually their computational cost is quite large.

Following the idea of A. Harten [14, 5], we present in this paper a method to reduce the execution
time of such simulations. It is based on a peint value multiresolution transform that is used to detect
regions with singularities. In these regions, an expensive high resolution shock capturing scheme
is applied to compute the numerical flux at cell interfaces. In smooth regions a cheap polynomial
interpolation is used to deduce the value of the numerical divergence from values previously obtained
on lower resolution scales.

This method is applied to solve the two-dimensional compressible Euler equations for two classical
configurations. The results are analysed in terms of quality and efficiency.
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1. Introduction. The computation of solutions to hyperbolic systems of con-
servation laws has been a very active field of research for the last 20 to 30 years and,
as a result, there are nowadays a variety of methods that are able to compute accurate
numerical approximations to the physically relevant sclution. The latest addition to
the pool of numerical methods for hyperbolic conservation laws are the modern High
Resolution Shock Capturing (HRSC) schemes. These schemes succeed in computing
highly accurate numerical solutions, typically second or third order in smooth regions,
while maintaining sharp, oscillation free, numerical profiles at discontinuities.

State of the art shock capturing schemes usually perform a ’delicate art-craft’
on the computation of the numerical flux functions. A typical computation involves
at least one eigenvalue-eigenvector decomposition of the Jacobian matrix of the sys-
tem, and the approximation of the values of the numerical solution at both sides of
each cell interface, obtained via some appropriately chosen approximating functions.
The numerical result is very often spectacular in terms of resolution power, but the
computational effort tends to be also quite spectacular.

Without doubt, the computational speed of the latest personal computers and
workstations has made possible that an increasing number of researchers become
interested in HRSC methods and, as a result, HRSC methods are now being tested
in a variety of physical scenarios that involve hyperbolic systems of conservation laws
(e.g. [7, 10, 19] and references therein).

When the underlying grid is uniform, the implementation of most of these shock
capturing schemes is quite straightforward and numerical simulations on uniform grids
are routinely used to investigate the behaviour of the different HRSC schemes in
use, and also their limitations. It is known that some HRSC schemes can produce
an anomalous behaviour in certain sifuations; a catalogue of numerical pathologies
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encountered in gas dynamics simulations can be found in [20], where it is observed
that some of these pathologies only appear when using very fine meshes.

When using very fine uniform grids, in which the basic code structure of a HRSC
scheme is relatively simple, the computational time becomes the main drawback in
the numerical simulation. For some HRSC schemes, fine mesh simulations in 2D
are out of reach simply because they cost too much. The numerical flux evaluations
are too expensive, and the computational time is measured by days or months on a
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configuration in [19] is 10-50 days in an HP710 or 1 to 5 days in an Origin 2000 with
64 processors.

1t is well known, however, that the heavy-duty flux computations are only needed
because non-smooth structures may develop spontaneously in the solution of a hy-
perbolic system of conservation laws and evolve in time, and this basic observation
has lead researchers to the development of a number of technigues that aim at re-
ducing the computational effort associated to these simulations. Among these, shock
tracking and Adaptive Mesh Refinement (AMR) techniques (often combined with one
another) are very effective at obtaining high resolution numerical approximations, but
the computational effort is transferred to the programming and the data structure of
the code.

Starting with the pioneering work of Ami Harten [14], a different multi-level strat-
egy aiming to reduce the computational effort associated to high-cost HRSC methods
has entered the scene. The key observation is that the information contained in a
multi-scale decomposition of the numerical approximation can be used to determine
its local regularity (smoothness). At discontinuities or steep gradients, it is impera-
tive to use a numerical flux function that models correctly the physics of the problem,
but in smoothness regions the costly exact value of an HRSC numerical flux can be
replaced by an equally accurate approximation obtained with much less expensive
means. The multi-scale decomposition of the numerical solution can then be used
as a tool to decide in which regions a sophisticated evaluation of the numerical flux
function is truly needed. In smoothness regions, Harten proposes [14] to evaluate
the numerical flux function of the HRSC scheme only on a coarse grid, and then use
these values to compute the fluxes on the finest grid using an inexpensive polynomial
interpolation process in a multi-level fashion.

Harten’s approach can be viewed, in a way, as an AMR procedure, in which grids
of different resolutions are considered in the numerical simulation, but in reality it is
far from being an AMR technique. The different grids are used only to analyse the
smoothness of the numerical solution. The numerical values on the highest resolution
grid need to be alweys available, because the computation of the numerical fluxes with
the HRSC scheme, when needed, use directly the finest-grid values. This is clearly a
disadvantage with respect to the memory savings that an AMR technique can offer
in certain situations. On the other hand, using the values of the numerical solution in
the direct computation has some nice features. First, it avoids the use of complicated
data structures, which is very useful when one is trying to incorporate the algorithm
into an existing code. Second, the availability of the numerical solution on the finest
grid guarantees that the ’delicate art-craft’ involved in the direct evaluation of the
numerical fluxes (via a sophisticated HRSC scheme) is performed adequately.

When memory requirements do not impose a severe restriction (as it often hap-
pens in many 2D, and also in some 3D, computations), the techniques proposed in
[14, 5, 22, 1] and in this paper can help to reduce the large running times associated to
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numertcal simulations with HRSC schemes. We view Harten’s approach as an accel-
eration tool, which can be incorporated in a straightforward manner into an existing
code,

The novelty of our approach with respect to the muitilevel strategies described in
[14, 5, 22, 1] lies in the multiresolution transform used to analyse the smoothness of
the numerical solution. We use the interpolatory framework, while in the references

mentioned above the cell-average framework is used. In addition, our implementa-
tion incorporates several features that improve the efficiency of the algorithm while
maintaining the quality of the numerical approximation.

The rest of the paper is organized as follows: In section 2, we briefly describe
the essential features of the HRSC schemes we shall employ in our simulations. In
section 3 we describe the interpolatory framework for multiresolution and its role in
our multilevel strategy, as well as some implementation details. Section 4 examines
the accumulation of error in the multilevel simulation. In section 5 we perform a series
of numerical experiments and analyse the results in terms of quelity, i.e. closeness to
the reference simulation, and efficiency, i.e. time savings of the multilevel simulations
with respect to the reference simulation. Finally, some conclusions are drawn in
section 6.

2. Shock Capturing schemes for 2D systems of Conservation Laws. Let
us consider a two dimensional system of hyperbolic conservation laws

—

(2.1) & + f(0)e + §0), =0,

where [ is the vector of conserved guantities. We shall consider discretizations of this
system on a cartesian grid G° = {(z; = idz,y; = jdy), i=0,. Nz j=0,., Ny}
that follow a semi-discrete formulation:

drf,;

D + D(U),'j = {J,

(2-2)

oy 4 . .
with the numerical divergence D(U)y; in conservation form, i.e.

= Foapy—Fiap; Gz — G2
(2.3) D) = S + 5 :
One typically has F}+1/2,j = F(Ui i, Uipmi)s Gijorja = G(Tsj—ty - Uijpm)s
where ﬁ(w’;,..,w‘k,;,m) and C?(ib"l, vy Whtsm) are consistent numerical flux functions,
which are the trademark of the scheme.

In this paper we shall use two numerical flux formulae, which are significantly
different in terms of computational effort,

— The Essentially Non Oscillatory (ENO) method of order 3 (ENO-3 hence-
forth) from [21], which uses the nonlinear piecewise parabolic ENQO recon-
struction procedure to achieve high accuracy in space.

-~ the Marquina’s scheme from [8] together with the Piecewise Hyperbolic Method
(PHM) [18] to obtain high accuracy in space {M-PHM henceforth}.

In both cases, the reconstruction procedure {piecewise parabolic ENO or piecewise

hyperbolic) is applied directly on the fluxes, as specified by Shu and Osher in [21].
The ENO-3 scheme uses Roe’s linearisation, and it involves one Jacobian eval-

uation per cell interface, while M-PHM uses a flux-splitting technique in the flux
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computation that requires two Jacobian evaluations per cell interface. Although M-
PHM is more expensive than ENQ-3, it has been shown in [8, 12, 9] that it is a pretty
robust scheme that, in addition, avoids (or reduces) certain numerical pathologies
associated to the Roe solver.

In both cases, a third order fully discrete scheme is obtained by applying a TVD
Runge-Kutta method for the time evolution as proposed in {21].

3. The Multi-level Algorithm. As explained in the introduction, the goal
of the multilevel method is to decresse fhe cpu time associated to the underlying
scheme by reducing the number of expensive flux evaluations. To understand the basic
mechanism by which this goal is achieved, let us consider, for the sake of simplicity,
Euler’s method applied to (2.2), i.e.

3.1 Ut = gn - 6t DOHE,.
(%] 13 3

If both U™ and U™ are smooth around (z;,y;) at time ¢*, then (3.1) implies that
the numerical divergence is also smooth at that location, thus we can, in principle,
avoid using the numerical flux functions of the HRSC scheme in its computation. On
the other hand, if a discontinuity appears during the time evolution (or when a steep
gradient makes it imminent), the Riemann solver of the HRSC scheme has to be called
necessarily to compute the numerical divergence, if the high-resolution properties of
the underlying scheme are to be maintained.

Consequently, the most important steps in the multilevel algorithm concern the
smoothness analysis of U™ and U™ (observe that the latter is unknown at time n)
and how this information is used in the computation of D(TF).

3.1. Interpolatory Multiresolution. Finite volume schemes for (2.1) produce
numerical values that can be naturally interpreted as approximations to the mean
values of the solution in each computational cell (the cell averages). Because of this,
all applications of Harten's idea known to us [14, 5, 22, 6, 1, 2, 17] have invariably
used the cell-average multiresolution framework (see [14] for definitions and details)
to analyse the smoothness of the numerical approximation.

However, in Shu and Osher’s framework, the numerical values can be interpreted
as approximations to the point-values of the solution. In a point-value framework for
multiresolution, the numerical data to be analysed are interpreted as the values of a
function on an underlying grid. Consequently, in our multilevel strategy the point-
value multiresolution framework is used to analyse the smoothness properties of the
numerical approximation,

Multi-scale decompositions within the point-value framework were initially intro-
duced by Harten {13] (and also independently developed by Sweldens [23]), and have
been extensively analysed in a series of papers [15, 3]. Here we only present a brief
summary to clarify the notation in the remainder of the paper.

One first defines a set of nested grids {¢', 1 =1,..,L} by

(32) (m‘i:yj) € gl<=>($2'i:y2rj) € gO

The values of a function v on G°® (which is considered the finest resolution level),
(v9)s,5, are the input data. Due to the embedding of the grids, the representation of
the function on the coarser grid G, its point values on &', is:

(3.3) vl =gy gy 1=0,.,Naf2h §=0,.,Ny/2
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To recover the representation of v on G*! from the representation on G' (the next
coarser grid), the following procedure is used :
— a set of predicted values is first computed :

5:3_1 = '”::/2 j2 if (mi,y5) € g
(3.4) o7t = Iz ys);0'] i (2i,y;) € G\ G

where T(.;.) denotes an r** order polynomial interpolation.
— The difference between the exact values (3.3), vg;"l, and ﬁij_l is then repre-
sented by the details, or wavelet coefficients :
I -1 -1 I
(3.5) dy = v — U5 (zo,y) €67

27

Observe that d’zp’% == (), because of the interpolation property. Thus even-

even detail coeflicients are never computed (or stored).
- Relations (3.4) and (3.5} lead immediately to

vyt =l e i (Ty) €G
(3.6) viyt = ey’ +dly I (o) € G\ G

Applying this procedure from [ = 1 to L, gives an equivalence between the discrete
set v° and its multiresolution representation : M2° = (v%,d%, .., d).

REMARK 3.1. In our numerical experiments we use o tensor-product interpolation
procedure of order 4 (r = 4). The corresponding formulae come from standerd two
dimnensional polynomial interpolation; explicit deteils can be found for example in [5]
(section 8).

The point-value framework for multiresolution is probably the simplest one, be-
cause the detail coeflicients are simply interpolation errors. When the grid is uniform
and the interpolation technique is constructed using a tensor product approach, it is
very simple to analyse the smoothness information contained in the interpolation er-
rors, which can then be used directly as 'regularity sensors’ to localise the non-smooth
structures of the solution.

3.2. The Basic Strategy. As observed in [5], the original idea of a multilevel
computation of the numerical flux function (in one dimension) described by Harten
in [14] cannot be used in a robust and general manner in 2D, The key point is then
to observe that it is the numerical divergence the quantity that should be adapted
to the multilevel computations. For the sake of simplicity, let us consider again the
simplest ODE solver: Euler’s method. When applied to the semi-discrete formulation
(2.2), we get
(3.7) gt - 0n = ot D),
and this relation shows that a multilevel computation of the numerical divergence
must be carried out within the same framework as the sets L‘fgm-&-i_ The idea to use
the numerical divergence instead of the flux for the mmitilevel computation was a key
step in the development of multilevel strategies in multi-dimensions in [5, 1]. Once
this fact is recognised, the choice of the particular framework used to analyse the
smoothness information contained in the numerical approximation is not crucial. We
propose to use the point-value framework because of its simplicity.
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As in [5], the computation of the numerical divergence D(Tj’") on the finest grid
is carried out in a sequence of steps. First the numerical divergence is evaluated at
all points on the coarsest grid G* using the numerical flux function of the prescribed
HRSC scheme. Then, for the finer grids, D is evaluated recursively, either by the
same procedure or with a cheap interpolation procedure using the values obtained on
the coarser grids. The choice depends on the regularity analysis of the approximate

solution, made with the help of its multiresolution representation.
Thug, the main ingredients of the a]gnﬁ‘r_hm are the f'nﬂnwing .

30 il Dl il 0l LA AQnol il Al AW

- The multz'resolg&tion transform described in section 3.1 to obtain the wavelet
coefficients of U™.

— A thresholding algorithm which associates to each wavelet coefficient a boolean
flag, bij, whose value (0 or 1) will determine the choice of the procedure to
evaluate D. The goal is to use this flag to mark out the non-smooth regions
of both U™ and U™, This is done as follows:

For a given tolerance parameter €, the tolerance at level { is defined as
e = €/2'. Starting from a zero value for all b};, one applies for each de-
tail coefficient the following two tests:

if |d§j| Z 6 = bﬁ_k jom =1 km=-2,.,2
if |di;] > 2 and 1> 1 = b7t oo =1 k,m=-1,0,1

The first test takes into account the propagation of information (recall that
the propagation of 'real’ information is limited by the CFL condition). The
second one aims at detecting shock formation. In a smooth region the local
rate of decay of the detail coeflicients is determined by the accuracy of the
interpolation and the local regularity of the function. The second test mea-
sures whether the decay rate is that of a smooth function, if this is not the
case, compression leading to shock formation might be taking place and the
location is also flagged (see [5] for specific details on both tests).

~ The multilevel evaluation of the numerical divergence.
For all points (z;,7;) € 6%, D¥(0);; is computed with the prescribed HRSC
scheme. Once the divergence is known on G, its value on Gi~1, DI™! (ﬁ ), is
evaluated using the boolean flag :

if B, =1 compute D'1(T);; divectly (with the HRSC method).
if ol =0 DUy = 1z, 90 DHDD).
Letting [ go from L to 1 gives us the values of D(ﬁ") on the finest grid G°.

REMARK 3.2. Recall that Dl_l(ﬁ)ij = pi-? (ﬁ)zr—li'zl—lj, thus the direct evalu-
ation of D‘[“l(ff}ij, is performed by computing the numerical fluz functions using the
values of U on G° : F(Uy-1;_p 1,0 Uni=tigm. ;) 0nd G(U; g1, -, Uigim1jym). Asa
consequence, the finest grid, G°, is always needed and no memory sovings is obtained
in comparison to the direct method (without multiresolution).

3.3. Some Implementation Details. In the original work of Harten {14}, the
flag coefficients are obtained using a multiregolution transform for each component

6



U multiresolution p multiresolution

MR transform 0.09 0.024

Maximum 0.014 -

Thresholding 0.026 0.027

Total 0.13 0.051
TapLe 3.1

Cpu time in seconds for the overhead steps of the multilevel algorithm. First column for all the
components of U, second one only for the density.

of the vector U. The thresholding algorithm is then applied to the largest resulting
wavelet coefficient, i.e di; = maz(|di; ()], |dij (ma)l, |dis (my)1; di (E)])-

For the Fuler equations of gas dynamics, the density retains all the possible
non-smooth structures of the flow (shocks, contact discontinuities and corners of rar-
efaction waves), thus it seems appropriate to derive the flag only from the multireso-
lution representation of the density, a modification that has also been implemented by
Sjégreen [22]. In our experiments, no significant differences are noted in the quality
of the numerical results obtained by computing the flag from the density only, thus
in the numerical tests we report the boolean flag is computed using only the multi-
scale information of the density. This option saves time in the overhead associated
to the multiscale algorithm. In table 3.3, we present the cpu time measured for both
methods for an initial grid G° of 512 x 128 points and 5 levels for the multiresolution
transform. We observe a reduction of the computational time by a factor of 2 in that
case.

In [22], Sjégreen presents numerical simulations for 2D systems of conservation
laws using a ”dimension by dimension” cell-average multilevel algorithm and uniform
meshes. This means that for the fluxes in the x-direction, ﬁ‘i“ /2,j» @ one dimensional
multilevel algorithm is applied to each grid line j = jy. Then, the same procedure is
applied to each line i = 4 to compute the y-fluxes. The major advantage of Sjogreen’s
implementation lies in its simplicity: only one dimensional procedures are used for the
multiresolution transform, the thresholding algorithm and the interpolation process.

We have implemented also Sjogreen version in the point value context and have
compared it with our algorithm, in which a fully bi-dimensional multiresolution trans-
form is used. From the quality point of view, the resulis are very similar and the
percentage of fluxes computed by the solver is the game in both cases. Nevertheless,
Sjogreen’s version turns out to be less efficient than the two dimensional one and, in
our implementation, a factor of 1.6 is observed between the corresponding cpu times.
The difference could be explained by the fact that each point of the domain is visited
two times by the multiresolution transform and thresholding algorithm (for the z and
y flux computations) and that this algorithm requires more memory access.

A Runge-Kutta ODE solver is applied to the semi-discrete scheme (2.2)-(2.3)
to obtain a fully discrete scheme. In [5, 1, 22], a flag vector is computed at the
beginning of each Runge-Kutta step between t® and ¢"+1, but it is possible to avoid
this computation for the last step. The third order TVD Runge-Kutta method of [21]
is defined as follows:

i* = 0n — 6t D(I™)

U = (30™ + U* — 6t D(U*)) /4
Ol = (O + 207 — 28t D(U*))/3,



gn g g, Ut
| 1 |

1 [
tn tn+ 6t/2 bttt

Fia. 3.1. Represeniation on the time axis of the intermediate steps of the third order Runge-
Hutta method.

and the intermediate steps can be represented on the time axis as in figure 3.1. Clearly,
/* is an order 1 approximation of i} 7+1 thus it contains similar non-smooth structures
at the same places, the mask coefficients obtained from its multiresolution transform
conld be used to compute U™ from [**, instead of deriving them from the U**
multiresolution transform. This modification reduces the computational cost of the
multilevel algorithm while keeping the same quality in the numerical results.

REMARK 3.3. The implementation of the multilevel strategy info an existing code
would then amount to the following:

—~ Define two additional matrices, one to store the scole coefficients of the mul-
tiresolution representation of the density, the other to store the mask coeffi-
cients.

— Include the multiresolution transform routine. Apply it {o the density velues
according to the guidelines in this section.

— Use the mask to modify the computation of the numerical divergence. Use the
numerical flur function of the scheme only when the mask value is 1.

4. Error Analysis. In [14] Harten performs a study of the accumulation of
the error in the multilevel strategy. When the underlying shock capturing scheme
is monotone, Harten shows that the global accumulation error, ie. the difference
between the true solution and the numerical approximation obtained with the mul-
tilevel algorithm, can be bounded in terms of the thresholding parameters and the
local truncation error of the underlying shock capturing scheme. In addition, if the
tolerance for thresholding is of the order of the local truncation error of the scheme
then the multilevel scheme is of the same order as the underlying shock capturing
scheme (see [14] for details). The main ingredients in his proof are the stability of the
multiresolution transform and the monotonicity of the shock capturing scheme.

The schemes we consider in this paper are not monotone, and an estimate on the
global error cannot be obtained. Keeping in mind that we view the multilevel scheme
as an acceleration tool, and that our target is to lower the cost that is needed to obtain
the numerical solution on the fingst grid, we only seek to control the global error
between the multilevel and the reference solution. The nonlinearity of the schemes
we are considering prevents us from carrying out a rigorous analysis similar to that
of [14], we conjecture that this error can be controlled due to the stability of the
multiresolution transform. In section 5.2, we perform several numerical experiments
that seem to indicate that

(4.1) |§,vref _ Umult”l S e

for some real number a > 1.



F1g¢. 5.1. Density reference solution for the test A at time ¢t = 0.2, oblained with 512 x 128
points and M-PHM scheme without multiresolution

5. Numerical experiments. This section is devoted to the presentation and
analysis of the results obtained with our multilevel algorithm. We focus on two
classical configurations for numerical simulations involving the Euler equations in 2D.
A detailed description of the flow structure, for both test cases, can be found in [24].

Test A : Double Mach Reflection of a strong shock

The problem involves a Mach 10 shock in air (v = 1.4) which makes a 60° an-
gle with a reflecting wall. The computational dormain is a a tunnel 4 units long
and 1 unit high, starting at z = 0, y = 0. Initially the shock extends from the

point =z = ‘14— at the bottom of the computational domain, to the top boundary.

The reflecting wall begins at x = i on this bottom wall. Post-shock conditions,

ff;e st = {8.,57.1597, —33.0012, 563.544), are assigned at the boundaries located to the
left of the shock; the air ahead the shock is left undisturbed and has density 1.4 and
pressure 1. Outflow conditions are applied at the right end of the domain, and the
values on the top boundary to the right of the shock are those of undisturbed air.

The finest resolution grid, G°, that we shall consider for this test problem has
512 x 128 points. The density obtained at time ¢t = 0.2 using M-PHM on G° is
disptayed in figure 5.1. We see that all the features of the flow are appropriately rep-
resented, including the jet-like structure near the reflecting wall. This is our reference
simulation. We shall apply the multilevel algorithm to this test case with L =5 and
€=05x 1073,

Test B : Mach 8 wind tunnel with a step The problem begins with a uniform
Mach 3 flow in a tunnel containing a step. The tunnel is 3 units long and 1 unit
wide, and the step is located 0.6 units from the left-hand end of the tunnel and is
0.2 units high. Inflow boundary conditions are applied at the left of the domain and
outflow conditions occur at the right end. Along all the walls of the tunnel, reflecting
boundary conditions are applied. Initially the tunnel is filled with a gamma-law gas
with v = 1.4, which has density 1.4, pressure 1.0 and velocity 3.

At time t = 4, the flow has a rich and interesting structure that can be accurately
described using M-PHM on a grid with 256 x 80 points, which is then considered as
our finest grid, G°, for this test case. In figure 5.2, we display the density distribution
at time ¢t = 4 obtained with M-PHM on G°. This is our reference simulation. We
shall apply the multilevel algorithm to this test case with L =4 and e = 5 x 1073,

5.1. Test results: Marquina’s scheme. In this first set of experiments we
apply the multilevel algorithm to the M-PHM scheme in order to compute the solution
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F1g. 5.2. Density reference solution for the test B at time t = 4, oblained with 256 x 80 points
and M-PHM scheme without multiresolution

to the previous test problems.

In figures 5.3 (Test A), 5.4 and 5.5 (Test B) we display the level curves of the
numerical solution obtained with the multilevel algorithm, at different times of the
flow evolution. For each simulation, we also present a second plot displaying only
the points of G® where the numerical divergence is computed directly with the HRSC
scheme. The graphical display is arranged so that it looks like a structure of adaptive
grids, similar to those used in numerical simulations involving AMR techniques. The
plots of the edapiive grids give a very good indication of the amount of work saved
by the strategy. It must be pointed out that these plots do not represent, as in AMR,
the various grids involved in the computation. We must remember that the multilevel
gtrategy uses the data on the finest grid for the direct flux evaluations. There is
only one CFL number, dictated by the finest grid, and the memory requirements
correspond to those of the finest grid (in fact they are slightly larger, since we need
two more matrices).

In looking at the plots of level curves, we readily observe that the numerical
simulation is of the same ’quality’ as the reference simulation. The plots of the
adaptive grids show that the smoothness analysis performed on the wavelet coefficients
is able to localise correctly the non-smooth structures of the flow. A direct evaluation
of the numerical fluxes is being performed in the neighbourhood of all singularities, as
well as in the shock formation process and, as a result, the numerical solution presents
the sharp shock profiles that are typical of a third order scheme such as M-PHM.

The plots of the adaptive grids give additional information also. As observed
in [24], the numerical results for test A are marred by small errors that are due to
the description of the initial data and to the fact that the boundary conditions on
the top boundary are set to deseribe the exact motion of the initial Mach 10 shock.
These errors are identified as non-smooth behaviour by the multiresolution-based
smoothness analysis and, as a consequence, there is some unnecessary refinement
in smooth regions, since no shock formation or evolution is taking place there. It is
important to notice that this phenomenon occurs for both the reference and multilevel
simulations. Through the plots of the adaptive grid structure, the occurrence and
relative importance of these errors can be clearly appreciated.

Notice also the refinement appearing at reflecting walls in both tests. The problem
of dealing with reflecting boundary conditions in high resolution simulations has been
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addressed by various authors in recent papers {e.g. [11] and references therein), and
here the multilevel algorithm can also help to detect which areas of the computational
domain are displaying a numerical behaviour susceptible of improvement. In addition,
it is clear that any improvement with respect to lowering the level of numerical noise
close to boundaries will produce in turn an increase in the efficiency of the multilevel
algorithm, since the unnecessary refinement will be eliminated.

5.2. Quality and Efficiency. As discussed in section 4, the question of gua.lity
will be analysed by measuring the difference between the multilevel solution U” and
the reference one, U,,I’;, s+ Our objective is to examine the relation between the tolerance

parameter € and the difference ||T" — UZ ||, measured in some appropriate norm,
which in our case we choose to be the (discrete) {j-norm. To examine the relation
between the tolerance ¢ and the difference ||T? — U™, #ll1, we consider the density, for
example, as a representative variable and compute

N Ny
(5.1) ZZ p:._g p’ref.J /lipref“h:

i=0 j=0

where N = (N, + 1) x (N, + 1) is the total number of points on the finest grid G°.

We apply the multilevel algorithm to test A with N, = 128 x 32 and L = 3 for
different values of the tolerance €. The error is measured, for the density p and the
pressure p, at time 0.2 and results are presented on figure 5.6. It is readily observed
that both ef and e} decrease with e according to (4.1), with & = 1.6. Numerical
experimentation indicates that this exponent is solution-dependent, but the behaviour
is similar in all test cases we have considered {(i.e. a > 1).

The results of figure 5.6 imply that the guality of the numerical solution cbtained
with the multilevel scheme, i.e. the closeness to the reference simulation, can be
controlled by adjusting the tolerance suitably.

The goal of the multilevel algorithm is to save time in the evaluation of costly
numerical flux functions, thus an important quantity is the percentage of numerical
divergences computed directly per time step, %f. Table 5.1 (for test A) and table
5.2 (for test B) show the maximum and minimum values for %f in the simulation.
Observe that, for a given test, the finer the grid, the smaller the percentage of direct
flux evaluations, since the direct evaluation of the numerical divergence is carried ouf
in a neighbourhood of the non-smooth structures of the flow, and the percentage of
computational grid cells involved in these regions decreases when increasing the grid
resolution.

A more concrete measure of the efficiency of the multilevel algorithm with respect
to the reference simulation is given by 8., the cpu gain for a given iteration, and
9, the gain for the global simulation. Introducing 27 and U2 as the cpu times at
iteration ster for the reference and the multilevel algorithm respectively, #.r and @
are defined as :

tu&er th’ter

F

(5.2) Oiter = —L  and 0= =1L,
T S

Table 5.1 (for test A) and table 5.2 {for test B) show the global gain for each
simulation. It is obvious that the global gain, 8, is problem dependent. In figure
5.7, we represent §(t). In the early stages of the computation, when there are very
few non-smooth structures in the flow, the gain is quite large; as expected, 6(f) is
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grid size §° % fmin — %fmax cpu gain 6

128 x 32 17.6 — b2.7 1.7

256 x 64 89 - 33.2 2.45

512 x 128 4.5 — 23.2 3.8
TABLE 5.1

Percentage of resolved fluz and cpu gain for test A at lime { = 0.2

grid size G %fmin — Jofmax Cpu gain 0

128 x 40 7 — 69.5 0.9

256 x 80 2.8 — 45 1.4
TABLE 5.2

Same as table 5.1 for test B af timet = 4

a decreasing function, and the gain is larger when we compute on finer grids. The
bottom part of figure 5.7 displays %f(¢) for these simulations. It can be observed
that the behaviour of 8 is roughly inversely proportional to that of % f.

There is an overhead associated to the multilevel computation. In table 5.3 we
show the cpu time for one step of the multilevel algorithm and one stage of the Runge-
Kutta method. These results have been obtained with test A and 512 x 128 points
in G° when %f has its maximum value, 23%. It is worth noting that the overhead
caused by the multiresolution transform and the threshold represents only a small
part of the total cpu time, = 2%, and that most of the time is spent in the numerical
divergence evaluation, = 96%.

To end this section, we apply the multilevel method, with the same underlying
HRSC scheme, to test A with a very fine grid of 2560 x 640 points. We set L = 7
and ¢ = 3.107%. In figure 5.8 we show a zoom of the the double-mach reflexion
region displaying the level curves of the computed density. The small mesh-size of
the underlying grid Gy used for the simulation reduces the numerical viscosity of the
shock capturing scheme and, as a result, we can observe the development of Kelvin-
Helmoltz type instabilities at the contact discontinuities. Such phenomena are not
observable for lower resolution grids, but in fact they correspond to physical effects
that have been reported in numerical tests in [16], where a 5th order shock capturing
scheme is being used, and also observed in real experiments [4].

In this case, the percentage of numerical divergences computed directly with M-
PHM grows from %f = 1% to %f = 10%, which leads to an estimated global gain
6 =7.5. From the practical point of view, it is important to notice that the estimated
computing time for the reference simulation, i.e. full M-PHM, on this fine grid is
approximately of one month, while the actual time for the multilevel computation
was 3-4 days!.

5.3. Test results: ENO schemes. Asobserved by Sjogreen in [22], a multilevel
strategy like the one described in this paper should lead to a considerable gain in
efficiency with respect to the reference simulation under the following conditions:

1. Large number of grid points

2. Computationally expensive underlying shock capturing scheme.
We have seen this to be the case in the previous section. In this section we would
like to compare the computational gain of the multilevel strategy when applied to the

Lalt the simulations are done with a PC 350-Mhz
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Multilevel algorithm  Reference algorithm

Transform 0.06 -

Thresholding 0.08 -

Dwerge.nce 6.9 138

evaluation

Other 0.15 0.15

Total 7.2 13.95
TABLE 5.3

Cpu time in seconds for the different steps of the multilevel and reference algorithms for one
Runge-Kutta stage. These values are obtained with the test A and the largest grid 512 x 128 and
with %f = 23.

grid size G°  %ofmin — %fmax cpu gain @

128 x 32 176 - 54.2 1.54

256 x 64 89 —- 384 2.2

512 = 128 45 - 257 2.9
TABLE 5.4

Percentage of resolved fluzes and cpu gain for test A with ENO-3 flurves af time t = 0.2

M-PHM scheme and to the ENO-3 scheme.

REMARK 5.1. It should be mentioned that some entropy corrections, as proposed
in [11], are needed neer the reflecting wall when using the ENO-8 scheme, to avoid the
occurrence of a carbuncle phenomenon in the case of the finest grid for test A; these
corrections are unnecessary for Marguine’s scheme. For test B, a Roe-matriz-related
numerical instability develops for grids of sizes 256 x 64 or larger, which leads to a
erash of the code [9]. These instabilities con be avoided by using appropriste eniropy
corrections on the bottom wall of the wind tunnel as specified in [11], but we will not
pursue this here.

Table 5.4 reports the minimum and maximum percentage of ENO-computed nu-
merical divergences and the global gain # for the simulation with test A. Comparing
with the results of table 5.1, it is readily observed that the gain is not as large as in
the case of the M-PHM based multilevel scheme, but remains significant. This fact
is consistent with Sjogreen’s observations, since the cost of a direct evaluation of the
numerical divergence by the M-PHM scheme is higher than that of the ENO-3 scheme
(by a factor of 2 in our implementation).

Tt is interesting to display also the gain per iteration 8;., as a function of %f.
In figure 5.9 we represent 8i..{%f) for the M-PHM based and ENO-3 based mul-
tilevel strategies. Notice that this representation is more or less independent of the
considered test case since the time evolution is not taken into account.

We observe that the gain is much more important for the M-PHM muitilevel
scheme and small values of % f. Observe also that the difference is rediiced when this
percentage increases, a fact that could be easily understood considering the following
(crude) estimate of 8.,

Npts
tmr + tthres + Nty + (NP - Nf)tf

ty
5.3 =
( ) NLP(tmf' + tgh.,-es) + )\tf + (1 — A)t;
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where ty is the cpu time to compute one value of the numerical divergence with the
HRSC scheme, tr the epu time for one interpolation and ., and t34,.s denote respec-
tively the multiresolution transform and thresholding cpu times (which are essentially
negligible, as shown in table 5.3). N, is the total number of grid peints, Ny repre-
sents the number of points where the numerical divergence is evaluated divectly, and
A = Ny /Ny,

Considering the same percentage of resolved fluxes for both schemes, i.e %f™ =
%fE (=100 }), we can write :

t
QM t;’f Nip(ttrans + tthres) + )\t? + (1 - )\)tl A + (1 - A)?)‘f'{_

iter __

5.4) er = ~2
64 g 67 py (terans + tenrea) 2P+ (1= Nt "2+ (1= N

since in our implementation t?"r /t? ~ 2.
The function

A+ (1- )8
2N+ (11— NB

is monotonically decreasing, and approaches 1 when A tends to 1. Moreover, the
smaller the ratio J, the faster the convergence to the limit value. In our computations,
the ratio B == t;/t; is approximately 1/56, which leads to g(.4) = 1.01 and explains
the behaviour observed on figure 5.9: when % f > 60% the muitilevel algorithm is no
longer computationally competitive, with respect to the reference simulation (see also
the first entry in table 5.2).

(5.5) g(A) =2

6. Conclusions. We have presented a multilevel algorithm designed to reduce
the high computational cost associated to HRSC schemes for hyperbolic systems of
conservation laws, and we have investigated the application of this multilevel strategy
to state of the art HRSC schemes using standard tests for the 2D Euler equations.

The numerical results presented in this paper point out that there is a significant
reduction of the computational time when using the multilevel algorithm, and confirm
Sjbgreen’s observations in {22]: the more expensive the flux computation, the better
the efficiency of the multilevel computation with respect to the reference simulation.

Our multilevel strategy follows the basic design principle of Bihari and Harten in
(61, but it is built npon the interpolatory multiresolution framework, instead of the
cell-average framework as in [1, 2, 5, 6, 22]. Through a series of numerical experiments,
we show that the strategy we propose offers the possibility to obtain a high-resolution
numerical solution on a very fine grid, at the cost of the user’s own numerical tech-
nique on a much coarser mesh. Its potential users might be researchers performing
computational tests with state of the art HRSC methods and using uniform grids.

The technique has a clear drawback: the discrete values at the highest resolution
level need to be always available. There are no memory savings with respect to the
relerence simulation. In [6, 17], the authors concentrate on solving the evolution
equations associated to the {cell-average) scale coefficients. While this option opens
the door to what might be an alternative to AMR, a fully adaptive algorithm with
selective refinemment and real memory savings, it also suffers, in our opinion, of some
of the drawbacks of AMR: the need of a special data structure which invariably leads
to a very complicated coding structure.

On the other hand, our approach (due in part to the use of the interpolatory
framework) is pretty transparent, even to the non-expert in multi-scale analysis, and
its incorporation into an existing hydrodynamical code is, in principle, much easier.
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Fi¢. 5.7. Time evolution of 8 (top) and %f (bottom) for test A (left) and test B (right) and
for different initial grid G0, o) 512 x 128, b) 256 x 64, ¢} 128 X 32, d) 256 % 80, ) 128 x 40.
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Fia. 5.8. Zoom of the double Mach reflezion region for Test A at t = 0.2 obtained with 2560 x 640
grid points.
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Fi1G. 5.9. Gain per iteration Bi1ep versus the percentage of resolved fluzes %f, for Marquina (x}
and ENO (0} schemes.
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