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Abstract

We simulate the axisymmetric pipeline transportation of oil and
water numerically under the assumption that the densities of the two
fluids are different and that the viscosity of the oil core is very large.
We develop the appropriate equations for core-annular flows using
the level set methodology. Our method consists of a finite difference
scheme for solving the model equations, and a level set approach for
capturing the interface between two liquids {oil and water). A vari-
able density projection method combined with a TVD Runge-Kutta
scheme is used to advance the computed solution in time. The simula-
tions succeed in predicting the spatially periodic waves called bamboo
waves, which have been observed in the experiments of Bai, Chen
and Joseph [1] on up-flow in vertical core flow. In contrast to the
stable case, our simulations succeed in cases where the oil breaks up
in the water, and then merging occurs. Comparisons are made with
other numerical methods and with both theoretical and experimental
results.



1 Introduction

Core-annular flow is a pressure-driven flow through a pipe of one fluid at the
core and another fluid in the annulus. This arises naturally for fluids with
a high ratio of viscosities because higher viscosity material tend to become
encapsulated by lower viscosity material. An industrial application is the
lubricated pipelining of crude oil by the addition of water. We want to
efficiently transport a very viscous liquid which, on its own, would require
costly work. However, when the viscous fluid along the wall is replaced by a
much less viscous immiscible fluid, in this case water, then the work required
for transportation is significantly lowered.

We compare our results to the experimental results of Bai, Chen and
Joseph [1]. Their oil density is 0.905 gem™3, oil viscosity is 6.01 poise, water
density is 0.995 gem™ and water viscosity is 0.01 poise. The waves are
axisymmetric and occur in a very robust regime of up-flow, occupying a
large area in the up-flow charts shown in Figures 16.1 - 16.4 of Joseph and
Renardy [10].

The average length of a bamboo wave decreases monotonically as the
oil input is increased for fixed flow rate of water. Disturbed bamboo waves
are observed when the driving pressure gradient is relatively large and the
flow is fast. They are observed in both up-flow and down-flow. The main
difference between up-flow and down-flow is that in down-flow, the driving
pressure gradient and gravity act in the same direction, making water the
heavier fluid which falls while the buoyancy holds the oil back, while in up-
flow, gravity hinders the water and the oil is encouraged to flow upwards.
Naturally, if the driving pressure gradient is sufficiently strong and dominant
then the difference between up-flow and down-flow vanishes. Thus disturbed
bamboo waves are observed in both regimes.

Applications of the level set formulation were used in ([4],[13],[25]) for
incompressible fluid flows. They found that it was best, at least close to
the front, to keep ¢ as the signed distance from the front to prevent the
development of steep or flat gradients in ¢. This can be done by solving a
simple initial value problem for ¢ which leaves the front location unchanged
for fixed time.

We will use the level set approach to solve the problem for core-annular
flows in 2D for up-flow and down-flow cases. Horizontal case is tested without
the gravity.

Chapter 2 summarizes the equations of motions. Chapter 3 summarizes



the numerical formulations for core-annular flows. Chapter 4 discusses the
numerical procedure. Chapter 5 shows our results and our figures. Chapter
6 describes future work.

2 Governing Equations of Motion

2.1 The Equations of Motion

Two-fluid flow is modeled with the Navier-Stokes equation:

%%+U.VU:%(WVP+V-(2;LS))+F (1)

where p is the density, u the viscosity, S the viscous stress tensor:

Sij - 5(8:121 + 8335,'),

(2)

and F' the source term for the momentum equation. In our calculations,
the body force F' includes the gravity and interfacial tension force. In core-
annular flow, the pressure P is decomposed into two parts, P = ~fz + p,
where f is the driving pressure gradient. The velocity field u is subject to
the incompressibility constraint:

V-u=0. (3)

The two Huids are immiscible. In this paper, Fluid 1 is oil and Fluid 2 is
water. Density and viscosity are constant in each phase but may be dis-
continuous at the interface. We use a level set function ¢ to represent and
capture the interface which is being moved by the following equation:

o¢

—a?—l—u-ng:O. (4)

2.2 Axisymmetric Flow Equations

We now simulate the axisymmetric pipeline transportation of oil and water.
For axisymmetric flow, there is no flow in the 8 - direction and all § derivatives
are identically zero. So we consider only two variables, r the radial direction
and z the axial direction. We define the fluid velocity by the vector u = (u, v)
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where u = u(r, z) is the radial component of velocity and v = v(r, z) is the
component in the axial direction. The governing equations for axisymmetric
flow are

au+ a_u_|_ % et l _9_84_52 2 au +£ 8v+8_u
ot " Yar "'z T o\ ar T rar “or Bz ar oz

1 %
L (2u2) + onb (94, )
ov_ v ov _ L[ 0P 10( (9 du\\ 0 (, 0
ot " Yo Ve T 0 br " ror \ F\or " oz oz \ Moz
+okd($)¢a) + 9 (6)
and the incompressibility constraint is
1 [ 3(ru) v
;(67")_*—83: 0. U

2.3 Parameters for Equations

In dimensional terms in core-annular flow, the pipe radius is denoted by s,
the base velocity is u = (0,Vi{r)),i = 1,2, and the interface position is
r = Ry, where P, — P, = ¢/R; and o is the interfacial tension. The pressure
gradient in the axial direction is a constant. Also, dP/dx = —f. There are
four dimensionless parameters :

m = pa/pr, a = Ry/Ry, (= pa/p1, K = ([ + pr9)/{f + p2g), (8)

where K measures the ratio of driving forces in the core and annnlus. We
choose the centerline velocity to be

2
Vol0) = (f + pgg)%.ﬁl, where A = mK +a® — 14+ 2(K — 1) loga. (9)

The dimensionless base velocity field is (0, V (r)) where

i) = { FE P D) 1Srse gy



The interfacial tension parameter is .J = o R, p1 /12 and the Reynolds numbers
Re; are defined by Re; = p;Vo(0)Ry/ ;.7 = 1,2, where Re,/Re; = m/(. For
our numerical simulation, we choose some initial data corresponding to the
following parameters:

¢(x(r,z)) = A(0) * cos(f xz) + R (11)

where A(0) is the amplitude, 8 the periodicity, and R; the interface position.

3 Numerical Formulation

3.1 Level Set Function

We construct a level set function ¢ such that the interface between two
different fluids is the zero level set of ¢. We initialize ¢ to be the signed
distance from the interface using the re-distance algorithm of [19]. So the
interface is given by

P = {a|¢(z,t) = 0}. (12)

We take ¢ < 0 in the oil region and ¢ > 0 in the water region. Therefore we
have

<0, ifx € ail
Pz, t) {=0, ifecel (13)
>0, if x € water.

Now we let

_ ) Wi if¢<0 (14)
WUwater lf ‘?5 > 0

where u is the fluid velocity. The idea of the level set method is to move ¢
with the correct speed u at the front using the following differential equation:

¢t+1&'v¢:0. (15)

We must reinitialize, using the simple algorithm developed in [26] to keep ¢
as the signed distance, at least near the front. Additionally, we save com-
putational time by performing these calculations only near the front. There
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gorithms available; we use the relatively simple al-

are several localization al 1S
gorithm developed in [21]. We can rewrite the variables by using the level
set function ¢ . The unit normal on the interface, drawn from the oil into

the water, is

V¢

n=—— 16
4] (16)
and the curvature of the interface is
V¢
b=V e, 17
W )

Since the density and viscosity are constant in each region, they take on two
different values depending on the sign of ¢, and we can write

p(¢) = Poil + (pma,te'r - pozl)H(QS) (18)

and

ﬂ(¢) = oit + (Ju'water - .U’oil)H(qﬁ) (19)

where H(¢) is the Heaviside function given by
if <0

if¢=0 (20)
if ¢ > 0.

H(¢) =

[l 2 [ S e

The fact that the surface tension can be written as a delta function at the
interface has been used by Unverdi & Tryggvason [27], and Brackbill, Kothe
& Zemach {3]. The form we use here is due to Chang, Hou, Merriman &
Osher [4].

3.2 Dimensionless Form

It is convenient to use the dimensionless form of ( 5). We use the following
six dimensionless variables

z = Rx* u=Wu* t=(R/Vy)t*
(21)
P=P'pu(Vo)® p=pupr* (= pouatt"



where the superscripts * denote dimensionless variables, R is the undisturbed

interface position and V4 is the centerline velocity. Substituting the above
dimensionless variables into ( 5) and dropping the *, we have

QE.F @_Fva_u o 1 _?_l?_+__1__ lﬁ 9 a_u _}_m(?m @_Fa_u
at " “or or  p or " Re \rar \“" 5 5z \"\or " oz

u 1 O¢
—2T—2) ¥ mmé(@-a—T) (22)
_ajj__*_ ?E_l_ 6_1} = E _B_P_F_}W _]L.?__ @4_3_” +_C?_ 2 8_’0
ot Yar Ve T o 8z " Re\ror \'"\&r T oz 3z \“Hox
1 ¢ R
S (P) o | 2
oD ) + 70 (23)

: . 2
where the Reynolds number Re = L‘%, the Weber number We = %.
Now the density and viscosity, respectively, are

p(¢) =n+(1—nH(¢) (24)

we) =v+(1-mH(4) (25)

where 7 = poit/Pwater 04 ¥ = ot/ water 2r¢ the density ratio and the
viscosity ratio, respectively.

3.3 Projection Method

This method was proposed independently by Chorin [5] (1968) and by Temam
(1969), while an explicit version of such a method was presented by Fortin et
al. (1971). This explicit method is a fractional step method with first-order
accuracy in time. At the first step, we compute explicitly a provisional value
u* with

u* —u"

At

which is the momentum equation without a pressure gradient. Note that
only the discretization in time is considered here. Then, at the second step,
we correct u* by considering the equations:

utt — g 1
Sy ve— E(_VP) (27)

= L(u") (26)




v-outt =0 (28)

By taking the divergence of Eq. { 27) and by making use of ( 28), which states
that «™! must be a divergence-free vector, we get the Poisson equation

1 1
—V. - u =V - (=VP). 29
AV W =Y (CVP) (29)
The boundary condition for P is obtained by projecting the vector equation
{ 28) on the outward unit normal n to the boundary I'. Thus, we obtain the
Neumann condition

apP\™* 1, . \
(5;) = —E(UFH —ur) - n (30)
r

where u} is the (not yet defined) value of u* on I'. The condition of com-
patibility for the Neumann problem is

1 1 +1
— cutds = - n+l _ u*) . nd
t/V u*ds tfr(u u') - nds (31)

and it identically satisfies the condition fr ur - nds = 0 which expresses the
fact that the velocity on the boundary I' has a zero total flux. It is important
that the discretization with respect to space satisfies the above compatibility
condition.

3.4 Thickness of the Interface

To reduce the numerical difficulties presented by the Dirac delta function, we
shall give the interface a fixed thickness that is proportional to the spatial
mesh size. We replace p(¢) in equation ( 1) by a smoothed density function
which we denote as p,(¢) and is given by

pa(®) =1+ (1 = n)Hal$) (32)
where
1 ifgp>a
Hy(#)={ 0 ifg<a (33)
1+ % + 1sin(%2)) otherwise.



50(d) = { —(1+ cos(%‘é)) if |¢] < & (34)

2
0 otherwise

where « is the prescribed "thickness” of the interface (usually 1.5Az in our
calculations).

4 Numerical Procedure

We now describe the numerical discretization of the equations derived in the
previous section. The outline of our scheme is as follows:

Given ¢", defined at cells, and u™, defined at cell centers, we solve for
¢n+717un+l.

For each time step:

Step 1. Initialize ¢ (@,t) such that ¢ is a signed distance function to
the front.

Step 2.  Solve the governing equation ( 1) and get the velocity w™*! .

Step 3.  Update the level set function ¢* to ¢™™'.

Step 4. Reinitialize ¢ .

4.1 Solving the Governing Equations
4.1.1 Spatial Derivatives
We compute L({u") and u - V¢ using high order ENO upwind scheme for

the convective terms and central differencing for the viscous and curvature
terms.

4.1.2 Convection Terms

The convection terms in ( 1) are discretized as:

u- Vo = Ui (Piv1/25 — ¢’iw1/2,j) T Ui,j(¢i,j+l/2 — ¢v:,j—1/2) (35)

Ar Az
. Ui, j ('U'i+1/2,j —Ui1y25) | Vi (Uigrize — Uij-1/2)
u-vVu An + Az (36)

where ¢;i1/2; and w0 ; are calculated by high order ENO scheme.
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4.1.23 Viscous and Curvature Ferms

We use central differencing for computing the viscous and curvature terms.
For the discretization of the divergence of the stress tensor 2D, we have:

oupy = [ HEOEE) + 2%+ 2) - 2opy)
V(Z“D)‘( VAo N L ) 37

_ ( 1D (r(2uD,u)) + De(p(Dyv + Dou)) — 1 (20%) )
%DT(T',U,(DT’U + Dyu)) + D(2uD,v) i

where the difference operators are defined as:
For the u-direction case,

D.fi; = (firyyas — fimrjag)/Ar

Dy fivappg = (farrg — Figh/Ar
Dofig = (figrije = fig-1/2)/ Az
Dy fijiayn (figr1 — Fij)/ A
Hip1/2,5 = p(2, 7)), pae /2,4 = pli—1,7)
1, .. . .
tig = S(p(hd) +pGE-1,7)

Lo -
pigrie = (=170 + p6 ) + p( = 1,7+ 1) + pli,j + 1))

1 ) :
pig-rjy = (i = 1,7 = 1)+ pli, 5 — 1)+ pi = 1,5) + (i, 1)
Vi+1/2,5+1/2 v(t, § + 1), vicip ez = v(— 1,5+ 1)
Visija -2 = V{5 5), Yoz =v(E—1,7)

r = rld) £ =1.9).

The v-direction case is calculated similarly. For discretization of the curva-
ture x(¢) =V - ;g¢|= we have:

19 % o [ 2
") = T ( |v¢|) Yo (@z) (58)

Vo] = \/ (%)Z(g%)z. (39)




4.1.4 Surface Tension

The surface tension is prescribed as

1 k(¢)o(¢)Ve
We p ' (40)
The discretization of the surface tension at cell (i,j) is
[e(@)(B)prlis = K(D)i30(0)is(dr)is (41)

where

fig = —(kiy5) + (i — 1,7)

2
6B)s = F60001)+ 56 - 1.3))
(Gr)iy = ¢i+l/2,j;r¢i——1/2,j

95(1:.7) - ¢('& — 1,j)

Ar
pg = 3(6lid) +pli—1,5).

4.2 Semi-Implicit Method for Viscosity Term
4.2.1 Semi-Implicit Scheme

We use an unconditionally stable method for the viscous terms in two- di-
mensional flow [14], which is applied in the following way to our axisymmetric
case:

Bu_ Bu u _ L( P 18( (0 ow\\ 8 ( (% ou
a " Yar " Yar T P ar “rar U \""ar 5z \"'\or " oz

1 %
- (QM;) + Uﬂé(éﬁ)fﬁr) (42)
§3+ mamg+v?mg — },. _._a£+li P @4_@ +£(2 8_’1)
g " or or  p O 3‘6?‘ P \or T oz 5z \ Moz
T
+0oK(9)ds) + g (43)
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Here, we need to change the I-term to the following form:
18 ov wou 0 ou
== el ROU L 2 (2], 44
T Or (TM(BT))+T8:E+3T (“8:6) (44)
So we have the following semi-implicit formations:

ut —u” 10 ou* b, dv™  ou*
R ;5;(?‘(2“@7»)%5(”(“5?*33;)) (45)

u*
~2p— + explicit — terms,
T

p* — " 10 ov* d ou™ i ou*
el FE(T“(BT))+EE(“”5}”)+?6x (46)

0 ov* .
+—{ 2u + explicit — terms,
Oz ox

where the inertial terms are treated as explicit terms. Here u* depends on
1" only explicitly but v* is coupled to »* implicitly. From equation { 45) we
solve for u* first. Next, we substitute u* in the right side of equation ( 46)
and solve for v*.

4.2.2 Factorization

We adapted the factorization technique in [15] to our scheme so we need only
solve a tridiagonal system and the error of factorization is of order O(A#?).
This semi-implicit scheme reduces our computing time. The equation {4.11)
can be expressed as

At {10 o} d o 1 . .
{[ — ? [;E (2#5;) o o (,u—ég) — 2,uT—2} } u* = explicit — terms,
(47)

and the equation (4.12) can be expressed as

At 0 %, s, . .
{I - [BF (”"E) + B (2;;—5}»)] } v* = explicit —terms. (48)

As the full explicit scheme, this semi-implicit scheme is first order in preci-
sion. Although it is easier to solve than the coupled system, it still requires
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inversions of a laree

LASLER Tu i 1 ) v

parse matrix. We applied a

L4 il W ]
SO I R o ) PRAE N vy . = LI N A LA L A e e L

Sr
the left-hand sides of equations

(47) and ( 48)
(=5 B o) -5 o (o))
{I + % [Q,u (55 ”u* = explicit — terms, (49)

At | 0 0 At o ad . .
{I — ? [5 (TME)}} {I — ? {% (Q,ua—x)} } v* = explicit — terms.

(50)

The inversion of the left-hand side of equations { 49), ( 50) requires solving
only tridiagonal matrices; this results in a significant reduction in computa-
tion. In fact, the solution of these tridiagonal systems can be done in only
O(N) operations (where N is the number of grid points) and is insignifi-
cant compared to the complexity for obtaining the solution of the pressure
equation.

4.2.3 Stiffness of Viscosity

The viscosity of oil is very different from that of water while the densities are
similar. The Reynolds number for the water annulus is roughly 600 times
that of the core oil. So the large Reynolds number in the water and the
much smaller Reynolds number in the oil impose severe restrictions on the
time step size, according to the stability criteria for the explicit formulation.
This suggests the method of implementation for the viscous terms.

4.3 Solving the Pressure Term

We use the PCG(preconditioned conjugate gradient) method with Incom-
plete Cholesky Decomposition as a preconditioner to solve the resulting Pois-
son equation for the pressure:

vm?nqx Vo (51)

(12
10 (r a (1 1 /18, , o
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Then multiplying by » on hoth sides to make a symmetric systemn,

5@; (%PT) + ‘é% (ng) L (w( ") + %(w )) (53)

For the left hand side of the equation, we use the following discretization:

Ti41/2,5 P12 e P
_'?.(EP Yis = -01'+1/2,J (£ “+li ’5’) '41/2,; (Pm PTMM) (54}
Br 'yt b Ar?
where
1 } ; .
Titl/2,5 = "2"(?"(1"?' 1,4) +r(5 5))
1, . ) .
Ticl/2§ = 5(?'(%3) +7(i —1,7))
1
Pitlfai = 3 (p(i+1,7) + p(3, 7))
1
P12 = 5(,0(3 J)+pli—1,7))
Py P(i+1,7)
P; = P(i,j)

Hml,j == P(?‘,—l,j).

For the right hand side of the equation, we adapt the same discretization. In
the above calculation, we are using the average value for r and p.

4.4 Time Step Restriction

The timestep At is determined by restrictions due to the convection, gravity,
viscosity and surface tension. The convective time step restriction is given

by

lulma.:r: I'U }mu.:z:
= <
At dt, = At ( ) < (55)

where [t|mar a0nd |¥]mae are the maximum magnitudes of the velocities. The
viscous time step restriction is given by

Heil  Mwater 2
At dt, = At Hoit. <1 56
(mam{ Poit  Pwater } (ATZ + A$2 ) ) - ( )
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where the ”?max” function returnsg as the maximnm value of its arguments.

Gravity can be included in the convection estimation. Note that |v|mes-+|g| At
is a linear approximation to a bound on the velocity in the vertical direction
due to the effects of gravity at the end of a time step. Then At( W) <
1 changes to

- 3 AalA
2lg|
or
— | —= <
2 Az T \/( Az * Az | — ! (58)

as a time step restriction for the velocity in the vertical direction. We rewrite
{( 55) and { 56) to

At 4F, 4AF,
= 2 T xr <
. ((dtc—l-dtv) + \/(dtc—l—dtu) + At Am) <1 (59)
where F' = (F,, F;) is the force due to gravity and surface tension. In the
d-function formulation, 5’%’3 is added to the right hand side of the equations

for velocity. In the GFM(Ghost Fluid Method){13}, ( 59) is written as

N ((dtc + dtv) + \/(dtc + d;v)2 - 4(At9)2 "}"4([3'@;)2) S ] (60)

where
_ /el
Bl =\ Aq (61)
and
— ol
Ats = \/min{ﬂoa: Puwater } (Man{Ar, Az})? (62}

represent the time step restrictions due to gravity and surface tension re-
spectively. In our numerical simulations, a CFL restriction of % is used.
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Therefore,

N ((dtc +dty) + /(dl, + db)? + 4D, )7 + 4(At3)2) B S

2 2

is used. Due to the factorization technique, we can relax our time step
condition by removing the restriction for viscosity term.

4.5 Re-Initialization Operation

It is numerically desirable to keep ¢(x,t) as a signed distance function. In
general, it is not always possible to prevent ¢ from deviating away from a
signed distance function. One way to reinitialize is to find the location of
the front with some interpolation method and compute the signed distance
function to this front [19]. This approach hag the advantage that it only
moves the interface up to the numerical accuracy of the interpolation method
but the disadvantage is its high cost and the likelihood of introducing some
spurious irregularities into the data. So a smoothing process is usually needed
in conjunction with this approach. A more elegant way is suggested in [20],
where the following Hamilton- Jacobian equation:

{qsf +S(go)(|Vg| —1) =0
d’(m: O) = ‘?50(33)

is solved to steady state, giving the desired signed distance function. This
method converges in a neighborhood of the front. The reason is very simple
since ¢ propagates with speed 1 along the characteristics that are normal
to the interface, and converges in time € to a signed distance function in a
neighborhood of I of width e. In [20], the authors approximate S(¢) by
¢
S, =— 65

with € = Az, and used a second order ENO scheme [20] to approximate the
space derivatives.

(64)

5 Results

Our experiments simulate the motions of Core-Annular flow. We numerically
simulate up-flow and down-flow cases of the interface in 2D for a vertical pipe
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case. Also we add our horizontal simulation of the simple case.

5.1 Numerical Study of Experimental Regime

We suppose that the flow is spatially periodic and determine the wavelength
of the waves from experimental data. The reason for assuming periodicity of
the flow is that the simulation for nonperiodic flow is not yet possible due to
the computational cost, because the pipeline in Bai, Chen and Joseph(1989)
is 90 inches, which is very long in comparison with its cross-sectional radius,
0.375 inches.

5.1.1 Example 1

We begin with the case with [Q,Q,] = [200,429] em®*min~!. In Figure
3, the experimental snap-shot shows the coexistence of waves with different
wavenumbers. The experimental hold-up ratio 4 is 1.39 for this flow and from
equation (3.4) in J. Li and Y. Renardy [14], we obtain the corresponding
value of @ = 1.28. The parameters for the corresponding PCAF(Perfect
Core-Annular Flow) are first calculated using the fixed values of V, and
a. The superficial oil velocity is V, = Q,/(7R2) = 10.34 cms™!. Then
we can calculate the other parameters of PCAF using equation (18.15) of
Joseph & Renardy [10] and other formulas. Now we have the parameters
Re; = 0.9498,m = 0.00166,n = 1.1,J = 0.07961 and K = —0.4552. We
initialize our numerical simulation with a very small perturbation amplitude
A(0) = 0.001, in order to keep the flow in the linear regime for a relatively
long time. Also, we choose the wavenumber o = 2.0 for this flow. According
to the formula for centerline velocity, we use V" = 16.9531. This simulation
is carried out on a 50 x 122 mesh over one spatial period on a domain [0,
1.28] x [0, 3.14]. Figure 4 shows our results for this case. We also display the
contour of the pressure field corresponding to the interfacial shape.

5.1.2 Example 2

Numerical simulations are performed by initializing with wavenumbers a =
1.5, 1.75, and 2.0, which is the range relevant to the experimental situation.
Beyond the linear regime, these core-annular flows evolve into bamboo waves
with constant amplitude. Figure 5 shows our wave shapes for the above four
wavenumbers in the nonlinear regime.

16



There is an adjustment period, when the interface shape changes from the
initial cosine shape to the bamboo shape. The steady solution calculated by
Bai, Kelkar and Joseph [2] under solid-core and density-matching assump-
tions produces an interface shape like the one found in their experiment.
However, their interface shape is too rounded and smooth compared to their
experimental snap-shot (Figure 3), which shows an almost symmetric form
of the crest, with a pointed peak. The crest is slightly sharper at the front
and less sharp at its back. The numerical simulation produced by Li and Re-
nardy [14] under the same assumptions that we use established an interface
shape with a symmetric form for the crest and a pointed peak. Our result
for the same case successfully reproduced these details.

5.1.3 Example 3

The corresponding PCAF base velocity profile is shown in Figure 6. This is
a mixed flow, up for oil and water near the oil core, down for water near the
pipe wall. Figure 7 shows the base velocity field for PCAF at Re = 3.0, K =
-0.9993. This is fully up-flow in both fluids. The initial amplitude is chosen
as A(0) = 0.005.

5.1.4 Example 4

To investigate the flow field in more detail, we examine the contour of the
pressure field. We produce the contour for pressure for Re = 3.0, a = 1.28.
In Figure 8, we plot the contour of the pressure field for this example. In the
water, the pressure field reaches its maximum value above the crest and its
minimum value below the crest. From below the crest to above, the pressure
increases monotonically in the water. Thus, the pressure contours are nearly
horizontal lines. The pressure field in the oil core is also shown in Figure 8.

5.1.5 Example 5

For the radius ratio ¢ = 1.28, the oil core is relatively close to the pipe wall
and the interaction between them is strong. In this example, we investigate
what happens if the oil core is relatively far away from the pipe wall, so
that the water has a large room to stay. Consider the experimental data
point # 1 in Figure 2, where a = 1.61, F = -1.06699, which correspond
to J = 0.063354, and K = -2.0303. The centerline velocity for PCAF is
Vi = 83.91 em/sec so our Reynolds number is Re; = 3.73754. We set the
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initial amplitude of perturbation A{0) = 0.1. The calculation is carried out
on a 50 x 195 mesh over one spatial period on the domain [0, 1.61] x [0,
2.618]. We choose the wavenumber o = 2.4 corresponding to a wavelength
for this flow. Linear theory indicates that the wavenumber o = 2.4 is the
most dangerous mode for this case. We display the corresponding interface
profiles in Figure 9 at time ¢ = 0, 20, 40, 60 and 140. The interface shape at
t = 40 reveals some asymmetry in the interface crest in that it is narrower
than the trough. This can be explained by the fact that the low-viscosity
water provides less resistance, making it easier for the high-viscosity oil to
penetrate into it.

5.1.6 Example 6

In our numerical simulation for this up-flow case, we select Re = 3.0 with
e = 1.28. The domain is [0, 1.28] x [0, 3.142] with 30 x 120 mesh. The
superficial oil velocity V, is 10, J = 0.0795 and K = -0.9993. We test this
case for the final time t = 100, but starting from ¢ = 20, the interfacial shape
doesn’t change and remains so until the final time.

5.2 Direct Simulation for the Down Flow
5.2.1 Example 1

In down-flow, the pressure and buovancy forces of oil oppose those of water.
This tends to compress, even eliminate bamboo waves and creates the flow
type called ”disturbed core-annular flow”. It was first found in the experi-
ments of Bai, Chen and Joseph [1]. The down-flow with parameters Re =
2.5,a =17, m=0.00166, n = 1.1, J = 0.06 and K = -0.542709 was studied
by Renardy [23] in the context of non- axisymmetric perturbations. Here,
we investigate this flow under the axisymmetric assumption. Numerical in-
vestigation of this flow is performed on.a 30 x 200 mesh. We set the initial
amplitude A(0) = 0.01. The asymmetry of the crest is prominent, due to the
effect of the buoyancy of oil relative to water, which flattens the back of the
crest and steepens the front of the crest. We display our result in Figure 11.

5.2.2 Example 2

In this example, we take a different Reynolds number while keeping the
relative driving force K constant as -0.542709. Here, we simulate our test case
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with the centerline velocity V5(0)* = -28.25547. Since our Reynolds number
is 3.0, we use 2.625 as the corresponding wave number. Our calculation is
carried over a 30 x 150 mesh on the domain [0, 0.47625] x [0, 2.3936]. Figure
12 shows the sequence of the interface positions at ¢ = 0, 30, 60, 90, 120 and

150.

5.3 Effect of Reynolds number Re and Flow

We run simulations for several different Reynolds numbers in the case of up-
and down- flow for a vertical pipe. In Figure 13, we show the results for
up-flow cases with various Reynolds numbers. We find that as the Reynolds
number increases, the length of the waves is shortened. In Figure 14, we
show the down-flow case in the vertical pipe. Just as in the up-flow case, as
the Reynolds number increases, the length of the waves is shortened.

5.4 Effect of Wave number o and Flow

The effect of wave number « is tested with the case Re = 0.94983. We display
the interfacial profiles in Figure 4. According to our results, we conclude that
as the wave number increases, the length of waves is shortened. While the
wave number « changed, taking the values 1.5, 1.756 and 2.0, we fixed the
other parameters to find the relation between « and the flow. We get very
good bamboo waves for each wave number case.

5.5 Effect of radius ratio a and Flow

We simulate the CAF using the wave numbers described in Table 1 and Table
2. The results show that as the wave number is increased, the length of the
waves is shortened, as expected and as experiments show, since the Reynolds
numbers are increased along with the wave numbers.

5.6 Breaking of the Oil Core

Our numerical simulation is performed with the same interface shape as in
the other cases. Since there is no big difference between the volume of fluid
method and the level set approach for this CAF problem, we consider a
special case to take advantage of level set method. As we know, the level set
methodology has a great advantage in breaking or merging problems.
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5.6.1 xamnle 1

AAACE L L

In this example, we produce the simulation of the breaking of the oil core
in Figure 15. We start with the initial amplitude A(0) = 0.01 and a cosine
interface shape. Given Re = 1.0, ¢ = 1.61, J = 0.063354 and K = -2.030303,
we select our wave number o = 0.9 and the centerline velocity V; = 10.03.
Our numerical simulation is performed on a 50 x 216 mesh over the domain
[0, 1.61] x [0, 6.98]. It starts to change its topological shape around the
dimemsionless time £ = 10. The lower two fingers grow outward and start
to approach the oil core, i.e. merge into the oil core, around ¢ = 50. For a
moment, inside of the oil core, a water bubble appears and disappears. Since
we don’t have a fine enough grid for our simulation, this example doesn’t
display perfect bamboo waves. But we show that the oil keeps the water and
carries it for a moment. And it ”almost” becomes bamboo wave.

5.6.2 Example 2

Figure 16 is the result of another case of the water in the oil core.

5.6.3 Example 3

We next do a different simulation to see what happens if we change our do-
main to [-0.47625, 0.47625] x [0, ymax]. We are not changing the assumption
for the axisymmetry. At the final time ¢ = 0.5, we get a bubble. This topo-
logical change is different from the other case, i.e. Example 1 in this section
displayed in Figure 16. We display the 4 oil bubbles in the vertical pipe for
Figure 17.

5.6.4 Example 4

Figure 18 shows the results of numerical simulations for oil bubbles in water.
This example shows that in the middle of the adjustment period, several oil
bubbles exist in the water, then they merge back into the oil core, and stick
to it. The Reynolds number is 3.737354, the ratio of the radius is 1.61 and
K, the ratio of driving forces in the core and annulus is -2.030303. We do
our simulations on a 50 x 80 mesh on the domain [0, 1.61] x {0, 2.6180].
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Re 10| 1.5 | 2.0 | 3.0 | 3.74
« 09118145195 24

Table 1: The Reynolds numbers and the corresponding wavenumbers for
up-flow, @ = 1.6, m = 0.00166, n = 1.1, J = 0.063354 and K = -2.030303

Re|12| 20 2.5 3.0
o | 1.4 1.675|1.975 | 2.625

Table 2: The Reynolds numbers and the corresponding wavenumbers for
down-flow, o = 1.7, m = 0.00166, n = 1.1, J = 0.063354 and K = -0.542709

5.7 Horizontal Flow without Gravity

Finally, we apply the level set method to simulate the horizontal flow case
of CAF. Without the axisymmetric property the numerical simulation fails
because the buoyancy of the oil makes the oil move upwards and at the same
time, water needs to move to give room to the oil but there is no room for
the water. To do this we require axisymmetry for our numerical simulations.
Thus, we ignore the effect of gravity. The pressure gradient needs to be
big enough to move the fluid from left to right. We choose Re = 3.7 and
find the corresponding parameters. The initial shape is a cosine graph with
amplitude A(0) = 0.01. This gives a very smooth interface. Figure 19 shows
the result of this computation.

5.8 CPU times and Figures

We use Table 1 and Table 2 to give the Reynolds numbers and corresponding
wave numbers for up-flow and down-flow. We describe our CPU times for
our figures in Table 3 and Table 4. At the same time, we tabulate CPU times
which we used factorization in Tables 3 and 4.
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Re | CPU time without Factorization | CPU time with Factorization
1.2 1 month 1 week
2.0 3 weeks 5 days
2.5 2 weeks 3 days
3.0 1 week 1 day

Table 3: The Reynolds numbers and CPU times for down-flows

Re | CPU time without Factorization | CPU time with Factorization
1.0 1 month 1 week
1.5 3.5 weeks 5 days
2.0 3 weeks 3 days
3.0 2 weeks 2 days
3.7 1 week 1 day

Table 4: The Reynolds numbers and CPU times for up-flows

6 Summary

6.1 Conclusion

Core-annular flows of liquids with different density and a high viscosity ratio
were computed in a direct numerical simulation using the leve]l set method.
It was assumed that the flow is axisymmetric and periodic. These assump-
tions reduce the computational cost. In dimensional terms, for given material
parameters, we obtain solutions when the volume flow rates of oil, water and
the hold-up ratio are prescribed. Our simulation with the level set method
on core-annular flow represents an improvement over the results of Bai, Chen
and Joseph [1] , who solved for the steady solution of the governing equa-
tions assuming the densitics matched and assuming a solid core, and on the
results of Li and Renardy [14], who investigated this problem with different
densities for two liquids. In contrast with 1i and Renardy’s work, we re-
duced the computational time without using factorization. Furthermore, we
investigated the case where the oil core breaks into water, forming a separate
bubble there. This was easy to handle due to the level set methodology.
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We intend to simulate realistic core-annular flow in the horizontal case. We
assumed axisymmetric flow to reduce the computational cost, so we were
forced to remove the gravitational force in the present work. For some of
our cases, we had high computational costs. We hope to implement a more
efficient method to reduce these costs.
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Figure 2: [Bai, Chen and Joseph, 1992] This flow chart displays the types of
flow that arise in up-flow as function of the superficial oil velocity V, and the

superficial water velocity V.
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Figure 3: [Bai, Chen and Joseph, 1992] Thin and thick bamboo waves. The
bamboo thickens and the average length of a wave decreases when the oil
velocity increases at a fixed value of the water velocity.
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I 0
l

R,/ R; radius ratio
area of the pipe (mR2
where Ry = 3/16 inches is the inside radius of the pipe)

n = Ri/Ry; = 1/a radius ratio
g = gravity constant 980 cm/(s?)
T = poRy/u;

J = J*/a interfacial tension parameter
L = pipe length
m = fia/p viscosity ratio (oil inside corresponds to m < 1)
In the experiments m = 1/601 at 22°C
f1 = i, 0il viscosity
Yo = [y Water viscosity
f* = constant pressure gradient
i = @, volume flow rate of oil
» = @, volume flow rate of water
£, = mean radius of the core
Ry, = mean radius of the pipe
Re Reynolds number
pr = p, oil density
P2 Pw water density
o = interfacial tension
Va(0) = centerline velocity
(V,Vi, Vo) = (V,V,, Vi) = (Q, @b, Qu) /A are superficial velocities
W(r) = axial velocity of PCAF
W{1) = velocity of the oil/water interface in PCAF
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Figure 4: Up-flow with Re = 0.94983, o = 1.28, mn = (.00166, n = 1.1, J
= 0.07961 and K = -0.4552. We choose the superficial oil velocity Vp =
10.34 cms™!. The wave number « is chosen as 2.0. The right figure is the
contour of the pressure field corresponding to the interfacial shape.
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0.07961 and K = -0.4552. We choose different numbers of wave number .

29



1.2 T ] f T T T | T T

—

~O00000000000000CO000O0000O0COOOOOOOOCO00

0.8

06

T
@]

0.4

0.2

-0.2 ! i 1 I L 1 ! ; !
0 5 10 15 20 25 30 35 40 45

Figure 6: The mixed velocity profile for PCAF for Re = 0.9493, o = 1.28, m
= 0.00166, n = 1.1, J = 0.7961 and K = -0.4552.
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Figure 7: The up velocity profile for PCAF for Re = 0.9493, ¢ = 1.28, m =
0.00166, n = 1.1, J = 0.07961 and K = -0.4552. The wave number « is 2.0
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Figure 9: Interface profiles at t = 0, 20, 40, 60 and 140 for Re; = 3.73754, a =
1.61, m = 0.00166, n = 1.1, J = 0.063354 and K =-2.030303. The calculation
is carried out on a domain [0, 1.61] x [0, 2.618]. The wave number « is chosen
as 2.4 and the initial amplitude is 0.1.
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Figure 10: Up flow for Re = 3.0, ¢ = 1.28, m = 0.00166, n = 1.1, J = 0.0795
and K = -0.9993. Our amplitude is 0.01 and wave number « is 2.0.
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Figure 20: Re 2.5, casel
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Figure 11: Down flow: Sequence of interface positions for Re = 2.5, a = 1.7
, m = 0.00166, n = 1.1, J = 0.06 and K = -0.542709. Our amplitude is 0.01
and wave number « is 1.975.
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Figure 12: Down flow for Re = 3.0, a = 1.7, m = 0.00166, = 1.1, J = 0.06
and K = -0.542709. Our amplitude is 0.01 and wave number « is 2.625.
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Figure 15: Re = 1.0, @ = 1.61, m = 0.00166, n = 1.1, J = 0.063354 and K
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Figure 16: Vertical Flow: Re = 0.94983, ¢ = 1.7, m = 0.00166, n = 1.1, J
= (L0796875 and K = -0.4552. Wave number is o = 3.0, final time is 1.0,
domain is [-0.47625, 0.47625] x [0, 6.2832].
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Figure 17: Vertical Flow: Re = 0.94983, ¢ = 1.7, m = 0.00166, n = 1.1, J
= 0.0796875 and K = -0.45562. Wave number is &« = 3.0, final time is 1.0,
domain is [-0.47625, 0.47625] x [0, 6.2832].
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