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curve remains helical but the radius about the center axis shrinks.

This shows two slightly translated helices evolving under curvature

motion. The translation allows the helices to touch and merge.

The resulting curve then continues to evolve under curvature motion.

This shows another two helices evolving under curvature motion.
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This shows two complicated curves evolving under curvature mo-

tion. The picture stops before merging occurs. . . . . . . ... ..

This shows a curve with a kink evolving under curvature motion.

The kink is smoothed out almost immediately. . . . . . ... ...

viii

19

19

20

21

22

23

24

25



2.9

2.10

2.11

2.12

3.1

3.2

This shows the time evolution of a curve under constant flow in the
normal direction. The curve is initially shaped like the boundary
of a potato chip and shrinks thereafter. Note a kink forms in the

curve at a certain time, which is an indication of merging.

This shows the time evolution of a circle under constant flow in
the binormal direction. Since the original curve lies on a plane,

the evolution is simply translation in the normal direction of the

26

plane. In this picture, the circle is moving in the downward direction. 27

This shows the time evolution of two helices under constant flow
in the binormal direction. Each helix rotates about its center axis

but in opposite directions. . . . . . ... oL 0oL

This shows the time evolution of an initial potato chip curve by
unit speed in the normal direction combined with 0.1 times cur-
vature motion. Note a kink no longer forms due to adding the

curvature 5erm. . . . . . . . . e e e e e e e e e e e e e e e e

The surface, two mountains, is shown on the left and the curves
are shown separately on the right. These are curves moving inward
by unit normal flow. Note that the curve breaks into two pieces

during the flow. . . . . . ... ... oo oo

The surface, a volcano, is shown on the left and the curves are
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ABSTRACT OF THE DISSERTATION

The Level Set Method Applied to

Geometrically Based Motion, Materials
Science, and Image Processing

by

Li-Tien Cheng
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2000
Professor Stanley Osher, Chair

The level set method has been used successfully in many areas of applied math-
ematics. We extend its application for geometrically based motion, materials
science, and image processing. For geometrically based motion, we study the
motions of codimension two objects such as curves in R? while allowing merging.
We also introduce a level set based representation for constrained problems such
as the motion of curves on surfaces. Finally, we compute numerical solutions
‘to the Minkowski Problem using a standard level set approach. Related both
to geometrically based motion and materials science, we use a variational based
level set method to construct Wulff minimal surfaces through given boundaries.
We also run simulations to study a level set method for island dynamics in molec-
ular beam epitaxy. Finally, we modify our algorithm for curves on surfaces to
consider image processing of images on surfaces. Along the way, we introduce
various applications arising from these methods. Results show that the level set

method is very flexible and can easily handle all the problems we look at.

po



CHAPTER 1

Introduction

We construct and analyze various level set based methods for the topics of ge-
ometrically based motion, materials science, and image processing. Numerical

results from each method are presented and analyzed.

In Chapter 2, we study a level set representation for moving curves in R?.
Numerical results are given to show that the representation easily allows merg-
ing to occur. The method can also handle complicated curves and a variety of
different flows such as flow by curvature and flows in the normal and binormal

directions.

In Chapter 3, we modify the level set representation for curves in R? to study
the constrained motion of curves on surfaces. Merging is also automatic here due
to the level set representation. Numerical results show that complicated surfaces
can be handled with ease as well as complicated curves and a variety of motions.
We study motions that correspond to motions of curves in R” such as geodesic
curvature flow and constant normal flow on surfaces. We also apply the results

to compute geodesics and Wulff shapes on surfaces.

In Chapter 4, we apply our method on surfaces to denocise and deblur images
painted on surfaces. Once again, complicated surfaces can be considered and
standard partial differential equations, for the denoising and deblurring of flat

images, especially the total variation based equations, are carried over to surfaces.



We show that the total variation methods on surfaces keep edges sharp, thus
producing good results, when denoising or deblurring.

In Chapter 5, we create a ievel set method to construct numerical solutions
arising from the Minkowski Problem. This means for a given function defined
on a sphere, we find the ovaloid whose Gauss-Kronecker curvature at a point is
given by the function evaluated at the inward normal of the ovaloid at that point.

Results show that our method can easily construct a these shapes.

In Chapter 6, we introduce a simple variational based level set method for
constructing Wulff minimal surfaces. Standard minimal surfaces are a subset of
these. Wulff minimal surfaces are surfaces minimizing the Wulff energy, which is
related to crystal shapes, subject to the constraint that the surface passes through
given curves. Qur method does not require a lot of initial information and can

easily deal with complicated curve boundaries.

In Chapter 7, we test a level set method for island dynamics in molecular
beam epitaxy. We particularly look at unstable cases in irreversible aggregation.
Results show that the method reproduces the instabilities that are inherent in

the physical problem.

Proofs of propositions in each chapter are located near the end of the chapter.

Figures are also located at the end of each chapter.



CHAPTER 2

The Level Set Representation for Moving

Curves in R?

2.1 Abstract

The level set method [24] was originally designed for problems dealing with codi-
mension one objects, where it has been extremely succesful, especially when merg-
ing of the interface occurs. Attempts have been made to modify it for objects
of higher codimension. We present numerical simulations of a level set based
method for moving curves in R? that allows for merging. A vector valued level
set function is used with the zero level set representing the curve. Results will
show this method can handle many types of curves moving under many types of

flows while automatically enforcing merging.

2.2 Introduction

The study of curves in R® has many importances, especially under geometrically
based motions. These motions include motion of a curve by curvature, torsion,
and motions in the normal and binormal direction. These motions can then be
applied to phenomena in the physical world. Vortex filaments such as smoke

rings can be represented by curves in R* and exhibit the merging property, as



do the vortex lines in superfluid helium [19]. Curves in R® have also been used
for active contours in image processing[20]. In geometry, curve shortening is of

138 a link to the Schrodinger
equation. Finally, extension of the level set method as a tool to handle objects
of higher codimension is of great interest. A list of other problems dealing with

codimension two objects can be found in [14].

2.2.1 Merging

We first clarify merging for curves in R®. For curves in R?, the idea is simple
and is readily observed in the physical case of two phase flow. For curves in
R3, merging should behave as in the case of smoke rings. This follows curve
shortening principles, meaning when two segments of the curve touch, the curve
connects in the acute angle directions (see Figure 2.1). Pictures of merging can

also be found in [19].

2.2.2 Other Work

Attempts to extend the level set method for use on curves in R? have been
studied by De Giorgi[l11] and Ambrosio and Soner{2]. They were interested in
the theoretical aspects of curvature motion and used a single level set function,
usually the squared distance to the curve, to represented curves in R*. This
was done in the standard level set way, the curve being represented by the zero
level set of the level set function. Note in this formulation, the zero level set
is also the set of points achieving the minimum value. One problem with this
method is in accurately determining the location of the curve. The main problem,
however, for the topic we consider here is that merging does not carry over. A

phenomenon called “thickening” occurs, where the zero level set develops a non-



empty interior, when curves try to merge (see Figure 2.2). The formulation,
however, was successful in determining theoretical aspects of curvature flow in

the abgence of merging.

The study of curves in R? has also been aittempted from other directions, for
example, using front tracking{13]. This is where the curve is parametrized and
numerically represented by discrete points, each of which is then evolved under
the flow. Following these points thus gives the curve at all time. The main
problem with this approach lies in finding and enforcing merging when it occurs.
This has proven to be difficult for curves in R? and is equally, if not more so, for
curves in R3. On the other hand, another approach, diffusion generated motion
by Ruuth, Merriman, Xin, and Osher[27], can deal with mergings but is limited
to curvature flow. The results for curvature flow, however, are good and we have

compared them with our results whenever possible.

2.3 Level Set Representation of the Curve

The representation we use makes use of two level set functions to model a curve
in R®, an approach Ambrosio and Soner[2] suggested first but did not pursue
because the theoretical aspects were too difficult. In this formulation, a curve
is represented by the intersection between the zero level sets of two level set
functions, ¢ and ¥, i.e., where ¢ = 4» = 0. Here, ¢ and 7 can be considered
as the two components of a vector valued level set function whose zeros give the
curve in R®. Thus, we can consider arbitrary codimensional objects in arbitrary
dimensions by using a vector valued level set function with the right number of
components. For example, we would use the zeros of an m component vector
valued function over R™ to represent a codimension m object in dimension n.

Note, the sets of points satisfying ¢ = C; and ¥ = Cj, where C; and C; are



constants, also represent curves in R?.

In order to move a curve by a certain type of motion, we evolve the functions
: v g -3 . . . T o L 1t N H e Vo1 ok LS.
¢ and 9 in R°, keeping in mind that the intersection of their zero level sets gives
the curve. Usually, all the other curves gotten from the intersections of level sets

of ¢ and ¢ will move under the same type of motion.

2.3.1 Geometric Quantities

In order to move a curve by a geometrically based motion, we need to be able to
derive all relevant geometric quantities of the curve in terms of our representation.
Important quantities include tangent vectors, curvature times normal vectors,

normal vectors, binormal vectors, and torsion times normal vectors.

To find the tangent vectors T, we notice that Vi x V¢, taken on the curve,

is tangent to the curve. So the tangent vectors are just a normalization of this,

_ Vi x V¢

I'= o= vl

Note if we replace ¢ with —¢, the tangent vectors will be reversed.

For the curvature times normal, kN, of the curve, we use the definition that

this is the change in the tangent vector along the curve,

dr
kN = T
Using directional derivatives, this becomes
v - T
EN=VT -T= VT, -T
V13- T

We may then use the expression for T to write this in terms of ¢ and 1.



For the normal vectors, N, of the curve, we use the definition
&N
|sNT

The binormal vectors B are obtained using the definition

N

B=TxN.

Note the binormal vectors are reversed if we replace ¢ by —¢. Finally, the torsion

times normal vectors can be derived using the definition
TN =-VB-T.

All these geometric quantities can thus be written in terms of ¢ and + by using
the corresponding expression for 7. Also, note the above geometric quantities
derived at an arbitrary point in R? are quantities for the curve {¢ = Cy, ¢ = Cs}

that passes through that point.

2.4 The Evolution Equation

Moving the curve in R® using our representation requires moving the level set
functions ¢ and 1. We will first investigate the motion of a curve under a given
vector field v in R®. From standard level set theory, we know that the partial
differential equation

¢y +v-Vé =0,
moves the level sets of ¢ according to ». Similarly,

¢t+v'V¢:01

moves the level sets of ¥ according to v. Therefore, the system of partial differ-

ential equations
l;bt + - qu = 0

"Pt‘l'v'vq.b - 0:



moves the intersections of the level sets of ¢ and 1, especially the zero level sets,
according to v.

A better derivation can be given. Let y(s,t) denote the intersection beiween
two level sets of ¢ and . So ¢(y(s,t),t) = Cy and ¥P(y(s,t),t) = C,. Taking a
derivative with respect to ¢ then gives

Vé(v(s, 1), 1) - (s, ) + dilv(s,8),8) = O
Vip(v(s, 1), 8) - mls, ) + e (v(s,1),8) = 0.
Since the curve is moving under the vector field v, this means v,(s,t) = v. There-

fore, since Cy and C, are arbitrary, we get back the system of equations above,

valid in all of R3.

2.4.1 Other Types of Motions

By allowing » to depend on ¢ and % and their derivatives, we can write down
the evolution equations for any type of motion. For example, setting v = &N
in the evolution equations above gives curvature motion. Similarly, v = N gives
motion in the normal direction at unit speed, v = B gives motion in the binormal
direction at unit speed, and v = 7V gives torsion motion. We now study some of

these motions more carefully and present numerical discretizations and results.

2.5 Curvature Motion

The evolution equations for curvature motion take the form
o +xN-Vo = 0
Y+ &N -V = 0.
This, in fact, can be derived from modified gradient descent minimizing the length

of the curve. Notice first that the length of the curve coming from the intersection



of the zero level sets of ¢ and 1 can be written as

L($, %) = Jps 0@)(W) | PoyV || Vlde,

where § is the one dimensional delta function and P, is the orthogonal projection

matrix that projects vectors onto the plane with normal vector v. In R?, we have

|Pyw| = B‘T}l—w[ and so we can also write the length as

L($,4) = Jes S(#)5W)IV x Volda.

Proposition 2.1 The Euler-Lagrange equations for this are

_ PoyVé
0 = v (T v st

Pg Ve
0= _v. (lp +7 ¢|IV¢|) 5(8)5(1).

This can be rewritten as .
(0) - (5(¢)5(¢) 0 ) (—V- (ﬁ%w))

o) \ 0 e _v-(%wm

Following level set theory, we try to replace the matrix of delta functions, which
we consider as smoothed out delta functions, with a positive definite matrix that

will give, on the right hand side of the Euler-Lagrange equations,

kN -V¢
kN -Vap |
Then modified gradient descent minimizing the length of the curve will be equiv-

alent to curvature motion. For this, we have
Proposition 2.2 The replacement matriz that gives equivalence is
Vo V¢ -V
|Pys Vi [Py VoIV
v V|

Vé-
[Poy VeIVl |Poy Vel




This means curvature motion, in our representation, follows a curve shortening
process.

For ail our numerical discritizations, we lay down a uniforin grid over R® and
use finite difference schemes. The uniform grid simplifies finite difference scheme
construction and implementation. We then discretize the curvature evolution
equation by using second order central differencing on all spacial derivatives.
The case T = 0 needs to be regularized to remove singularities in the curva-
ture expression. For the time discretization, we use Total Variation Diminishing
Runge-Kutta (TVD-RK) of third order (see {29]). The Courant-Friedrichs-Lewy
(CFL) condition says that the time step Af needs to be less than a constant times

Az?* where Az denotes the spacial step size.

This representation allows merging to occur, as seen in numerical simulations.
The time of merging does not have to be computed and there is no need for
switches to enforce merging. It is automatically handled by the representation.
The evolution equation is simply solved at each time step and the resulting ¢ and
1) gives the curve, even when merging has taken place previously. Also the curve

location does not have to be computed until the curve is to be plotted.

Plotting itself is carried out by using interpolation schemes. Each cube in
the grid is broken up into six tetrahedra, inside of which ¢ and 1 can be ap-
proximated by hyperplanes. The intersection between the zero level sets of the
two hyperplanes can then be computed, giving a small segment of line inside
cach tetrahedron. The union of all these segments gives an approximation of the

curve,

In Table 2.1, we show the method is second order accurate. This test was
done by looking at the evolution of a double helix in R? where we know the

exact solution.
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grid size error order

32 x 32 x 32 0.00459276
64 x 64 x 64 0.00140586 | 1.7079
128 x 128 x 128 || 0.000356941 | 1.9777

Table 2.1: Order of accuracy analysis for a double helix moving under curvature

flow. Results show the method is second order accurate.

We consider the motion of a single helix in Figure 2.3. The helix straightens
out as time progresses. Evolution of two slightly translated helices is presented in
Figure 2.4. The helices move independent of each other, each one straightening
itself out, until they touch. Merging then occurs and the resulting curve continues
to flow by curvature and shrink. Another example with two helices is shown in
Figure 2.5. The two strands again touch at a certain time and merging occurs.
The resulting curve then continues to flow by curvature. In Figure 2.6, we consider

the motion of linked rings. At first each ring will shrink its radius by a speed of
1

+, where r is the radius. Eventually the rings touch and merging occurs. The

resulting curve then continues to flow by curvature. Finally, Figures 2.7 and 2.8

show the evolution of other curves.

2.6 Normal and Binormal Motion

The evolution equation for motion in the normal direction at unit speed is
o+ N-Vop = 0
v+ N-Vy = 0.

We discretize the time derivative using third order TVD-RK and all space deriva-

tives using second order central differencing. Singularities occurring where |T'| =

11



0 and |kN] = 0 are regularized. Note geometrically, N is not defined when
|[kN| = 0.

We consider a potato chip curve as our initial curve in Figure 2.8. Normal
motion in our simulations causes a kink to develop in the curve after a certain
time. This is because parts of the curve have rammed together and merging

has been enforced. In a standard tracking algorithm that allows curves to pass

through each other, a swallow tail would appear instead.

The evolution equation for motion in the binormal direction at unit speed is

¢,+B-Vé = 0
W+ B-Vi = 0.

Once again, we discretize the time derivative using third order TVD-RK and all
the space derivatives using second order central differencing. The singularities

occurring at [T} = 0 and |«N| = 0 are regularized.

We consider the simple case of a circle moving under binormal motion in
Figure 2.10. The circle is translated, which is the correct. solution. In Figure
2.11, we look at the evolution of two helices. Both slightly rotate and in opposite

directions.

The cases of normal and binormal motion are not as nice as the case of
curvature motion and not all initial curves evolve nicely. More work needs to
be done on the discretization of the equations, especially the regularization of
singularities. Another flow not studied here is with the velocity field T' x &IV.

This is related to the motion of vortex lines in superfluid helium.

12



2.6.1 Combinations

We can combine the above motions to form other types of motions. For example,
taking the velocity field v = N + exN gives motion in the normal direction with

gsome curvature flow.

We look at the evolution of the potato chip curve in Figure 2.12. € is taken to
be 0.1 and the result has no kink anymore due to the presence of the curvature

term.

2.7 Remarks

Some difficulties that are left include theoretical justification, which we will not
investigate here, creating an optimal local method, and initializing ¢ and 4 to

create a given curve.

2.7.1 Local Level Set Method

We would like to solve our evolution equations only in a small neighborhood of
the curve. This would give optimal efficiency both in speed and memory usage.
Solving in all of R?, however, is sometimes needed, for example, when the curves
coming from the intersections of other level sets of ¢ and 9 play a role. It can
also be adequate, for example, if the problem we are considering requires other
equations to be solved in all of R?. But for the type of problems we have discussed
here, a more local method is needed. Such an algorithm for curves in R? has been
created[25] but many things need to be added when considering curves in R’
The main idea involves only doing computations in a tube around the curve with
radius a constant times Az. Reinitialization needs to be performed at certain

times to keep errors from the boundary of the tube from influencing the curve.

13



For curves in R2, this is accomplished by replacing the level set function with

the signed distance function to the curve at each time step.

For our first step in optimizing vur algorithin, we can cut down one of the
dimensions by localizing around the zero level set of one of the level set functions,
say 1. The case where 1) is fixed in time is considered in Chapter 3 Section 3.12.

This algorithm needs to be modified to allow ¥ to move, a simple concept that

follows standard local level set ideas[25].

A completely localized, and thus optimal, algorithm for curves in R3, however,
has not yet been completed. Certain problems may arise from such an algorithm,
for example, a twist of the level set functions about the curve may introduce
spurious curves during merging. This kind of twist will not occur if ¢ and %
are globally defined. Also the reinitialization process in standard local level set

methods needs to be further studied and adapted to curves in R>.

2.7.2 Initialization

Another issue is how to choose the initial level set functions to create a desired
curve. In some occasions, the initial functions are given, for example, as Clebsch
variables (see [33]). Usually, however, they need to be constructed by hand. The
difficulty in this lies in forming the functions ¢ and ¢ in all of R®. Forming these
functions only local to the curve is very easy but sometimes these local construc-
tions cannot be extended to R®, causing problems during merging. However,
as Figure 2.6 shows, creating initial level set functions for complicated curves is
not impossible. Another problem that may arise is that some constructions may

hamper merging. This needs to be studied further.

14



2.8 Conclusion

We have analyzed a level set based method for representing and moving higher
codimensional objects, especially curves in R®. As numerical results show, the
representation automatically handles mergings of the curve. Evolution equations
on the level set functions can then used to move the curve under a variety of
flows. An underlying uniform grid allows for easy high order finite difference
scheme constructions. Thus, we have set up a foundation to deal with higher

codimensional objects, especially in the presence of merging.

2.9 Proofs of Propositions

Proof of Proposition 2.1.

We will derive the Euler-Lagrange equations for the energy

B($,%) = Je.n PosVolIVOIB@)3()dz,

where ¢ and 1) are real valued functions over R".

Note
|Poy Vo2 Vl* = [V | VY| — (Vo - V) = | Py VP | VI,

and, therefore,

|Poy V|V = /|VO2IVY[2 — (V- Vi)2 = | Py V||V ).
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So
Pv¢+sv,,(v¢ + sV)||VY + sVv|8(¢ + sm)d( + sv)) =

([ Poy (Ve + sVMIIVP6(¢ + sm)d(4))+

(1 Poy+s90 V|| V1) + sVVI6($)6 (3 + s7/))
(

(

I &]g‘
faniinn

i

[Poy(Vé + sVn)||V|6(s + sm)d(4))+
|Pog(Vip + sV)|[VEI6(1 + s1)5(d)).

ﬁ&%g%&

Therefore,

E(¢+ sn, ¢+ sv) =

5=0

Jre |Poy(Vé+ sV |VI6(¢ + sm)d(3)dz+

8=0

R~ |Pos(VY + sV) V|5 (9 + sv)8(¢)da.

S=

S S B

Then, from Proposition 3.3, we get that the Euler-Lagrange equations are

_ . [PV
e (e I LR

_ oy [PV
0 = v (T894l st

Proof of Proposition 2.2.

We will show that we can get kK NV¢ and sk NV from replacing the values of
the 6(¢)d(1) in the right hand sides of the Euler-Lagrange equations.

First we see from Proposition 3.5 that

PgyVi¢ |Pyy V|
Posvel |~ "’”‘) N

. PV¢VT/) |PsVib]
Wl FoyV9 = -V (lP Y ‘“) Vel

nN-PWV(;B = V- (

So we want to look for functions f and g that may depend on ¢, v, and their

16



derivatives such that
(f1 gl) (K,N-Pqub) (ﬂN'V@ﬁ)
o fa) \aN-Po,vy ) \en vy )
This is equivalent to
kN - (fiPgy Ve + g1 Poy V) = &N V¢
&N - (g2 PyyVé + foPyyVip) = kN -V

Therefore, we are looking for a decomposition of V¢ in terms of Py, V¢ and

Py V1) and similarly for V). First note that this is possible since .
V¢ x PgaVip = Vo x Vi = Vip x Pyy Ve,

so we have that V@, Vi, Py, Vo, Py Vi all lie on the same plane. Also PyyVé
and Py,;V1) span the plane if we disregard the degenerate case where V¢ and
V1) are parallel.

Taking a dot product of V¢ with the equations

Vo = f[LiFPyyVeo+alPosVy
Vi = g2PyyVo+ faPoyVih,

gives
PR
|Poy V|
V- Vi
92 = 5 o4B
[Py V|
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Also taking a dot product of V4 with the same equations gives

4 Vy|?
|Pgg VP
V¢V
I T Pe Ve

Note that f, = fo.

Therefore, replacing

(5(¢)5(¢) 0 )
0 §d)sw))’

in the Euler-Lagrange equations by

[ 1PesVdl [Posvl
U VY VIV
g|PwV¢| fin:;sV%bl ’
2TV 2V

will give the curvature flow evolution equation. So the replacement matrix can

be written as V¢ V- Vi
[PosVy[  |PoyVI[VY]
V- Vy V| '

, [Pog VeIVl |PoyVl
In general in level set theory, this replacement can be used, unchanged, for all

other Euler-Lagrange equations of curve flow in R2,

Note the determinant of our replacement matrix is

VORIV — (Vo - Vi)?
| Py Vo2 Vep|? 7

which is equal to 1. Also the first entry is positive and so the matrix is positive

definite.
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Figure 2.1: The picture on the left shows two lines, one on top of the other. The

picture on the right shows our merging requirement in action when the two lines

touch. Note the curve reconnects according to the acute angles.

Figure 2.2: These pictures were generated using De Giorgi’s method. The picture
on the left shows two helices about to merge. The picture on the right shows

thickening occurring when the two helices merge.
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Figure 2.3: This shows a single helix evolving under curvature motion. The curve

remains helical but the radius about the center axis shrinks.

20



/
0 \ 0
-1, 1)
i 1
1 i
0 0 \0\/

-1 -1 -1 -1

1 1
0 0 g
-1 -1
1 5 1
1 1
0 0 0 0o
- 4 -

Figure 2.4: This shows two slightly translated helices evolving under curvature
motion. The translation allows the helices to touch and merge. The resulting

curve then continues to evolve under curvature motion.
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Figure 2.5: This shows another two helices evolving under curvature motion. The

two touch and merge at a certain time. The resulting curve then continues to

evolve under curvature motion.
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Figure 2.6: This shows two linked rings evolving under curvature motion. The
two rings shrink independent of each other until they touch and merge. The

resulting curve then continues to evolve under curvature motion.
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Figure 2.7: This shows two complicated curves evolving under curvature motion.

The picture stops before merging occurs.
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Figure 2.8: This shows a curve with a kink evolving under curvature motion. The

kink is smoothed out almost immediately.
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Figure 2.9: This shows the time evolution of a curve under constant flow in the
normal direction. The curve is initially shaped like the boundary of a potato chip
and shrinks thereafter. Note a kink forms in the curve at a certain time, which

is an indication of merging.
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0.1

Figure 2.10: This shows the time evolution of a circle under constant flow in
the binormal direction. Since the original curve lies on a plane, the evolution is
simply translation in the normal direction of the plane. In this picture, the circle

is moving in the downward direction.
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Figure 2.11: This shows the time evolution of two helices under constant flow in
the binormal direction. Each helix rotates about its center axis but in opposite

directions.
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Figure 2.12: This shows the time evolution of an initial potato chip curve by unit
speed in the normal direction combined with 0.1 times curvature motion. Note

a kink no longer forms due to adding the curvature term.
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CHAPTER 3

A Level Set Representation for Moving Curves

on Surfaces

3.1 Abstract

Given a surface M in R? and a curve v on M, our goal is to compute the time
evolution of this curve constrained to be on the surface under a specified type
of motion. In the course of this evolution, one part of the curve may run into
another part. When this happens, we require the two parts to merge together.
This phenomenon can be found in many physical situations, for instance, in two
dimensional two phase flow, where the curve denotes the interface between two
fluids. We will create a level set based method for computing geometrically
hased motions for curves on surfaces under the merging requirement and develop
related applications. Results will show that our method works for hypersurfaces
which can be represented by the boundary of an open set and can handle all

geometrically based curve motions.

3.2 Imtroduction

On planes, the level set method[24] easily accomplishes all this for a certain class

of curves. In this method, R? is used to represent the plane. The curve at any
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time ¢ is then represented by the zero level set at time ¢ of a real valued function
¢ on R2. This function is called a level set function. The ability of a curve to
1\ means the enrve must be the
boundary of an open set in R%. This limits the types of curves the level set
method can handle but is a very natural setup for the case of two phase fiow.
The motion of such a curve can then be carried out through the evolution of ¢,
keeping in mind that the zero level set of ¢ at any time gives the curve at that

time. Usually the evolution of ¢ is governed by a partial differential equation.

Numerically, a uniform grid is placed on R? and finite difference schemes
are used on the evolution equation. Efficiency both in memory and speed can
still be preserved by only storing data and computing near the front[25], though
sometimes at the price of a loss of accuracy. The main advantage to this method
is that merging is automatically handled by the representation. The time of
merging does not need to be computed and no extra work is needed to enforce
merging, unlike front tracking methods. The evolution equation is simply solved,
using finite differences, up to the desired time. The curve can then be interpolated
from the level set function at the end of a run, when we want to plot the curve.
During the run, the curve location is not needed and can remain uncomputed.
This ease in handling merging is one of the main reasons for using level set
methods. However, even when merging does not occur, level set methods are
still attractive because they allow for simple finite difference schemes and so, in
the end, are easy to program and use. All this naturally leads us to attempt to

extend this method for use on more general surfaces.
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3.2.1 Setup

We represent a surface M in R3 by the zero level set of a real valued function
1» on R® and a curve on that surface at time ¢ by the intersection of the zero
level set at time ¢ of a real valued function ¢ on R® with the zero level set of 7).
We will mainly consider the case where M is static in time which implies 9 does
not depend on £. On the other hand, the time evolution of ¢ allows us to follow
the moving curve, keeping in mind that the curve at time ¢ is the intersection
of the zero level set of ¢ at time t‘a,nd the zero level set of 7. Because of our
way of representing the surface, only a specific class of surfaces, boundaries of
open sets in R?, can be handled by this method. Similarly, only a specific class
of curves on the surface, boundaries of open sets on M, can be considered. This
means that there is a notion of the inside and outside of a curve and we take, for
definiteness, the inside to be where ¢ is negative and the outside to be where ¢ is
positive. Once again, this is especially natural for curves denoting the interface
between two fluids on M. We also note that 1 and ¢ need only be defined in a
neighborhood of the curve and not necessarily in all of R3. However, for simplicity
we will continue treating them as functions over all of R®. The only concern will
be when we need to slightly modify the method to have optimal efficiency both

in speed and memory. This will be discussed later.

Note our setup is basically the same as in Chapter 2 except 4 is now held fixed
in time. Thus the constrained problem of moving-curves on surfaces furns out to
be easier, using our setup, than the unconstrained problem of moving curves in
R?. Also note the method runs the same for any surface M. This is because 1
over R? is used instead of M. Thus complicated surfaces are as easily handled

as any other surface.
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3.2.2 Other Methods

Other methods currently used to study curves on surfaces include work done by
Chopp{8], Kimmel[17], and Kimmel and Sethian{18]. Chopp’s work is on curve
flow under geodesic curvature. His is a level set based method but requires
computing on coordinate patches of the manifold projected into R?. Finding
the coordinate patches can be complicated for general manifolds. Kimmel also
studied geodesic curvature flow and applied his results to image processing of
images on surfaces. His algorithm, however, only handles surfaces that can be
represented by the graph of a function. Kimimnel and Sethian’s work is on finding
geodesic paths on manifolds. The method is level set based but the surface needs

to be triangnlated and it seems to be only for surfaces that are graphs of functions.

QOur method, however, can handle more general hypersurfaces and curves
moving under a variety of motions, as well as be extended for other applications.
We mention that Bertalmio, Sapiro, and Randall’s work[3] is of the same flavor
but is only for region tracking. We rederive and extend their results in Section

3.12.

Because our method can extend all the motions of curves in R? to general
surfaces, the applications of these can also be carried over. This includes work
on two phase flow, vortex motion, crystal growth, island dynamics for molecular
beam epitaxy, image processing, and a variety of geometrically based motions
(see [22]). We, however, will mainly consider geometrically based motions here.
We now develop various notation and tools for our representation to help simplify

and clarify future calculations.
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3.3 Preliminary

Given a vector w in R?, let P, be the orthogonal projection matrix defined by

Py=I-">2,
I=up

where I is the identity matrix. Thus the components of the matrix are
(Pu)ig = bij — 75

where d;; is the Kronecker delta function. Note for z in M and v the normal
vector in R® of M at z, P, projects vectors onto M at z, i.e., P, projects vectors
onto the tangent plane of M at . Now for X a vector field in R? we define the

differential operator PxV by its components,

3 X:X;
PxV); = (5,.-——%«?-)69,,..
(PxV) ;( P

Note this is just the projection matrix Px multiplying the gradient vector oper-

ator V. So given a real valued function u on R},

(PxV)u = PxVu,
and given a vector field ¥ on R3,

3
PV .Y =Y (PxV)Y..
=1

We will constantly use this notation with the vector field X = V1, which is
parallel at each point in R® to the normal of the level set surface of 4 that passes
through the point. So given a point z in R?, Pgy projects vectors onto the level
set surface of ¢ passing through z. Therefore, if x € M, Py, will project vectors

onto M at z. This is very useful for putting vector fields onto the surface. Note

especially that PyyVu, evaluated on M, is the projection of the gradient vector
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Vu in R® onto M. This turns out to be equivalent to the surface gradient of u on
M. Similarly, Py, V - X, evaluated on M, is equivalent to the surface divergence

of X on M. We now present a few useful properties of our notation.

Proposition 3.1 Let v,w,z be vectors, X a wvector field, and u a real valued
function all in R>. Also let e; denote the ith vector of the standard orthonormal

basis of R®. Then we have the following identities:
(a) Pyv-z=v-Pyz = Pyv- Pyz.
(b) (va)tu = Vu- PXei.

(¢) Pg,V - (PguX) = V- (wawﬂunﬁ.

3.3.1 Linking R? Equations to Equations on Surfaces

In the course of studying the motion of curves on surfaces, we will need to study
partial differential equations on surfaces. Usually, from work done using the
original level set method, we already know the form of the partial differential
equation corresponding to the same type of motion for curves in R2%. We would
like to put this equation onto a surface M, hopefully preserving its important

properties.

Given a point z on M, we will write the form of the equation on the surface
at this point. Let v be the normal vector of M at z and let &, &, € be an or-
thonormal basis of R® with e; = v. We also let 8; be the derivative corresponding
to &, 1 = 1,2,3. We can then write the partial differential equation on M at z
by treating the tangent plane at z as R?, since the form of the equation is known
there. This means we put all quantities in the R? equation onto the tangent plane

at z. This just involves changing those quantities to fit the new frame &; and é,.
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Note this will especially involve the surface gradient vector operator defined by
VSu = dyuéy + Ohués,
for » a function on M and
VS X = (0.X, 1) + (62X, e2),

for X a vector field on M. For example, on M and at z, the Laplacian of a
function u takes the form 8;3,u + 8:8.u, which can be written as V5 . V5u. So
in this example, V is replaced by V° to get from the R? Laplacian to the surface
Laplacian. We will use this procedure to put other partial differential equations
in R? onto surfaces. Assuming that the important properties of the equations are
preserved during this transition, this is a quick way to get the evolution equation

we want on M.

The main replacement when putting R? partial differential equations onto
surfaces is changing V to V5. The connection between the surface gradient V°

and our previous operator PyyV is given by

Proposition 3.2 We have the following properties:

(a) For u a real valued function in R®,
VS’U, = qupvu,

on M, where Vu means the surface gradient applied to the restriction of u on

M.

(b) For X a vector field in R® which is tangent to M on M,
V5. X = PyyV - X,

on M, where V° - X means the divergence of the restriction of X on M with

respect to the surface gradient.
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So V5 and PgyV are equivalent on M. The difference is that PyyV is easier to
deal with numerically. Because of this, we will write all our equations using this
form. We also note the importance of replacing the integral in R?, fRz dz, with
the surface integral, fgdA, which is equivalent to [Rs 6(1)|Vip|dz. Finally, the

R? equation should be invariant under a rotation of frames in R?. Otherwise,

writting it on the surface may not be a well defined process.

3.4 General Numerics

The main advantage of our approach lies in the effective numerical schemes that
can be used. In general, we lay down a uniform grid in R®. In reality, not all
the points in this grid need to be used since we only have to solve the partial
differential equation in a neighborhood of our curve. This is called a local level
set method, which we will discuss later. The level set functions 4 and ¢ are either
given or created on this grid initially. Usually we use analytical expressions for
1p but we may just as well give values of ¢ only at points in the grid. The partial
differential equation for ¢ is then solved by using appropriate finite difference
schemes, which the uniform grid lets us easily create and implement. Note also
under our representation, the curve will not leave the surface and so the constraint
of the curve being on the surface is always satisfied. In fact, the curve location
does not need to be determined for our computations but only when we plot the
curve. The level set method representation also automatically takes care of any
merging that may occur. The partial differential equations for the evolution are
just solved in the same way until the end time regardless of whether merging has
occurred or not. This ease in handling merging is one of the main reasons for

using level set methods.
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3.5 Introduction to Flows

In the following sections, we will use our format to generate and solve evolution
equations for curves on surfaces moving under constant normal flow, geodesic
curvature flow, Wulff flow, and flow under fixed enclosed surface area. In the
process, we will develop other uses for these flows such as obtaining signed dis-
tance functions, geodesics, Wulff minimal curves, and Wulfl shapes. Finally, we
extend our results to allow the surface to also move. We will mostly derive the
evolution equations in a few ways, by putting an R? equation onto the surface,
by finding a velocity field under which to move the curve, and sometimes through
modified gradient descent minimizing an energy. The first way is quick and easy

but the other ways are more geometric and intuitive.

3.6 Flow Under A Given Velocity Field

We first consider the simple problem of moving a curve on a surface by a given
and fixed velocity field tangent to the surface. The first step is to extend all our
quantities to R?, creating 1 from the surface, an initial ¢ from the curve, and v
from the velocity field. There are various numerical methods that can do this,

e.g., see [6]. The evolution for ¢ then becomes
¢+ Poyv - Vo =0,

which means we are moving the level sets of ¢ in R* under the velocity field
Pgyv. The projection matrix in front of v keeps each level set of ¥ independent
from the others so that the flow on one level set of 1) will not affect or be affected
by the flow on the rest of them. So under this velocity field, for a given level
set surface of v, the level sets of ¢ on that surface will move according to the

velocity field projected onto that surface and, especially, the zero level set of ¢
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on the zero level set surface of 4, i.e. the curve on M, will move according to
v on M. This means the evolution equation gives flow on M under the velocity

field », which is what we want.

ala W A P}

Another way to derive this is to look at the surface {¢y = Cy} and the curve
on that surface (s, t) obtained from the intersection of {¢ = C1}, taken at time
t, with the surface. We study the flow of v on this surface according to a vector
field that is tangent to the surface, Pyyv. Considering general C; and C; allows
us to obtain an evolution equation valid in all of R®. From the definition of v,
we have ¢(7,t) = C; for all s and ¢. Therefore, taking a derivative with respect
to t gives

The curve moves under the vector field Pyyv implies that -y, = Pyyyyv(7y). There-

fore, the form of the equation becomes

b1, 1) + Popmv(y) - Vo(v,1) = 0.

So, on the curve, we have
¢’t + Pv¢’U . ti- = 0.

C, and C, arbitrary then imply that this equation is valid in all of R3, giving us

back the same equation as above.

The derived evolution equation is a partial differential equation of Hamilton
Jacobi form and can be numerically solved using TVD-RK of third order in time
and Hamilton Jacobi Weighted Essentially Non-Oscillatory method (WENO) of
fifth order in space using the Godunov scheme[15]. The associated CFL condition
says that At, the time step, must be less than a constant times Az, the spacial
step, with the constant depending on the magnitude of v. Also, the singularity

arising from |V#| = 0 needs to be regularized. This can be accomplished, for
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example, by replacing |Vi| with \/ngl + 92, -+ 92, + €2 , where ¢ is positive and
small, when it appears in a denominator.

The above process can also be used to derive evolution equations for more
general flows. First, a valid velocity field v, which now may depend on ¢ and
its derivatives, must be derived. This will depend on the type of flow being

considered. Then the evolution equation will take the same form as above,
b + Pv¢1) -V =10.

This equation will move the level sets of ¢ in R? under the wanted velocity
field and thus will move the zero level set of ¢ on M according to the flow
being considered. It is also valid in more space dimensions, where 1 and ¢ are
real valued functions on R"™ and the projection matrix is an n» by n matrix.
Note we cannot use the above discretization anymore for general v. The valid
discretization of the equation will depend on the form of v, for example, if —Pyyv-
V¢ is elliptic, then we can use central differencing schemes. We will constantly
use this velocity field process to derive and validate the evolution equations for

our Hows.

Note for curves in R? and using the original level set method, the evolution
equation looks like

¢t+’U'v¢ZO,

where v is a velocity field given in R?. We want to look at the form of this partial
differential equation on the surface M. Given x on M, note V) is normal to M
at  and let &, &, &; be an orthonormal basis in R® with & = Vi at z. This
frame then allows us to define the surface gradient operator V¥ at z as before

and so the equation on the surface will take the form

fr+v- V56 =0,
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or, in detail,

b+ (v,81)010 + (v, 2)Bap = 0.

'T'his can be rewritten in the usual format,
¢t+U'PV¢V¢:(}7

which is equivalent to what we got previously. So writting the R? equation on

the surface also gives the correct evolution equation.

3.7 Constant Normal Flow

In this problem, we would like to evolve a curve in the outward normal direction
at a constant speed C on the surface. This means at time ¢, the curve we are
looking for is the set of points of distance Ct, measured on the surface, away from
Yo in the outward direction. Note that moving inward corresponds to C being

negative.

We first use our approach for writting R? equations on the surface to quickly
generate the evolution equation. The corresponding evolution equation for curves

in R?, under the original level set method, is
¢ + C|V¢| = 0.

Once again, given z on M, let é&,é;, 63 be an orthonormal basis in R? with
s = V4 at z. This allows us to define V° at z and so the evolution equation on

the surface takes the form

¢t + C|v5¢| =0,

or, in detail,

b1+ CV (519)? + (8202
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This can then be rewritien as
¢t + C|Pyy V| = 0,

which is the correct equation. We will, however, verify that it indeed moves a
curve in the outward normal direction by speed C by rederiving it using the more

intuitive velocity field approach.

In this approach, we want to calculate a velocity field v under which the level
sets of ¢, and especially the zero level set, will move in the correct manner. For
fixed t, consider the surface {¢p = C} and the curve generated by intersecting
this surface with {¢ = C3}, where C} and C, are constants. Note the case we
are interested in is €} = Cy = 0 but by considering arbitrary € and Cj, we get
a velocity field valid in all of R?® which can be used to evolve ¢ in R3. Now, on
this curve, v should be normal to the curve, have length C, and be tangent to
the surface. Such a v will give the desired motion for the curve on the surface.

From this, we deduce
PyyV
v=C=2 ¢ .
[Py V|
Note, we can use vector cross products instead, since we are in R?, along with

the identity
PoyV¢ _ VP x Ve
|PoyVg| VY x V|’

to rewrite our expressions but we will stick with the more general form. Also, if

C =1, note v becomes the outward normal of the curve on the surface.

Under such a velocity field, the evolution equation for ¢ takes the form
¢ +v- Vo =0,

since Pyyv = v. Simplifying, we get

PgyVo

v-V¢ = C|Pv¢V¢|

.V
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PV
|Poy V|
= C|PyyVdl.

= C . Py V¢

So the evolution equation for moving curves on surfaces by constant normal flow
is
¢t + ClPyy V| = 0,

or, using vector cross products,

Vi x Vg
¢+ C Vol = 0.

Note if we have a partial differential equation of the above form, even with
C depending on ¢ and its derivatives, then we can say the curve will move by
speed C in the normal direction. In fact, all evolution equations for flows can
be written in this form. This is because given a velocity field v tangent to the
level set surfaces of #, then at each point z, we can decompose v in terms of
H%#)L% and vectors perpendicular to it. Thus v+ Py, V¢ is equal to C|Pyy Vo,

for some C. So moving under the vector field » is the same as moving in the

normal direction by speed C.

The partial differential equation we derived with C constant is of Hamilton-
Jacobi form and so we discretize it using Hamilton-Jacobi WENO of fifth order
along with Local Lax-Friedrichs (LLF) in space and TVD-RK of third order in
time. To satisfy the CFL condition, At needs to be smaller than a constant times
Az. The term |Pyy V4| also needs to be regularized to remove the singularity
arising from |Vi| = 0.

We can also study the behavior of this flow in higher dimensions. The evolu-

tion equation

v+ C|PoyVe| =0,
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is still valid with 1 and ¢ real valued functions over the space R*. When we drop

a dimension and flow points on curves, the evolution equation takes the form

iﬂ‘!)y(f)m - ‘!bwqf)y'
C——————= =10
V]

Note the numerator of the second term is the absolute value of the Jacobian of
1 and ¢.

In Table 3.1, we see that the method is second order accurate before merging

¢y +

occurs. This was checked for a circle moving on a sphere by unit normal flow, i.e.,
flow in the normal direction at unit speed. The whole algorithm, including the
second order accurate plotter, is included in this test. By using a higher order

plotter, we can get higher order accuracy.

grid size error order

32 % 32 x 32 0.00561706
64 x 64 x 64 0.001703 1.7217
128 x 128 x 128 || 0.000447336 | 1.9286
2566 x 256 x 256 || 0.000115601 | 1.9522

Table 3.1: This is the order of accuracy analysis for unit normal flow. The
example considered was a circle moving on a sphere. The results show second
order accuracy. This is because the accuracy of the whole algorithm, including

the second order interpolation scheme used to plot the curve, is tested.

In Figure 3.1, we show a curve moving over two mountains. The curve breaks
into two pieces and each piece moves up each mountain. In Figure 3.2, we show
a curve moving on a volcano. The curve starts out outside the volcano and goes
up and into it. In Figure 3.3, we show a curve on a two holed torus. The curve

moves across the two holed torus and breaks and merges multiple times. Thus we
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see that the motion of the curve by constant normal flow on complicated surfaces,
even when merging occurs, is easily taken care of by our algorithm. Finally, we

show in Figare 3.4 flow in the normal direction by a non-constant speed. For each
point on the curve, this speed is equal to a function § evaluated at the outward
normal of the curve. The function we chose is beta(z) = |2 | + |#2| + |za|, which

is related to crystal shapes. Note the squarish aspect of the growing curve.

3.8 Signed Distance Function

In an extension of constant normal flow, we would like to find the signed distance
away from a curve 7 confined to a surface M. The signed distance on M of a
point away from a curve is the minimal distance measured on the surface, with a
negative sign if the point lies inside the curve, of that point away from the points
of the curve. We solve the problem by once again setting 1 to have M as its
zero level set and trying to find a real valued function d in R? such that given
a point x € M, d(z) gives the signed distance of z away from v. We call d a
signed distance function of v on M. Note this problem is different from the ones
we have previously studied because we are looking for a function defined on all

of M.

For v a curve in R?, finding the signed distance function using the original
level set method is accomplished by introducing a time element and creating a
partial differential equation whose steady state solution values give signed dis-
tance. Starting with a level set function ¢ initially having vy as its zero level set

and negative inside v, the equation

¢ + sgn(p(z, 0))(|V| — 1) =0,

will give signed distance as its steady state solution. The signum function keeps
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¢ = 0 on « for all time and the rest of the equation tries to force |V¢| = 1, making
the steady state solution a signed distance function. We will derive the correct
evolution equation on the surface in two ways, by looking at this equation written
on the surface and by using the philosophy behind the equation to recreate it on

the surface.

In writting the equation on the surface M, we fix z on M and &;,¢é;,€3 an
orthonormal basis of R® with &5 = V¢ at z. Then V¥ is defined at  and the

equation takes the form

¢u + sgn(¢(z, 0))([VZ¢| — 1) =0,

or, in detail,

bu+ sgn(9(2,0)) (VB9 + (Br9)? - 1) =0

This can then be written as

¢ + sgn($(z,0))(|Pyy V| — 1) = 0.

This is the correct equation but we will rederive it in the more detailed and

intuitive way by following the basic philosophy of the R? equation.

To find d on M, we imitate the method for curves in R?, i.e., we introduce
a time element and create a partial differential equation that has d as its steady
state solution on M. Let ¢ initially be such that the intersection of its zero level
set with M is -y, with ¢ negative inside . If ¢ is a signed distance function on
the surface, then it must satisfy |[PyyVé| = 1 on M, i.e., the steepest ascent
directions of ¢ on M have unit length. So we create an evolution equation such
that on M, the steady state solution satisfies this property while keeping the zero

level set of ¢ fixed at its original position. One such candidate is

¢: + sgn(¢(z,0))(|Poy V| ~ 1) = 0.
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The steady state viscosity solution on M of this evolution equation will be d.
Note that the evolution equation is solved in all of space but steady state may

sometimes only be achieved at M.

This equation is also valid in space dimensions other than three and, in fact,

the equation for distance on curves in R takes the form,

VIVHPIVSE — (V- Vo) 1) o

VY]
In R?, written with vector cross products, the equation becomes

b1+ sgn(#(z,0)) (l‘—”l";Tf‘” . 1) 0.

¢ + sgn(qb(x, 0)) (

The signed distance evolution equation is of Hamilton-Jacobi form and we
solve it using Hamilton-Jacobi fifth order WENO-LLF in space and third order
TVD-RK in time. We also replace the signum function by a smooth version and
regularize to remove the singularity occurring at |Ve| = 0. To satisfy the CFL

condition, At needs to be less than some constant multiple of Az,

In Table 3.2, we see that the algorithm for finding distance functions is first
order accurate. This is because the curve is moved slightly during iterations of
the method. Theoretically this should not happen but because of our signum
function and because of the grid, numerically we do get a small shift. Table 3.3
shows that the method has a high order of accuracy when looking at the quantity

|| Py V| — 1]. This means the method gives functions with nice derviatives.

In Figure 3.5, we show a curve on a volcano and the contours of the distance
function. Note the contours are well-spaced. In Figure 3.6, we show a curve on
a torus and the contours of the distance function. Once again, the contours are
well-spaced. Thus we see that the algorithm, though only first order accurate,
has accurate derivatives which means it is an accurate signed distance function

for a slightly perturbed curve.
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grid size €rror order

32 x 32x 32 | 0.020416
64 x 64 x 64 || 0.0106933 | 0.9330
128 x 128 % 128 || 0.00526517 | 1.0222
256 x 256 x 256 | 0.00261509 | 1.0096

Table 3.2: This is the order of accuracy analysis for the distance function. The

curve considered was a circle on a sphere. The results show first order accuracy.

grid size error order

32 x 32 x 32 0.000527837

64 x 64 x 64 4.7333% — 06 | 6.8011
128 x 128 x 128 | 4.756352e — 08 | 6.6377

Table 3.3: This is the order of accuracy analysis for the distance function, mea-
suring ||Pyy V| — 1|. The curve considered was a circle on a sphere. The results

show high order accuracy.

3.8.1 Keeping Level Set Functions Well Behaved During Flows

One important application for signed distance functions is the role it can play
in keeping the level sets of a function well behaved on the surface during a flow.
This helps reduce numerical inaccuracies that may appear from an overly steep
or flat level set function. For curves in R?, this is accomplished by making the
level set function into the signed distance function to its zero level set at each
time step of the flow. We can do the same for level set functions on surfaces.
Note since 1 can be chosen to be well behaved or made so by replacing it by the

signed distance function in R2 to its zero level set surface, we will only study the
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effect that different ¢ have and assume 1 is well behaved.

Certain types of flows may result in a bunching of level sets, where the func-
tion restricted on the surface is steep, or a spreading out of level sets, where the
function is almost flat. Numerically, this is undesirable and may introduce large
errors in the finite difference approximations. Further errors may also be intro-
duced when using interpolation to find the location of the curve, especially if the
function on the surface is almost flat. Finally, flatness also may cause problems if
we need to divide by the magnitude of the surface gradient, as is done in geodesic
curvature flow. But if the level set function is constrained to be a signed distance
function, then the surface gradient will have a magnitude of value 1 everywhere
except at kinks. This makes the level set function well behaved, especially near
the curve. When we consider a particular flow, i.e., solve an evolution equation
for ¢, the signed distance constraint is enforced usually by iterating the above
partial differential equation a few times after every time step of the flow. We only
need to iterate a few times since usually only the information around the curve
affects its motion and 50 we only need to enforce signed distance in a neighbor-
hood of the curve. Note the zero level set of ¢ remains fixed when iterating to a
signed distance function and so this process theoretically will not affect the flow

of the curve on the surface.

We digress here to talk more about keeping ¢ well behaved during its flow.
Another way computations may break down is when the level sets of ¢ become
tangent to the surface. Note this does not have to do with the level sets of ¢ on
the surface, where the signed distance constraint makes ¢ well behaved, but with
the behavior of the level sets of ¢ off the surface. For example, ¢ = xy ~ Czy is
already a signed distance function on the surface zo = 0 for all C' > 0 but as C

tends to zero, the level sets of ¢ become tangent to the surface. This means the
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surface gradient will be close to zero. Also any small perturbations may greatly
shift the location of the curve or even introduce spurious curve parts. To prevent

this from happening, we want to make the level get surfaces of ¢ perpendicular

to M on M, especially near the curve. This can be accomplished by iterating a

few steps of the partial differential equation

b+ sgn(w)% Vg =0,

at each step of the flow, but after signed distance is enforced. Note this equation
forces |g " V¢ = 0 in steady state so that the level sets of ¢ will be perpendicular
to the surface. It also keeps the level sets of ¢ fixed on the surface so that signed
distance on the surface is preserved. The fast marching method can also be used

in place of the partial differential equation to create a faster algorithm.

The evolution equation is of Hamilton Jacobi form and we compute it using
fifth order WENO-Godunov in space and third order TVD-RK in time. The CFL

condition says At needs to be less than a constant multiple of Ax.

3.8.2 Geodesics

The signed distance function can also be used to compute geodesics on a surface
from points to a curve. This means given a curve v on M, we want to find the
shortest path on M from any point on M to «y. This can be accorplished using
a signed distance function d of v on M. In fact, the shortest path is simply the
part of the integral curve of the vector field ~dPgyVd drawn from the chosen
point to . This simply means following the steepest descent direction of d on M
from the chosen point with speed d. The speed is thus zero at v and so we follow

the integral curve until convergence. The integral curves, y(s), of our vector field
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can be computed according to the ordinary differential equation

(s) = —d(y(s)) Popysy) Va(y(s)).

Note y(s) € R? for all 5. For a chosen point z on M, the geodesic from z to
7 is thus found by solving the above ordinary differential equation with intial

condition y(0) = z. This can be done numerically using a Runge-Kutta scheme.

When we want the geodesic between two points ¢ and b, we can first get a
d which gives the signed distance function to a small curve around the point
a, i.e., approximating a. Then d = d + d(a) is an approximate signed distance
function to @ on the surface which is exact when the small curve approximating
a is at a uniform distance away from a. Using this d in the ordinary differential
equation above along with the initial condition z(0) = b allows us to calculate an
approximate geodesic. Or, we can require that the distance is given initially in
a neighborhood of the point ¢ and then solve for a signed distance function d to
a on M by iterating the corresponding evolution equation but only outside the
neighborhood of initial given values, the given values being fixed. We can then

use this d along with z(0) = b for our initial condition to calculate geodesics.

A drawback of this signed distance function method for geodesics is that
when there are two or more geodesics, we have almost no control over which
one is chosen. Another minor drawback is that numerical approximations of the
geodesics are not forced to lie on the surface in the same way as in our standard

representation for curves on surfaces that we have discussed.

In Figure 3.7, we show a curve in the core of a volcano and the geodesics from
certain points to that curve. In Figure 3.8, we show a curve on a torus and the
geodesics from certain points to that curve. Thus we see that the signed distance

function can be used to find geodesics from points to curves on general surfaces.

51



3.9 Geodesic Curvature Flow

We now consider the problem of moving a curve 7 by geodesic curvature on
a surface M. This can be accomplished in a few ways, all of which lead to the
same evolution equation. The first way is by writting the corresponding evolution
equation for curves in R? onto the surface. The second way involves finding the
curvature times normal vectors of the curve in R® and projecting them onto the
surface. This gives the velocity vectors with which to move the curve. The third
way is studying modified gradient descent minimizing the length of the curve
constrained on the surface. The fact that these are all equivalent means moving

a curve by curvature is a minimization of the length of the curve.
First Way: Writting R? Equation On Surface.

We note that the corresponding evolution equation in R? takes the form

Vo )
=V-: V|,
where —V - (‘g ) ) is the mean curvature of the curve. Given xz on M and an

orthonormal basis &, &, €3 in R® with &; = V4 at x, we can define V¥ at 2. So
the partial differential equation put onto M at z takes the form

VS
¢’t = VS : (lvsz|) |VS¢|5

g
where, in fact, -V - (|g_5§_|) is the geodesic curvature of the curve. In detail,

the equation is

| b1 . Bap = =
b = + 0y = = 019)% + (020)2,
( (\/(alqb (Bap)? ) (\/(alqb)z + (32¢)2)) Vi

with

St )
V(6,9)2 + (8202 V(019)2 + (8:6)?
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the geodesic curvature. We then rewrite all this as

_ PoyV | Py V9|
=V (le,ws ”WO (Ve

with

PyyVo )
-V (IP Vol V) o

the geodesic curvature. This equation translates to moving a curve on M in the

normal direction by geodesic curvature, which is what we want.
Second Way: Projection of Free Space Curvature Times Normal Vector.

Consider the surface {4/ = C;} and the curve generated by intersecting this
surface with {¢ = Cy}, C; and C; constants. This means Vi) x V¢ taken on the

curve is parallel to the tangent vector of the curve. So the tangent vector of the

. V¢ xV
curve is T = Vi X Ve

in R®, kN, is the change in the tangent vector along the curve. Therefore, using

Now the curvature times normal vector of the curve

directional derivatives, we get
N=(VT}-T,VT; - T,VT3-T),

where T = (Ty,T%,T3). We now project this onto the surface to get PyyxlV.

Using this as our velocity field leads to the evolution eguation
¢t = -—vah’,N : Vqﬁ

This equation also gives geodesic curvature motion of curves on surfaces.

Third Way: Energy Minimization. We consider the energy

B($) = [.0(@)30)|PoyV ol Velde,

which gives the length of the curve that comes from the intersection between the

zero level sets of ¢ and 4.
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Proposition 3.3 The Euler-Lagrange equation of this energy s

0= - (FETEIVH ) s)e(o)

Replacing 8(1))6(¢), which we treat as smoothed out delta functions, by —TLFIPVVZGM

in our gradient descent gives the evolution equation

= PoyVé v )w
h=V: (1P Vo V) e

which is exactly what we got using the first method. Note because everything is

in R*, we can also write this equation as

6=V ((WXW) X W) V4 x V|
t [V % Vgl VyP

We made the above replacement because it equates our equation with the

equation derived using the first method. Also, from standard level set theory,
we see that §(1))6(¢) should be replaced by a quantity that will equate gradi-
ent descent for minimizing the enclosed surface area of vy with inward normal
flow at unit speed. The enclosed surface area for our curve on M is given by
/R3H (—¢)d(1p)|Vopldz, where 9 is static and H is the Heaviside function. So the

Euler-Lagrange equation is

0 = —3(¢)(H) |V,

and gradient descent with the above replacement gives

[V x V|
VY|

which is inward normal flow at unit speed.

¢t - = 05
Equivalence.

We will now show that the evolution equations of the first and third methods
are equivalent to the evolution equation of the second method. The main part

lies in the following property,
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Proposition 3.4 V- (7 x V) = &N - (Vi) x 7).

Using this to expand the right hand side of the evolution equation in the second

method, we get

—Pv¢ﬁN . V(,?.!? = —Pv¢v¢ kN
o (IVYPVe (V¢-V¢)V¢)
- - Nk
_ (VY x V) x Vi
- ( VP )

kN ((W} x V) X w) IVih x V|

[V x V| |V [?
Vi x V
= kN (V9 x VY x Vel ?bv:{bﬁ id
e, [V x V|
= =V (rx Vip)w»——'vw'z
_ V. ((w X V) x w) Ve x Vg
|V x V¢ [V|* 7

which is the right hand side of the evolution equation in the third method. This
means all the evolution equations are equivalent. We summarize this result in

the following.

Proposition 3.5

Voo _v. [TV 1Poy V|
Poyrll - Vo = (IP V¢|”W') I

Thus we have
Proposition 3.6 The evolution equation is degenerate parabolic.

So we use central differencing in space with third order TVD-RK in time to
numerically solve the evolution equation. We also regularize the equation to
remove the singularities arising at {Vt)| = 0 and |PyyV¢| = 0. To satisfy the

CFL condition, At needs to be less than a constant multiple of Az?.
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In Table 3.4, we see that the method is second order accurate. This result

was obtained by studying a circle moving by geodesic curvature flow on a sphere.

grid size error order

32 x 32 x 32 0.00203138
64 x 64 x 64 0.000540219 | 1.9108
128 x 128 x 128 || 0.00014037 | 1.9443

Table 3.4: This is the order of accuracy analysis for geodesic curvature of a circle

on a sphere. The result shows second order accuracy.

In Figure 3.10, we show a curve moving on two mountains. The curve needs to
move over the mountains before it can shrink to a point and disappear. In Figure
3.11, we show a curve moving on a bent plane. Note the surface has a kink in
it. The curve navigates over this without any problems. In Figure 3.12, we show
a curve on a cylinder. The curve evolves and wraps tight around the cylinder,
forming a circle. This is a geodesic curve for the surface. So our method can be
used to find geodesic curves on surfaces. Altogether, we see that our algorithm

can easily perform geodesic curvature flow for curves on surfaces.

3.10 Wulff Flow

We now consider the problem of evolving a curve by Wulff flow on a surface. This
means minimizing the energy / Blvas)ds, where 8: 5% — (0,00) and vy is the
unit normal of -y lying on the su;face M. Note when 8 = 1, we are in the case of
geodesic curvature flow. We make a homogeneous degree one extension of 3 to

R? and then rewrite the energy using our usual representation to get

fRS (lﬁwgi) 3(4)5(4)| Ve x Vlda.
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We call this the Wulff energy.
Proposition 3.7 The Euler-Lagrange equation of this energy 1s

0=~V - (PoyVB(Pry V)| V[)6(h)8(4).

So the evolution equation, enacting the usual replacement, can be written as

Py, V
b =V - (PoyVB(Poy ) vul) V4L
IVl
Proposition 3.8 The partial differential equation is degenerate parabolic if
(3
|Poy V|

is nonnegative definite.

This moves a curve by Wulff flow on a surface.

To see this is the same as writting the R? evolution equation on the surface,

we note that for curves in R?, Wulff flow is given by

¢ =V - VE(Ve) |V

So given z on M and éj, €, €3 an orthonormal basis for R3? with & = V4 at z,

we can define V¥ at z and, thus, the equation on the surface takes the form
o= V° - VEB(VI)IVIg,

or, in detail,

by = (8,(81B(B19é1 + D200E2)) + Da(DB(01 081 + 52¢é2)))\/(31¢)2 + (D:29)2.
This can then be written as

¢r = PoyV - (PeyV B(PoyV )| Poy V),
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which is equivalent to the equation derived using energy minimization. Note
higher dimensions can also be considered by using this evolution equation.

We numerically solve the evolution equation using sccond order central differ-
encing on all spacial derivatives. The time derivative is discretized using TVD-RK
of third order. The equation is also regularized at the singularities that occur at

V4| = 0 and | Py, V| = 0.

In Figure 3.13, we show a curve moving on the bottom of a paraboloid. The
Wulff energy we use is with a smoothed out version of 8(z) = |z] + |w2| + |zal.

Tts exact form is

Blz) = \/:c%—i-ez%»«\/a:%—l—é +\/.’E%+62,

with € = 0.1. Thus the curve develops a squarish shape while shrinking. In
Figure 3.14, we show a curve moving on a bent plane. The curve once again
develops a squarish shape and we see that kinks in the surface are not a problem
for our algorithm. So altogether, we see that our algorithm can handle Wulll flow

of curves on surfaces.

3.10.1 Wulff Minimal Curves

The evolution equation for Wulff flow can be slightly altered to give a method
for finding Wulff minimal curves on surfaces. Given a set of points on M, we
want to find the curve on the surface that passes through these points with the
minimum Wulff energy. We will call the given points boundary points. Details

about Wulff minimal surfaces in R? are given in Chapter 6.

For 8 = 1, we are searching for the curve on the surface of minimal length
that passes through the boundary points. When M is a plane, this curve is the

boundary of the convex hull of those points. For general surfaces in R?, the curve
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will be piecewise geodesics. We find the solution to this problem by solving to

steady state the zero level set of ¢ on M in the evolution equation
¢ = —pPuysN -V,

where p is smooth with u{z) = 0 if z is a boundary point and p{z) = 1 outside
a small neighborhood of the boundary points. The initial curve, 7, is chosen to

pass through the boundary points.

In the case where the boundary points consist of just two points, a and b,
and 7, is chosen carefully, we get the geodesic between a and b. However, if the
initial curve -y is not chosen carefully, parts of it may merge at later time and

not evolve into what we want.

For general 3, the evolution equation we are interested in is

|Poy V¢l

Py = pV - (PV¢D5(PV¢V¢)|V¢|)W-

We note that when M is a plane, the solution is usually still the boundary of the
convex hull of the boundary points. Numerically, the evolution equation is solved
using the same finite difference schemes as in the Wulff flow case. The p is just
treated as a coefficient in front of the rest of the equation. For higher dimensions,

the same evolution equation holds since it is already in its general form.

Creating a <y, or the corresponding initial level set function, that passes
through the boundary points may not be casy but sometimes we can simply
take as yy any curve on the surface that encompasses all the boundary points.
This also makes the initial ¢ easy to construct. When we run the evolution equa-
tion in time, the curve will shrink and sometimes end up going through all the

boundary points. Other more robust interpolating methods can also be used.
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3.11 Fixed Enclosed Surface Area

We now consider the problem of evolving under a certain motion a curve 7y on
a surface M with the constraint that the surface area of the part of the surface
enclosed by 7 is fixed in time. We will mainly look at geodesic curvature flow
and will comment periodically on more general motions. In this case, the energy
involving the length of the curve coupled with the constraint gives us the energy
we are interested in. The constraint can be translated as the condition that
.[RSH (—¢)8()}|V1b|dx remains constant throughout time. So the new energy to

consider is

B($) = fos S)8(@8) | PoyVlds = X fpo H(=4)3(0)|Vetlds,

where A is a Lagrange multiplier.

For other flows, we can replace the first integral with the energy corresponding
to the type of flow. This just means we are coupling a different energy with the
constraint. For example, if we want Wulfl flow then we use the Wulff energy.

Details of this will be given in the when we discuss Wulff shapes.

The Euler-Lagrange equation then becomes

o (P
0=~V (2L 1vw) 600)3t8) + AIVUISHES)

Under our usual replacement for 8(1)d(¢) and previous results, we get the evo-

lution equation

|Poy V| V4]

We can find the value of A by enforcing the constraint,

0 = & fou H-9)58)|Vvlds
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I

Js #8850 Vlda

= o (7 (EeTevvl) - ros vl STl

Solving for A in this equation gives
( PouVe

Y (o) s vias
fR3|PV¢V¢15(¢)5(¢)|V1/)|da;

All this together defines the evolution equation for ¢ that moves a curve by

A

geodesic curvature flow while keeping the enclosed surface area fixed. This equa-
tion is also valid and can be used in higher dimensions. For more on the process

of fixing enclosed area or volume, see [16].

Numerically, ;che fight; hand side of the evolution equation is handled in the
manner corresponding to the flow. The left hand side is in Hamilton Jacobi form
and we solve it as in the constant normal flow section, i.e., using third order
TVD-RK in time and Hamilton Jacobi fifth order WENO-LLF in space. At each
Runge-Kutta step, we solve for A by using second order approximations for the

integrals and using the ¢ from the previous step in the integrands.

To derive the evolution equation from the corresponding R? equation,
¢t + AVl =V - VB(V$) [V,

with
Jx ¥ - VATV 8|5(8)d

JesV915(9)da

we note that all the terms have been considered previously except the A term.

A=—

For A\, we would like to take the integrals over the surface instead of over RZ.
This means we change the integral from [p2dz to fgsd (1)|Vepldz. Using this,
the rest of the terms carry over as before and so writting the R? equation on the

surface gives the correct evolution equation.
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We can also consider flows that are not minimizations of energies. If we want

the curve to move according to the equation

¢t = —v- Vg,

where v can depend on 1, ¢, and their derivatives, then the constrained motion

can be given by

¢t + APyy V| = —v- V¢,

where

_ fRs (v- V¢)d(#)o()|Vipldz
fRBiP oo VI6(8)6w)[Vilde

This will move a curve according to v while keeping the enclosed surface area

A

fixed. Note that this makes no mention of the evolution equation coming from
minimizing an energy. However, when there is an energy for the flow, such as in
geodesic curvature flow or Wulff flow, the evolution equation makes more sense.

Also higher dimensions can be considered using the same evolution equations.

In Figure 3.15, we show a curve moving by geodesic curvature flow with a
fixed enclosed surface area constraint on a paraboloid. The sf,eady state curve is
a circle symmetrically wrapped around the paraboloid. In Figure 3.16, we show
a curve moving by the same flow on a sphere. The initial curve is elliptical in
nature. The steady state curve is a circle on the sphere. We see that our method

can easily handle the fixed enclosed surface area constraint for curves on surfaces.

3.11.1 Wulff Shapes

We can get Wulff shapes on a surface by running the evolution equation for Wulf
flow with fixed enclosed surface area to get the steady state of the zero level set

of ¢ on M. Following the steps for deriving the evolution equation for such a
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motion, we start with the energy

E(¢) = faaﬁ (%ﬁ%

i

) Ve VolIvHIas@)ds X fo H-5) IV,

s

where ) is a Lagrange multiplier, and get the evolution equation

P
b1+ NPoyV| =V (PwDB(PwW)IVcbi)'—'%%ﬂ,

where

3 = fR“V - (PoyDB(Poy V)|V 6))3(8)8(9)|Vlda
Jees PV 9IB(8)6(0) |V da ‘

The steady state curve on M of this evolution equation gives a Wulff shape on

the surface. Wulff shapes in higher dimensions can be found using the same

equations.

In Figure 3.17, we show a curve moving under Wulff flow while fixing the
enclosed surface area. The final shape is a Wulff shape on the surface and is
squarish in nature since we take 8(z) to be a smoothed out version of |z} +
|z3| + |xa]. The algorithm can be used to find Wulff shapes on other surfaces as

well.

3.12 Moving Curves on Moving Surfaces

We now extend our results to include moving curves on moving surfaces. Since
the surface is moving, 4/ will now depend on time and the zero level set of 4 at
any time gives the surface at that time. Also, the curve on the surface at any
time is given by the intersection of the zero level sets of 1) and ¢ at that time. To
follow the surface and curve, we need only follow 1/ and ¢ or, more accurately,
the zero level set of ¢ and the intersection of this with the zero level set of ¢. The

initial surface and curve are given and can be represented by an initial ¢ and ¢.
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Now suppose the motion we want for the curve satisfies fixed surfaces, i.e., ¥
fixed in time,

Q"t-!"U'V(Tﬁ:D}

for some velocity field v tangent to the level set surfaces of 9 that can depend on

1, ¢, and their derivatives. Suppose the motion of the surface itself satisfies
P+ w- Vi =0,

for some velocity field w that can depend on ¢ and its derivatives but not on ¢
in any way. Then we can get velocity field under which to move the curve by

adding the two velocity fields v and w. This means the evolution equation is
¢+ (v+w)- Vo =0.

Note the curve and also the surface may undergo merging in the process of this

evolution.

As an example, suppose we want the curve to move outward in its normal
direction at unit speed. Then we get v+ V¢ = | Py, V|. Suppose we also want
the surface to move outward in its normal direction at unit speed. The equation
for this is

P+ [V =0,

-V
Vi

evolution equation for the desired motion of the curve,

with w = g e Sow: V¢ = v . The velocity fields together give the

VY-V _

+ Py Vo + ———— = 0.
qbt Vi (,';'5 |V'§D|

Another example is where the curve itself does not move but the surface moves

under the velocity field w. So the motion of the curve in R? is due only to the
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motion of the surface. This specific problem, called region tracking, was first

solved in {3] in using the same representation we use here. In this case,
Yy +w- Vi) =0,

is the equation for the motion of the surface, and thus,
¢ +w- V=0,

is the equation for the motion of the curve.

All this can also be done for other previously described motions except for
the case of fixed enclosed surface area. In this case, we need to clarify what we
want since the surface may shrink until its total surface area is smaller than the
enclosed surface area we want fixed. Higher dimensions are also covered by the

above evolution equations.

A drawback of this method is that spurious curves may appear when surfaces
merge. This happens when a part of the surface with negative values of ¢ touches
a part of the surface with positive values. At the place of contact, a zero level
set of ¢ is created in between the positive and negative values and so gives rise
to a spurious curve on the surface. If the problem we are considering is curves
on surfaces then this is a wrong answer. But if we change the problem, then the
spurious curve actually makes sense. Let us think of the curve as the boundary
of the set of negative values of ¢ on the surface and the movement of the curve
as being due to the expansion or contraction of that set. The negative values
may denote one substance and the positive values a different substance, as in two
phase flow. When negative and positive values touch, a new boundary for the set
of negative values needs to be created and, hence, we should get a curve appearing
there to separate the positive and negative values. This way of thinking is not

only convenient here but may also be useful in applications.
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In Figure 3.18, we show initially a circle on a plane. The circle is moving by
constant normal flow on the plane and the plane is moving by constant normal
flow in R3. The final picture shows a dilated circle on a translated plane. More

complicated curves and surfaces can also be handled by the algorithm.

3.13 Local Level Set Method

A curve is a one dimensional object, so to solve an evolution equation in all of
R? to move the curve is too expensive. In most cases, we only need to solve
the equation in a neighborhood of the curve. Counterexamples, however, include
getting signed distance functions to curves, where the ¢ is needed over the whole
surface, and cases where curves can appear out of nowhere, for example, in the
active contour method of Chan and Vese[5]. But in most of the motions we have
studied here, the evolution equation is only needed in a neighborhood of the

curve.

We have succeeded in localizing near the surface, i.e., retaining only the grid
points that are near the surface. This is optimal for the methods that need
¢ defined on the whole surface. We create a data structure to hold only the
grid points close to the surface. The structure only needs to be created once,
at the beginning, since the surface is static. This immediately cuts down on
our memory storage. Also, we solve our partial differential equations only at
the retained grid points in this structure, thus greatly speeding up the method.
To determine which grid points are near the surface and thus should be in the
structure, we look at the distances in R?® of those points away from the surface.
Only points under a certain value, a constant times Az, are retained, which
makes this method optimal when ¢ needs to be solved over the whole surface.

We use the fast marching method once at the beginning to create the distance
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values at grid points.

In actuality, we will only solve our partial differential equation in a smaller
neighborhood of the surface than the neighborhood of retained points. This is so
the stencils of the finite difference schemes we use will not exit the neighborhood
of retained points. Fortunately, the fast marching method we used to obtain
distance to the surface, as a by-product, also gives an ordering of the points
with respect to their distance values, from least to greatest. We can then use
this to enforce Neumann boundary conditions on the boundary of the smaller
neighborhood by extending the values there, following the normal vectors of the
boundary, to the larger neighborhood. Note the normal vectors of the boundary
are in the same direction as the gradients of the distance values and thus following
the ordering given by the fast marching method correctly propagates the values.
So even though the partial differential equation is only solved in the smaller
neighborhood, the finite difference schemes will use values throughout the whole

neighborhood. The method, up to this point, also retains accuracy.

We may also want to make sure that the boundary conditions will not affect
the behavior of ¢ on the surface. For this, we can make the level set surfaces of
& perpandicular to the surface while not changing the values of ¢ on the surface.
This is accomplished using the evolution equation described previously in Section
3.8 for this purpose. The fast marching method can also be used instead. The
process of making the level sets of ¢ perpendicular to the surface, however, may

reduce the accuracy of the method.

So far, we have constructed a local level set method that is optimal for solving
partial differential equations over the whole surface but not for solving just in
a neighborhood of a curve. For this, we currently have a method that has the

potential to be optimal in both speed and memory but has not yet been pro-
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grammed up in such a way. It similarly involves retaining only the grid points
that are near the zero level sets of ¢ and ¢, solving in a smaller neighborhood
of thege retained points, and making the level sets on the surface well behaved
as described previously in Section 3.8. This ensures that the boundaries of the
neighborhood do not affect the motion of the curve. However, the data structure

is no longer static since the curve is moving, taking the neighborhood along with

it. This aspect slightly complicates the problem.

Table 3.5 shows the local level set method applied to constant normal flow.
The evolution equations are solved ov;ar the whole surface. Also, the level sets
of ¢ are not enforced to be perpandicular to the surface and so the accuracy is
roughly second order (compare to Table 3.1). Running the algorithm to make
the level sets of ¢ perpandicular to the surface will slightly move the contours on
the surface and reduce the accuracy to first order. The table was generated by
looking at a circle moving by constant normal flow on a sphere. Note, much finer
grids can be used than for the global method. Table 3.6 shows the local level set
method applied to finding signed distance functions. Once again, the level sets
of ¢ are not enforced to be perpandicular to the surface. The result is first order
accuracy, as in the global case. The table was generated by looking at a circle
on a sphere. Note, much finer grids can be used than for the global method. All
in all, the local level set method is faster and needs less memory than the global

method while still preserving the accuracy of the method.

3.14 Higher Dimensions and Codimensions

We can further extend our method to higher codimensions by using more func-
tions ¢1,..., ¢r and ¥y, ..., ¥, in R”, for k+m < n. The intersection of the zero

level sets of ¢y, .. ., ¥, gives the constraint, and the intersection of this with the
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grid size error order

8x8x8 0.053125

16 x 16 x 16 0.016274 1.7068
32 x 32 x 32 0.00661706 | 1.5347
64 x 64 x 64 0.00173415 | 1.6956
128 x 128 x 128 || 0.000433395 | 2.0005
256 x 256 x 256 || 0.000169642 | 1.3532
320 x 320 x 320 || 0.000107546 | 2.0425

Table 3.5: This is the order of accuracy analysis for the local level set method for
constant normal flow. The example considered was a circle moving on a sphere.
Because of the behavior of the error for the 256 x 256 x 256 case, we say the
method is roughly second order accurate. Note we can run on a 320 x 320 x 320

grid with this algorithm.

intersection of the zero level sets of ¢4, ..., ¢y gives the object to be moved under
the constraint. This means the constraint surface has dimension » —m and on
this, we move an object having dimension n —m — k. The actual motions will be
carried out under a system of evolution equations for ¢,..., ¢,. Note, however,
the fact that our methods are grid based, usually using uniform grids, means the
size of computer memory needed to run simulations in very high dimensions may

be restrictive, even when using a local level set method.

3.15 Conclusion

We have devised a level set based method for moving curves constrained on

surfaces. This method can accurately handle a wide variety of curves and surfaces
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grid size error order
10 x 10 x 10 |f 0.04269
20 x 20 x 20 | 0.0300296 | 0.5075
40 x 40 x 40 0.0170282 | 0.8185
80 x 80 x 80 0.00864061 | 0.9787
160 x 160 x 160 || 0.00435087 ; 0.9898
320 x 320 x 320 || 0.00213815 | 1.0249

Table 3.6: This is the order a accuracy analysis for the local level set method for
distance functions. The curve considered was a circle on a sphere. The method
is first order accurate. Note we can run on a 320 x 320 x 320 grid with this

algorithm.

and motions. It also extends all the results of the plane surface level set method
and so it concievably has a wide range of applications. Basic applications already
allow us to get signed distance functions, geodesics, and various interesting crystal
shapes on surfaces. The limitations are just the limitations of any level set based
approach. Finally, the method is easy to implement because complex surface
topologies and procedures, such as merging or breaking or keeping the curve on

the surface, are all handled antomatically.

3.16 Proofs of Propositions

Proof of Proposition 3.1
We will prove that these identities hold in R" for arbitrary n.

(a) This follows from the fact that P, is a symmetric matrix and P2 = P,.
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(b) This follow from the fact that
(va)%u B vau ey — Vu- Pxei.
(c) We prove this property by brute force calculations and, for simplification,

summing over repeated indices. Let e; be the vector with 1 for its ¢th component

and 0 for the rest. This means for the jth component, {e;); = &;;. So we have,

VY. (PguX) = VY*“(PguX)i

= V({(PyuX)i) Poue

(s vete ) 5 | Ua U,
- [(5 tVuP)X } (5’“ IWP)

= (6, = Yeta ) x b (s, — M) x| Henler
Kﬁ |Vut2) X} [( wz) } [Vaf?

Calling the first term I and the second term J, we have

I= [(51 _ 'Um{ua:j) Xj] -V. (PVuX)-;

|Vul? 1
and
B Ugp, Ug; Ug, U,
(R o) 5] T
Zg
_ Uy, U, (Xz)a:k (uzi uzj Xj ) Uy, U,
|Vu)? [Vul* . [Vu?
_’rjmkum(}(i)wk U, U, (X j) 2y Uy, U, (uwiuwj) XUy U
|Vul? | Vul* \Vul? ) [Vul?
L Ug; U, XUy, U,
|Vul? o |Vul?
[ UgUgya, + U, Uiy, 2Ug; Ui, U, Uy, XUy U,
[Vul? |Vauf? |Vul* [Vul?
_ (u‘fltkuxjkaj _ “miumjuwkuwika:i
|Vul? |Vul*
_ Xi_umiuijj U, Ya;zp
|Vul? [Vul?
V|Vl
= Py, X- .
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S0 altogether,
1
VY (Py,X)=V" (PWX|VU|)W,
which completes the proof.

Proof of Proposition 3.2 We will prove the results in general for R*. We sum

over repeated indices for convenience.

(a) Fix a point z on M. Let v be the outward unit normal vector to M at z.
Now given two orthonormal bases in R", ¢; and é;, i =1,...,n, let J;, let J; and

5 be (P,V); under the frames ¢; and &;, respectively. This means

D

|

(-4

S

where 8; and §; correspond to the frames e; and é;, respectively. Because of
orthonormality, we have that &; = a;;e; with the a;; forming an orthogonal matrix,
i.e., @0 = a0 = 05 Thus, we have b; = a;;6;. Therefore,

Now taking e;, i = 1,...,n, to be the standard orthonormal basis in R" and é&;,

i=1,...,n, to be an orthonormal basis of R" with &, = v, we get

&b = V°

eié,' = P,,V.
So

vS =PV,

and, especially, if u is a real valued function in R", then

Vu = P, Vu.
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(b) Continuing with the above computations, given X a vector field in R”, we

have

Therefore,

Proof of Proposition 3.3 Apply Proposition 3.7 with 8(p) = |p|, » € R>.

Proof of Proposition 3.4 Let ey, es, e3 be orthonormal. Then
V- X = (er(X),e1) + (ea(X), e2) + (ea(X), €3),

where e,(f1, fa, f3) = (e1(f1), e2(f2), ea(f3)). This is since for é;, &, &; orthonor-

mal, & = 31 ale;, 50

S E00.6) = D (), S ate)
SO IELEORN
- 33 bule),e)
- gej(X),ej).

Therefore, if & = (1,0,0),8; = (0,1,0),é; = (0,0,1), we get

3

dE(X)E) =V - X = ;(%(X)a €;)-

t=1 2

Vi x V ey x V .
Now, let ¢; = V¢XV¢I’62= eixv¢,63:elxe2. Note e, e9, €3 is or-

thonormal and the quantity we wish to investigate is V - (e; x V). Now

V- (e1 x V) = {er(er X V), e1) + (ealer x V), €2) + {es(e1 X Vi), e3).
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But
eier x Vi) = eier) X Vb +e1 x (e1(Vh)),

S0
(er(er X V) e1) = (ei(er) x Vo, er)
= (K' X vd}: 81)
= det(k, Vi), e1)
= k- (Vi x eq).
Also,

(ea(er X V), €0) = (e2(er) X Vb, e) + {e1 X (e2(V¥))), €2).

Now e; is & unit vector field implies ez(e;) L e1, which means es(e;) is a linear

combination of V1 and e;. Therefore,
<82(61) X qub: 62) = 05
and so
(ez(er x Vi), e2) = (e1 % (e2(V)), €2).
Finally,

(ea(er x V), e3) = (eser) x Vb, e3) + (e1 % (es(V)), e3).

Now e; is a unit vector field implies ez(e;) L €1, which means eg(e;) is a linear

combination of Vi) and es. Since
(62 x VTIJ) = _<62 X €3, vr‘/)) = _(617 V”‘P) = 0:

therefore,

(es(er x V), e3) = (&1 x (e3(V))), ea).
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So altogether, we have

V- (61 X V?,b) = K- (V“{,D X 61) e (61 X (EQ(VT,D)),GQ) 4 (61 X (eg(V'c,b)),eg).

But
(er X (e2a(V)),e2) = —(e1 X e, €2(VY))
= —(es,ez(v“l’)),
and
(1 x (e3(VY)),e3) = (es X er,e3(VY))
= (62163(V'J)))'
Now
3 3 82 3 3 62
(o es(V)) = 2 Dby - I o = en eV,
Therefore,

V(e X Vi) = k- (Vi x e1).

Proof of Proposition 3.5 See main body of section for proof.
Proof of Proposition 3.6 With 3(p) = |p|, we get DS(p) = T% and D?B(p) =

1
E)*I'Pp. SO

PgyVo
D? —* I =P )
4 (IPchbl) Pouve

Therefore, using Proposition 3.8, we get that the principle matrix for the right

hand side of the evolution equation is PyyPpy,velvy and also since Ppy, vy is

nonnegative definite, with one zero eigenvalue and the rest being equal to one,

the evolution equation is thus degenerate parabolic.

To actually find the eigenvalues of the principle matrix, we note that V¢ and

Pyy V¢ are eigenvectors corresponding to the zero eigenvalue, since PgyVip =10
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and Pp,, v PoypPoyVé = Ppy +volvy Ve = 0, respectively. Also, given any other
vector, v € R?, perpendicular to these two eigenvectors, we have
Pv¢vawv¢vaU = Pv¢PpV¢V¢U — va"u = .

Therefore, we can conclude that the principle matrix has two zero eigenvalues

with the rest being equal to one.

Proof of Proposition 3.7 We have, since 8 is a homogeneous of degree one

function,
BW) = fro# (k) IPoyTolIVHIE@) )
= s BPe V@) VIS).
So,
H BGron = [(PBPesTE) - PosTd(@)[VHlaw s+

+ /Rs B(PyyV)d'($)| VI (¥)nds
= f + J,

where T is the first integral on the right hand side and J is the second. Now,

r= [ (Dﬁ(PwV¢)-(Vn o wiv’?w))é(@ww(w)dw

= — fos V- (DB(Po,V$)5(8) [ VI6())ndz +
3()
= - [Ra - (DB(Poy V)| VYI6(¥)3($)ndz +

- /R‘" (DB(PoyV ) - V)& (8)IVls(dh)ndz +

e V- (800,70 T ) st +
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5W) 1o

+ / (DB(PyyVé) - V)(Vy - v‘15)‘5'(*b)|v~¢|
_ /R Dﬁ(PV¢V¢)|V¢|5( )—

5(¢)
Vol

= s ((DBPos¥9) - V)|V -

V-V
LI (@5t

- _/R3 - (Poy DB(Poy V)| V|6(1))é(¢)ndz +
‘fw (Poy Ve - DB(PyyV$))d' ()| Vih|o(sh)ndz.

(DB(PeyV) - Vi) Vp o) ) 5(#nda +

(DB(PgyVé) - Vi)

Note,
V - (Poy DB(PoyV$)|V1é(%)) = V - (PoyDB(Poy V) V) (4);

since Pv¢Dﬁ(Pv¢V¢) . VQ,D = 0.

Also for p € R?, we have
oo (i) = miee (i) - (o2 (5) =)
Ip| || VAR Ip|
which means, since S(p) = |p|f (h%l),

oo = o () +20 (57) = (72 (1) - )

Therefore,
p- D) = 5 () = 400

Note especially that p = Py, V¢ gives
PyyVé - DB(PyyVe) = B(PgyV ).
So altogether, we get

% B($+s1) = = [0V - (PoyDB(Poy V)| Vo )(W)5(¢)ndz,

§=!
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and so d% E{(¢-+sn) = 0 for arbitrary n leads to the Euler-Lagrange equation
=0

5=

~V - (Poy DB(Pyy V)| Vp])6(1)d() = 0.
Proof of Proposition 3.8 Let F(q,z) = PyyDB(Pyyq)|Ve|. Then we have

(Fy)q;(a, 2} = PoyD?B(Pyyq) Poy| Vi,

where D?B is the Hessian matrix for j.

Therefore, the principle matrix for V + Py DB{Pgy V)| Vi) ||1;V¢| is
Pyy D B(PoyV @) Pyy| Poy V),

which can be rewritten as

PgyV
FoyD'8 (vawV¢|) Fow,

since D?A is homogeneous of degree —1.

Therefore, if the matrix N = D28 ( £Z¢g$ ) is nonnegative definite, then
2T Nz > 0 for all z € R®. This implies for any y € R, taking z = Pyyy gives
that y¥ Pgy N Pgyy > 0 and so Pyy N Pyy is also nonnegative definite. Note Vi

is an eigenvector corresponding to the 0 eigenvalue.

So we have shown if N is nonnegative definite, then the evolution equation

| Pyyl
|V

¢ =V - (PoyDB(Poy V)| V)

is degenerate parabolic.
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Figure 3.1: The surface, two mountains, is shown on the left and the curves are
shown separately on the right. These are curves moving inward by unit normal

flow. Note that the curve breaks into two pieces during the flow.

-0.5 o
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0.5 -1

Figure 3.2: The surface, a volcano, is shown on the left and the curves are shown
separately on the right. These are curves moving inward by unit normal flow and

go up the side of the volcano and back down into it.
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Figure 3.3: The surface is shown on the left and the curves are shown separately
on the right. These are curves moving inward by unit normal fiow. The curve
translates to the left on the two holed torus, breaking into pieces and merging

back again a few times.

Figure 3.4: The surface is shown on the left and the curves are shown separately
on the right. These are curves moving outward in the normal direction by a
non-constant speed. The chosen speed causes the curve to develop a squarish

aspect as it grows.
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Figure 3.5: The surface is shown on the left and the contours of the distance
function are shown on the right. The picture is similar to that of constant normal

flow on a volcano.

-t

Figure 3.6: The surface is shown on the left and the contours of the distance

function are shown on the right. The surface is a torus.
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Figure 3.7: The volcano surface is shown on the left and the geodesics from

various points to a curve in the volcano core are shown on the right.

Figure 3.8: A torus is shown on the left and the geodesics from various points to

a curve on the torus are shown on the right.
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Figure 3.9: The surface is shown on the left and the evolution of the curve under

geodesic curvature flow is shown on the right. The curve shrinks on the surface.

Figure 3.10: The surface, two mountains, is shown on the left and the evolution
of the curve under geodesic curvature flow is shown on the right. The curve needs

to move over the mountains before it can shrink to a point and disappear.
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Figure 3.11: The surface, a bent plane, is shown on the left and the evolution of

the curve under geodesic curvature flow is shown on the right. Note the surface

has a kink in it.

Figure 3.12: The surface, a cylinder, is shown on the left and the evolution of the
curve under geodesic curvature flow is shown on the right. The curve ends up

wrapping tightly around the cylinder, forming a geodesic curve on the surface.
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Figure 3.13: The surface, the bottom of a paraboloid, is shown on the left and
the evolution of the curve under Walff flow, with S(z) a smoothed out form of
|z1]| + lz3| + |z3l, is shown on the right. The curve develops a squarish shape

before disappearing.

085 A%

Figure 3.14: The surface, a bent plane, is shown on the left and the evolution of
the curve under Wulff flow, with 8(z) a smoothed out form of |z:| + |a| + |23],

is shown on the right. The curve develops a squarish shape on the surface.
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Figure 3.15: The surface, a paraboloid, is shown on the left and the evolution
of the curve under geodesic curvature flow with fixed enclosed surface area is
shown on the right. The initial curve evolves to a steady state curve, a circle

symmetrically wrapped around the paraboloid.
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Figure 3.16: The surface, a sphere, is shown on the left and the evolution of the
curve under geodesic curvature flow with fixed enclosed surface area is shown on

the right. The initial curve evolves to a steady state curve, a circle on the sphere.
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~ Figure 3.17: The surface, a bent plane, is shown on the left and the evolution of
the curve under Wulff flow with fixed enclosed surface area is shown on the right.

The initial curve evolves to a steady state curve, a smoothed out squarish shape.
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Figure 3.18: This is a moving curve on moving surface computation. The original
surface and curve are shown in the two plots on the top. The final surface and
curve are shown in the two plots below. The surface and curve are both moving

by constant normal flow.
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CHAPTER 4

A Level Set Based Method for Denoising and

Deblurring Images on Surfaces

4.1 Abstract

We study a partial differential equation based method for the processing of im-
ages painted on surfaces. One can find images on surfaces in, for example, digital
effects for motion pictures. It also has use in the medical regime on three dimen-
sional scans of organs such as brain scans. The method we introduce here deals
with the denoising and deblurring of grey scale images on hypersurfaces. Re-
sults will show that the same tools used in image processing for two dimensional

images{26] can be extended for use on surfaces.

4.2 Setup

Our method is based on the representation in Chapter 3. Let M be the surface
we are interested in and let v be a function on M that denotes the grey scale
values of the image on the surface. Then we take a level set function ¢ over R3
such that its zero level set is M and we take a function u over R® such that the
restriction of u to0 M is v. ¥ is considered to be static in time since the surface is

not moving. The evolution of u in time, on the other hand, will evolve the image
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on M, keeping in mind that u restricted to M is the image we are interested in.
Thus we want to create partial differential equations for u whose solutions are

either the denoised or deblurred image on the surface.

4.3 The Evolution Equations for Denoising and Deblur-

ring
We wish to create the evolution equations for denoising and deblurring on M.

4.3.1 Denoising

To create the partial differential equations that will do what we want, we take a
hint from image processing of two dimensional images. Let vy be a two dimen-
sional grey scale image, i.e., vp is a function defined on R? whose values are the
grey scale values of the image. For denoising, we start with vy a noisy image.
Then solving to steady state the equation

Vu

W=V N

— AMv — v0),

gives a good denoised solution. This is because the equation comes from gradient

descent on minimizing the energy

E() = fR2 Vulds + % fRz(fu — w)2d.

The first term is the total variation of the image. The second term keeps the de-
noised image close to the original noisy image. So altogether, the above equation
minimizes the total variation of the image while keeping it close to the original
image. Note ) is a parameter that weighs the importance of the terms and must
be chosen wisely. Minimizing the total variation, instead of something else, is

very important because this will not only squash the noise, but will preserve
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sharp edges without Gibbs phenomenon. Previous attempts have used

fR2 Vol2dz,

instead of the first term. This smears out edges and may even add a ringing effect

near them. Total variation thus seems to be the best choice.

We can then use the tools in Chapter 3 to derive the same equation for
functions on surfaces. The quick way involves putting the partial differential

equation directly onto the surface. The equation for » in R3 then becomes

_ PVA,’[,V’U, .

where ug restricted to M is the initial noisy image on the surface and Py, or-

thogonally projects vectors onto the plane with normal vector V.

The slower but more intuitive way involves rewritting the energy as an energy

on the surface. Thus E becomes

B = o Vouls@)IVlda+ 5 folu— 1)) Volds,

where V¥ is the surface gradient vector operator. Notice we used the fact that

[ waa= [ ws)Vyldz,

for any function w in R®. We have the equality V5u = Py, Vu, and so the energy

can be written as
B = [ IPoy Vel Vlds + 5 (= o5 Vlds.

The first term is still the total variation except now for functions on a surface.
The second term still keeps the solution close to the original given image on
the surface. We may then find the Euler-Lagrange equation for this energy and

perform modified gradient descent on it. This will give exactly the same equation
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we got in the quick way, noting that §(i) should be replaced by WIE{ Also, the
partial differential equation in fact denoises each image u on each level set surface
of .

Thus we have derived a partial differential equation for use on images painted
on surfaces that preserves the properties of its counterpart for two dimensional
images. As in Chapter 3, the use of ¢ allows us to consider surfaces of all kinds
of topologies, for example, two holed torii. No coordinate patches are used and

the surface does not have to be triangulated.

4.3.2 Deblurring

We will derive the partial differential equation for deblurring in the same way.
As before, we first look at the deblurring equation for two dimensional images.
Let 1o be the initial blurred image. Assume the blurring of an image v comes

from
Txv= [, J(@y)elw)dy,
where J is a function in R%. Thus if J is the delta function, then the image is

not blurred at all and if J is the Gaussian kernel, then the image gets a Gaussian

“ blur. So the deblurring equation takes the form

Vv
[V

coming from gradient descent minimizing the energy

9=V — AJT 5 (T % v — w0},

B(v) = [ |Voldo+ 2 a0 — s
Here, we are using the notation J¥(z,y) = J{y, ). Note the energy still has as
its first term total variation. The second term now keeps the blur of the solution
close to the original blurred image. As before, A is a parameter weighing the

importance of the two terms and should be chosen wisely.
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Putting this partial differential equation onto the surface gives the equation

. vavu ) _ T _
=V (|Pw,w|lw' Iz

where
Tru= [ J(@y)u)d) Vildy.
blurs the image u on M. For the values of J off the zero level set, we can require

that
Tru= o, J(@u)sl - O)|Vildy.
blurs % on the € level set surface of 4 in the same way. This gives the deblurring

partial differential equation for images on surfaces.

The equation can also be derived from performing gradient descent minimizing
the correct energy on the surface. This energy, coming from its counterpart for

two dimensional images, takes the form
Bw) = [ VSuld@)Vildn+ 5 ool 50— w050 Vlda
R? 2 /JR? ’
which can be rewritten as
B = [, [PoyVuls@) Ve + 5 (7 u = u0)5(4) Volde.
R® P 2 IR®

Note that the first term is still total variation on the surface. So, all in all, we
are still minimizing total variation to get sharp edges while we deblur. Note the

partial differential equation in fact deblurs each image u on each level set surface

of .

4.4 Discretization of the Equations

We lay down a uniform grid over R3. This simplifies finite difference scheme con-

struction and implementation. For both the denoising and deblurring equations
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for images on surfaces, we use second order central differencing on all the spacial
derivatives. We also use third order TVD-RK on the time derivative. A is chosen
by trial and error to get the best one. Getting ¢ and v from M and » is also
relatively easy. There are tools for extending values off an interface to all of R®
(see 16}).

For deblurring, we usually use for J the Gaussian kernel on surfaces. This
means instead of computing J * u using integrals, we can compute it by iterating
the heat equation for the surface a few steps. This equation, which can be derived
from its two dimensional counterpart or from the energy that it minimizes, takes

the form

1
As for the other equations, all spacial derivatives are discretized using second

order central differencing. For the time derivative, we can use Forward Fuler.

The CFL conditions for the denoising and deblurring equation on surfaces say
that the time step At needs to be less than a constant times Az®, where Ax is the
spacial step. This restriction is the same as when dealing with two dimensional
images. For the heat equation on surfaces, the CFL condition is slightly better
and it says that At needs to be less than a constant times Az?. Also, it may
be possible to relax the CFL conditions for our evolution equations as is done in
[21].

We have programmed up these equations in three dimensions, i.e., for grey
scale images on surfaces, and in two dimensions, i.e., for grey scale images on
curves. For deblurring, we have so far only studied deblurring in the absence
of noise. Results show that edges are indeed preserved and so the denoise and
deblurred images are of good quality. We have also so far used only rather coarse

grids and compute in all of R3. But with the local method described in Chapter
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3, we will be able to handle much finer grids and obtain even better results at

faster speeds while using the less memory.

Figures 4.1 shows a step function with added noise over a circle in R? The
final result using our scheme is a denoised function with sharp jumps. Figure 4.2
shows a heat blurred and noisy step function over a circle in RZ. The final result

deblurs and denoises while retaining sharp jumps.

In Figure 4.3, we show the original image, a white band over a black back-
ground on a cylinder, and the noisy image with white noise. Figure 4.4 shows
the denoised image. Notice that the edge between the black and white regions
is sharp. The triangular artifacts at the edge come from the method used for
plotting an image on a surface, not from the denoising algorithm. Dealing with
such edges is a total variation denoising algorithm’s specialty. A rather coarse

grid of 50 by 50 by 50 grid points was used.

In Figure 4.5, we show the original image, a picture of lena wrapped around
a cylinder, and the noisy image with white noise. Figure 4.6 then shows the

denoised image. A grid of 50 by 50 by 50 grid points was used.

In Figure 4.7, we show the original image, a picture of lena wrapped around
a cylinder, and the blurred image with Gaussian blur. Figure 4.8 then shows the

deblurred image. A grid of 50 by 50 by 50 grid points was used.

4.5 Conclusion

We have introduced a level set method for denoising and deblurring images
painted on surfaces. The partial differential equations involved in part minimize
the total variation of the image and hence keep edges sharp. These equations

have given excellent results for two dimensional images and the results for im-
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ages on surfaces are also good, even on coarse grids. This method thus can be

very useful in the area of digital effects or three dimensional surface scans.

Figures 4.1 shows a step function with added noise over a circie in R”. The
final result using our scheme is a denoised function with sharp jumps. Figure
4.2 shows a blurred and noisy step function over a circle in R®. The final result

deblurs and denoises while retaining sharp jumps.
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Figure 4.1: The original function is a step function over a circle. Noise is added

and the denoised image retains sharp jumps.

Figure 4.2: The original function is a step function over a circle. Heat blur
is added along with noise and the deblurred and denocised image retains sharp

jumps.
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Figure 4.3: This is the original image (left) on a cylinder of a white band on a

black background, and the noisy image (right) with white noise.

Figure 4.4: This is the denoised image using our TV denoising algorithm on
surfaces. Notice sharp edges are recovered. Any triangular artifacts come from

the plotter.
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Figure 4.5: This is the original image (left) on a cylinder of a picture of lena

wrapped around a cylinder, and the noisy image (right) with white noise.

Figure 4.6: This is the denoised image using our TV denoising algorithm on

surfaces. Any triangular artifacts come from the plotier.
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Figure 4.7: This is the original image (left) on a cylinder of a picture of lena

wrapped around a cylinder, and the blurred image (right) with Gaussian blur.

Figure 4.8: This is the deblurred image using our TV deblurring algorithm on

surfaces. Any triangular artifacts come from the plotter.
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CHAPTER 5

A Level Set Method Applied to the Minkowski

Problem

5.1 Abstract

We use a level set approach to construct a partial differential equation for gen-
erating solutions to the Minkowski Problem. In this method, an initial compact,
strictly convex hypersurface, represented by the zero level set of a function, flows
to a final shape that is a dilation of the true solution. We will derive the gen-
eral form of the partial differential equation using standard tools in level set
theory and numerically compute solutions subject to different prescribed Gauss-
Kronecker curvatures. Results will show the level set method applied to this

problem can easily generate numerical solutions to the Minkowski Problem.

5.2 Setup

Given a compact, strictly'convex hypersurface M in R™"!, one can define a Gauss
map G: M — 5™ such that G(z) € S™ is parallel to and in the direction of the unit
inward normal at . The map G is a diffeomorphism of M into S". Therefore, any

data on M can be transplanted into data on S™. Let K be the Gauss-Kronecker
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curvature on M. Then K o G~ is a function on 8™ and satisfies

i
G (dpp) = mdﬁsw

where dpys and dugn denote the Lebesgue measures on M and S”, respectively.
Note that if z° denotes the #** coordinate function on S™, then z* o G is a function
on M. In fact, for p € M, = o G(p) denotes the +** coordinate of the unit normal

at p. Therefore,

i _ - i 1
fM(m oG)d,uMmO—/:gnm T

shows that there are some compatibility conditions for a positive function on S™
to satisfy in order for it to be the Gauss-Kronecker curvature of a certain ovaloid.

The Minkowski Problem says that this compatibility condition is sufficient.

Minkowski Problem. Given F > 0 on 8™ such that for:=1,..,n+1,

1
1—d n:—O
anF JLLS )

there exists a compact, strictly convex hypersurface M such that if G: M — 5™ is
the Gauss map, then the Gauss-Kronecker curvature at p € M equals to F(G(p)).

Moreover, if M’ is another solution, then M and M’ differ by a translation.
This problem was solved in general dimensions by Cheng and Yau[7].

On the other hand, we are trying to generate solutions to the Minkowski Prob-
lem. This means given a function F satisfying the hypotheses of the Minkowski
Problem, we wish to construct the corresponding hypersurface M. Our method
uses the zero level set of a real valued function in R** called a level set function,
to represent a surface. So the evolution of the level set function gives the motion
of the hypersurface. For definiteness, we also require a level set function 4 to be
negative inside the surface and positive outside so that the inward pointing nor-

mal is given by — g o We then call such a function a solution to the Minkowski
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Problem if and only if its zero level set is M. Note these solutions are not unique
but their zero level set surfaces are. Also, we will mainly study the case n = 2
sinice this is the case that can be casily visualized. We will periodically comment
on the validity of our formulas in other dimensions.

Other methods proposed include one by Chou and Wang[10]. This method
is proven to converge starting with specific initial shapes but may diverge if the

shapes are slightly perturbed.

5.3 Constructing The Partial Differential Equation

We wish to create a partial differential equation whose steady state solution is a
solution to the Minkowski Problem. Thus we first attempt to find a function H
such that the level set function % is a solution to the Minkowski Problem if and
only if

H{(V*), Vi, ) = 0.

Then a partial differential equation can be constructed,

¢ = H(V*$,V,8)|Ve,
with the initial condition
¢(t = 0) = oo,

where ¢ depends on = and ¢ and ¢, has compact, strictly convex level set surfaces.

The extra |V¢]| term on the right hand side of the partial differential equation
is standard in level set methods. Its effect is to move the level sets of ¢ in
the normal direction. In this case, the level sets of ¢ will move with speed
—H(V?$, V¢, ) in the outward normal direction. In general, given a vector field

v, the equation

¢t+’l)'v¢20,
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moves the level sets of ¢ according to v. So if the vector field takes the form
v = vgrg-%, then the equation moves the level sets of ¢ in the normal direction
with speed vo. Note if v is perpendicular to the normal vector, then v - Vg =0.
So after decomposing a general v with respect to an orthonormal basis containing
the normal vector, we see that v - V¢ = vp|V¢| for some vp. So all motions of

level sets are motions in the normal direction, which means the equation
¢y + vl Vel =0,

is the general equation for moving level sets of ¢.

Some conditions need to be satisfied by the partial differential equation in
order to effectively solve the Minkowski Problem. Ome condition is that the
partial differential equation needs to have a level set function whose zero level
set is the true solution as an asymptotically stable steady state solution in order
to be useful. Otherwise it will be nearly impossible to flow to the true solution.
Another important condition is that the partial differential equation cannot be
backward parabolic. We mention these two because it turns out that many simple

guesses for H will not satisfy one of these properties.

For simplification of notation, we denote

H=H(V$,Vd,¢)

K = K(V%, V)
F=F (“"“1%) .

5.3.1 Simple Guesses for [

We can make the simple guess H = K — F to get, for the steady state surface,
K = F. However, the solution to the Minkowski Problem here is not a stable

steady state solution. Note if the exact solution of the Minkowski problem is a

104



ball of radius r and if we start with the initial surface a ball of radius smaller
than 7, then it will shrink as time progresses and thus evolve away from the true
solution. This is because the shape of the surface at any time will still be a ball
but with a different radius than the initial one. To find the radius of the ball,
we note that the Gauss-Kronecker curvature K for the initial surface is larger
than the prescribed curvature F' at any point on the surface. This gives H > 0,
a property that holds for all time. So the initial ball will shrink and will not
converge to the true solution. Similarly if we start with a ball of radius greater
than 7 then this ball will expand away from the true solution. So there is no
convergence and the partial differential equation does not have the solution of
the Minkowski Problem as a stable steady state solution. This means numerically

we cannot get to the true solution with this H.

Note also, the guess H = F — K will not work since it is backward elliptic.
This is because there is a negative sign in front of K and so the partial differential
equation will move surfaces outward by Gauss-Kronecker curvature, an unstable

flow.

Other choices include H = _Il? — %q and H = —% + %,-1- but these do not work
because the former is backward elliptic and the latter does not have the true
solution as a stable steady state solution, by the same reasoning as for the case

H=K-F.

5.3.2 Seeking A Related Solution

Because of the above failures, we instead change the problem and seek only a

related solution to the Minkowski Problem. We make the guess

K
H=2=-)
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where A = A(¢) is a functional to be chosen later to prevent unstable steady state
solutions. Note the solution of H = 0, call it %, is no longer a solution of the
Minkowski Problem. In fact, noting that |V4| = 0 happens almost nowhere and
away from the zero level set of 9, for all intents and purposes the zero level set
for the steady state solution satisfies K = CF, where C is a constant. So on
the zero level set, the Gauss-Kronecker curvature is a constant multiple of the
prescribed curvature. This means a dilation of the zero level set of ¢ will give
the solution to the Minkowski Problem. So steady state solutions of the partial
differential equation with the above choice of H are dilations of solutions of the
Minkowski Problem. From now on, we will deal only with dilated solutions of

the Minkowski Problem obtained from H = 0.

With this choice of H, the partial differential equation takes the form

5= (K(v ¢, V9)

- A(¢)) !
P (=)

The first term on the right hand side, after |V ¢] is multiplied into the parenthesis,

is degenerate elliptic and the second term is hyperbolic.

As for )\, we choose it to be the Lagrange multiplier that preserves the enclosed
volume of the zero level set of ¢. So, with Hy denoting the Heaviside function, A

can be derived from

0 = & [ Hol- )
= — fR”“ $:0{p)dz
= - fR”H [% - )\] 5(¢)IV¢|d$

K
= = fonns FIDNTSdr+ X [ 6(6)[Vld,
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giving

Kw, K(V*6,V4) 5 11 4ld
fos BT lw) sl

With this choice of A, the steady state solution should be a stable steady state

Ag) =

gsolution since the A prevents surfaces from shrinking to nothing or growing un-
controlled. Also this solution will be, in a sense, close to the initial shape. This
is because the initial shape need only converge to the dilation of the solution
of the Minkowski Problem that has equal volume. Other choices of A, such as
one that keeps surface area fixed, are also possible. Numerically, we also note
the preserved volume condition keeps the final surface well resolved, which is an

advantage.

As of yet, there is no theoretical justification for convergence or even preser-
vation of strict convexity for our method. But numerical results show that we

get convergence in all situations tested.

5.4 The Numerical Method

A uniform grid is placed over R®. This facilitates all finite difference scheme con-
structions and calculations. The partial differential equation we are discretizing
has a degenerate elliptic term and a hyperbolic term on the right hand side. We
use second order central differencing on the spacial derivatives of the degenerate
elliptic term and Hamilton-Jacobi WENO on those of the hyperbolic term. The
time derivative is discretized using third order TVD-RK.

The Gauss-Kronecker curvature K is computed by multiplying together the

nonzero eigenvalues of the matrix

1

Py V2i¢Pyg,
Dz
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where P, = I — ")'—3% is the orthogonal projection matrix, projecting vectors

onto the plane with normal vector v, and I is the identity matrix. Note this

above matrix is of degree 3 and has zero for a root. So the nonzero eigenvalues
are roots of a second degree polynomial. The quadratic formula can then be used
to find these roots. In higher dimensions, other methods can be used to find the

eigenvalues of the matrix.

For ), the integral is approximated using a second order method and the delta
function is replaced by a numerical delta function. Also, all derivatives inside the

integrals are approximated using second order central differencing.

Not all the points in R? need to be used since we are only interested in the zero
level set of ¢. We can use a local level set method[25] to perform computations
only in a neighborhood around the zero level set. This neighborhood is defined
as all points of a certain distance, usually a constant times the spacial step size
Az, away from the zero level set. In conjunction with this, the level set function
is reinitialized to a signed distance function at every time step to prevent errors
caused by the boundary of the neighborhood from propagating to the zero level

set. This is done by iterating a few steps of the partial differential equation

be+ sgn($o)(IVel — 1) =0,

after each time step of the main equation. Here, ¢y is taken to be the ¢ generated
after each time step. The steady state solution to this reinitialization equation
satisfies [V@| = 1 and has the same zero level set as o, hence giving signed dis-
tance. Enforcing signed distance also prevents steep and flat gradients in the level
set function that can break down the finite difference approximations. Actually,
signed distance is probably not the best form for the level set function since it

may cause kinks or lose strict convexity on the nonzero level sets. However, this
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will only happen away from the zero level set surface so if the grid is properly
refined, we can avoid this circumstance. Still, a smoother form would be better
but this may lead to difficulties in the localization algorithm. For now, we just
set the Gauss-Kronecker curvature to zero if the approximation takes a negative

value.

Also note that steady state may only occur at the zero level set, not necessarily
at the other level sets, and so our stopping condition needs to take this into
account. We compare the signed distance functions near the zero level sets at
two different times. If the difference is smaller than a certain tolerance, then we
stop and claim convergence. Note, the use of the signed distance function means
we are only comparing the zero level sets since the signed distance function is

uniquely determined by its zero level set.

Another consideration is that a prescribed curvature F' satisfying the com-
patibility condition may not be easy to construct. Generating it from a given
shape may require a lot of effort. A simple way to get around this is to look at I
that are symmetric with respect to each coordinate plane. Then F' automatically

satisfies the compatibility condition.

5.4.1 Numerical Results

We applied this method to many different prescribed curvatures F' > 0 satisfying
the compatibility condition. The initial condition ¢y was always taken to be a
ball. In each case, ¢ reached steady state, according to our convergence crite-
rion, and the zero level set of this function was a dilated soln of the Minkowski
Problem under the corresponding F. We considered only the case n = 2 so the

hypersurfaces could be plotted but the method works for any n.
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. We choose F from the Gauss-Kronecker curvature for an ellipse with prin-
cipal radii of 3, 2, and 1. The expression can be derived from [12]. The

result is plotted in Figure 5.1 on a 50 by 50 by 50 grid.

. We choose F' to approximate symmetric cones. The parts of the cones with
zero Gauss-Kronecker curvature are changed to have a small positive Gauss-
Kronecker curvature. Similarly, the parts of the cones with inifinite Gauss-
Kronecker curvature are changed to have large Gauss-Kronecker curavature.
Thus the cones are slightly smoothed out. The result is plotted in Figure
5.2 on a 50 by 50 by 50 grid.

. We choose F from an egg shape whose top is an ellipse and bottom is a
sphere. The Gauss-Kronecker curvatures can be easily obtained using this

fact. The result is plotted in Figure 5.3 on a 50 by 50 by 50 grid.

. We choose F to be a slightly lopsided sphere. This comes from

=g

where C; and Cj are constants and z; is the first component of z. The

result is plotted in Figure 5.4 on a 50 by 50 by 50 grid.

. We choose F to approximate a cylinder. Once again the cylinder is slightly
smoothed out to avoid zero or infinite (lauss-Kronecker curvature. The

result is plotted in Figure 5.5 on a 50 by 50 by 50 grid.

. We choose F from a clam shape coming from the union of two spheres,
with the parts with infinite Gauss-Kronecker curvature slightly smoothed

out. The result is plotted in Figure 5.6 on a 50 by 50 by 50 grid.
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5.5 Conclusion

We constructed a partial differential equation whose steady state solution, when
dilated, is a solution to the Minkowski Problem. This equation was derived using
a level set approach to represent hypersurfaces. The main point is preserving
the volume enclosed by the hypersurface in order to prevent it from shrinking
to nothing or growing uncontrolled. This is accomplished using standard level
set tools such as the Lagrange multiplier. Further tools are also used to localize
the method and force the level set function to be nice. So the level set approach
allows us to easily write down the form of the equation. Discretization is also
easy and we use standard finite difference schemes. Finally, numerical results

show that our method can generate dilated solutions to the Minkowski Problem.
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Figure 5.1: This is an ellipse with principal radii of 1 in the x-direction, 2 in the

y-direction, and 3 in the z-direction.

Figure 5.2: This is the union of two approximate cone shapes. They are con-
structed from making the Gauss-Kronecker curvature positive and small when-

ever it should be zero in a real cone.
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Figure 5.3: This is the union of an ellipse and a sphere, creating an egg shape.
This is accomplished by prescribing the Gauss-Kronecker curvature to be that
of the ellipse for inward normals that have negative z-components and that of a

sphere otherwise.

Figure 5.4: This is a slightly lopsided sphere.
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Figure 5.5: This is an approximate cylinder. It is constructed by making the
Gauss-Kronecker curvature positive and small whenever it should be zero in a

real cylinder.

Figure 5.6: This is a clam shape derived from the union of two spheres. This is
constructed by prescribing the Gauss-Kronecker curvature to be some constant
if the angle made by the inward normal with the z-axis is some value and a large

constant otherwise.

114




CHAPTER 6

A Variational Based Level Set Approach for

Constructing Wulff Minimal Surfaces

6.1 Abstract

WullTl minimal surfaces arise in many physical settings. They appear in con-
strained crystal growth and also as minimal surfaces, where the surface is a soap
film with a given wire boundary. They contribute to the studies of crystal struc-
tures and growth and, as minimal surfaces, to the studies of flexible and inexten-
sible films. They can also be found in arcas such as biology, medical technology,

translation nets, relativity theory, and architecture (see {8]).

The Wulff minimal surface problem consists of finding a surface of least surface
energy attached to a given boundary. This is most clearly seen in the minimal
surface case where we have a soap film that is of least surface area passing through
a given wire boundary. The problem stated more rigorously is: given a finite
union © of curves in N3 and given a convex surface tension v: S** — Ry, find

a surface I' minimizing the surface energy

() = [ A#)ds,

passing through ©. So F is the surface integral of ¥(7), where 7 is the unit
outward normal vector. Note E may have more than one local minimum and so

the minimizing surface T' does not have to be unique. We also note if y = 1,
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the energy is just the surface area of I' and surfaces minimizing this are minimal
surfaces. The Wulff minimal surface problem is easily restated and valid in 2

and other dimensions.

6.2 Other Methods

Existing methods for solving this problem are usually very complicated. One such
is by David Choppl[8]. He employs the level set method, as introduced by Osher
and Sethian [24], to compute minimal surfaces with a given boundary. However,
much work has to be done with the boundary before executing the program and
the algorithm itself is complicated. Jean Taylor[31] has a different method that
can handle Wulff shapes. However the algorithm is complicated and, since it is
not a level set based method, does not nicely handle topological changes, i.e.,
merging. Merging phenomena are observed, for example, for soap film when the
boundary wire is two circles that are far apart. The soap film will touch itself
and snap off to form a piece of film in each circle. Both methods require initial
shapes to be given that pass through the boundary. However, when the boundary
s sufficiently complicated, finding valid initial shapes is difficult. So the main
problems with current algorithms are from the following: handling complicated

boundaries, topological changes, and general surface energies.

We want to derive a simpler method that can easily handle a variety of given
boundaries. It will be based on a gradient descent flow minimizing a certain
energy and will employ a local level set method[25]. Tt should be noted that this
method does not find all minimal Wulff surfaces. Unstable minimal surfaces are
especially difficult to construct because of their instability. Also, only convex

energies are considered here.
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6.3 Level Set Formulation of Problem

We first study the level set formulation of the problem. Let ¢ be a real valued
function over the space R? that also depends on time. This will be our level set
function and the zero level set, ' = {Z € R®*|¢(Z, t) = 0}, of ¢ will be the surface
of interest. Evolving ¢ instead of T' gives several advantages. We do not have
to track individual points on I'. More importantly, any topological changes are
easily and automatically handled when the surface tries to pass through itself.

Note that the outward normal vector is

We first extend 7 to R,

@ =t (i)

for # € R®. We may then rewrite the problem as follows: find a level set function

¢ minimizing the surface energy of the zero level set I',

5:(9) = [ 7 (g ) #@ Vsl

with T passing through ©. Here § denotes the one dimensional delta function.

So the associated gradient descent equation for I' becomes

b=V (w (;—;f')) V4,

away from ©, and the steady state surface satisfies

(e (55

away from ©. This gives the correct behavior for the surface away from the

boundary. Note in the case of minimal surfaces,

b=V (l‘%‘«) V4,
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and so level sets move by mean curvature

REV sz)

The steady state zero level set surface thus has zero mean curvature.

6.4 Deriving an Energy Satisfying the Constraint

We now devise a related energy that will automatically fix © at the boundary of
T'. Let do(F) denote the distance from & to © and let u be a smooth increasing
function mapping R — R U {0} and satisfying
0 ifr S €1
u(r) = .
1 ifr > e,

where 0 < €; < ¢3. We then define the related energy

9= [ utde)y (k) 80Tl

and so the associated gradient flow equation takes the form

b=V - (w0 (55) ) 1991

Note that

in the set {Z € R%|do(%) < &1} and so ¢ will not change near ©. This means
that if we start with a level set function whose zero level set, I, passes through

©, then © will remain in I for all time. Thus the constraint is satisfied. Also

v (oo

in the set {Z € N3|do(F) > €2} and so the level sets of ¢ move with the correct

velocity away from ©. However, in between these two regions, the velocity can
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be strange. In fact, the steady state of the gradient descent flow satisfies

v (uldo)9 (5] ) 19 =0,

and so we get a balancing of terms

Vluide)) - (7 (F‘%)) § uldo)V - (V’r (l%)) —o,

in between the regions. This in no way guarantees the correct shape for steady
state solutions. Also numerically, €5 needs to be rather large and so we may not

get the desired shape in a rather large region.

6.5 Modified Equation for Correct Steady State

To remedy this, we simply take u(de) out of the divergence in the equation. So

¢t = u(de)V - (V“/ (r%)) Val.

the equation becomes

We now note that

in the set {Z € R3|do(Z) < 1}, so we may in fact allow ¢ =0 and still keep T
fixed at ©. Also we still have

v (oo

in the set {Z € R3|do(F) > c2}. So the proper motion of the surface is preserved

in the outer region. In between the two regions, steady state solutions now satisfy

(do)V (vfy («,»g—;fl)) —o,
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and since p{dg) is never zero here, this means
v
v (v1(wa)) =
So steady state solutions will satisfy the correct property in between regions.
Therefore, we see that the steady state solutions will satisfy the correct property
in the set {F € R¥|de(F) > 0} = N3\ O, where we have taken ¢; = 0, and if we
let I pass through © initially, then the boundary constraint will also be satisfied.

So the method becomes: solve to steady state

b= udo)V - (V1 (19%) ) 198

$(2,0) = ¢o(Z),

where © C {7 € R3¢o(¥) = 0}. Note that with u(de) outside of the divergence,
the equation resembles a projection method on the velocity of the surface. We
also note that steady state is usually only achieved at the zero level set and not
for the other level sets. However, we are only interested in the zero level set and

it solves, in steady state, the Wulff minimal surface problem.

6.6 Numerical Considerations

To create a numerical method, we first lay down a uniform spatial grid. We
take as input just the discrete points approximating the boundary curves ©,
the formula for the gradient of the surface tension function, V<, and the initial
shape ¢p. We can also make do with just v given instead of Vv since V-« can
be numerically generated from v. We compute the distance function, de(Z), by
finding the minimum of the distances from each point on the boundary curves to
the grid point Z, for each grid point. These values need only be computed once

in the beginning and are then stored for later use.
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For the initial shape, we can pick ¢y so that the zero level set of ¢y passes
through ©. In most cases though, we do not even have to find such an initial
level sct function. We can simply start with a ¢ whose zero level set encloses ©
in its interior. An example of such a level set function is ¢o(Z) = |#|> — r®. The
zero level set of this function is a sphere with radius r and for r large enough, the
boundary curves will be enclosed within the sphere. From this, what will happen
is the sphere will shrink and when it hits a point in ©, it will be held back at that

point. This greatly simplifies the search for an adequate initial level set function.

Another way to get an initial shape that passes through © is by using an
interpolation program such as the one by [35]. We note that their g-form energy
is equivalent to minimizing the surface area while trying to satisfy the constraint
of the surface passing through certain given points. This is formulated using a

penalty method approach.

Because there are errors in the representation of © and because of the discrete
nature of the method, we must insure that ¢ will not break away from or pass
through © by taking ¢; > 0. In practice, we usually take €; to be around Az
so that there is at least one grid point inside the ball of radius € around each
boundary point. This is equivalent to thickening the boundary curves into tubes
of radius ¢;,. Since ¢ will be held still at all grid points in these tubes, [' cannot
escape the boundary. The choice for €, is not as important since ¢z does not
affect the steady state solutions but only changes the convergence rate in the

neighborhood between ¢; and €;. This defines p.

We are now free to use an explicit method to solve the gradient descent
equation. We use second order central differencing on all spacial derivatives and
third order TVD-RK in time. This leads to a CFL restriction that At needs to

be less than a constant times Az
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Also, computations are only needed near I' since this is the surface of interest.
This is done by using a local level set method, as in {25]. In this method, points
that are close to T, as measured by distance, are marked. Computations are only
done at these points. The method is efficient because the distance we choose for
marking the points is proportional to Az. This process also requires ¢ to be a
signed distance function. This is to prevent errors caused by the boundary of
the marked points from seeping into the calculations at I'. It also prevents the
level sets of ¢ from bunching up near ©, called the tentpole phenomenon. This
bunching up, which was noticed by Chopp[8} in his paper, leads to inaccurate
computations since the magnitude of the gradient of ¢ becomes large. The signed
distance requirement, however, forces the level sets of ¢ to be well spaced, satis-
fying |V¢| = 1 everywhere. This can be enforced by iterating to steady state the

equation derived by Sussman, Smerka, and Osher([30],

$i+ sgn(do)(|Vel — 1) =0,

at each time step, where ¢ is the ¢ derived at each time step. We, however, will
not solve this to steady state but will just do a few iterations of it every time

step. This will keep the level sets of ¢ relatively well spaced, especially near I',

In Figure 6.1, the boundary curves are two squares and the minimal surface
has a catenoid shape. The whole zero level set is shown. For this problem, we
fixed the parts of the zero level set surface that extend above and below the top
and bottom squares, respectively. In post processing, the plotter can erase these
parts of the surface to get a better picture. In Figure 6.2, the boundary is two
parallel but angled circles and the minimal surface is shown. The whole zero
level set surface is plotted here. The frizzled look at the boundary curves comes
from the triangulating plotter applied to the moderately sharp edges there. In

Figure 6.3, we look for a minimal surface where the boundary is three squares,
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a large one on top and two small ones that meet at a corner on the bottom.
The whole zero level set was used and is shown. In Figure 6.4, we look for the
minimal surface of a boundary consisting of three circles. The whole zero level
set is plotted but some of it, the parts above the circles, was not used, meaning
it was held fixed, in the algorithm. Thus we rounded surfaces above the circles
when we should get flat surfaces. In Figure 6.5, we look for the minimal surface
of a boundary that is a rectangle bent at two of its ends. The whole zero level
set is shown. Note the parts of the surface extending out of the boundary are

extraneous and were fixed in the algorithm.

For Wulff minimal surfaces, we used a smoothed out version of y(Z) = |z| -+

Iza| + |z3]. The exact expression is

¥(E) = yf5i + &+ Jad + &+ \fad + &,

for ¢ = 0.1. The Wulff shape arising from this v is a smoothed out cube, i.e.,
having slightly rounded faces and edges. Figure 6.6 shows the Wulfl minimal
surface passing through three circles, as in Figure 6.4. The whole zero level set is
shown here. Note the squarish aspect of the surface, especially the indentations.
Finally, in Figure 6.7, we show the Wulfl minimal surface corresponding to a
boundary of two parallel circles. In the minimal surface case, the resulting surface

would be a catenoid. In this case, we have a surface that is more like a square.

All the algorithms for the pictures were run on 80 by 80 by 80 grids except
for the minimal surface for three squares, Figure 6.3, which was run on a 100 by

100 by 100 grid.
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6.7 Other Uses

We can apply the basic concepts for finding Wulff minimal surfaces to other
problems such as finding the convex hull of a set of points, finding the Wulff
minimal surface through a boundary subject to a fixed volume constraint, and
splitting a domain into two pieces of equal volume by a Wulff minimal surface

that passes through a prescribed curve on the boundary of the domain.

6.7.1 Convex Hull

Using the basic principles of the above method, we look for the convex hull of
a set of points. We denote the set of points using ©. We also note that the
boundary of the convex hull’s minimal principal curvature is zero at each point

of the surface. Thus we construct the partial differential equation

¢ = p(de) |V,

where ); is the minimal principal curvature and u and dg are the same as above.
So if we start with an initial level set function whose zero level set encloses © in
its interior, then the steady state [ should satisfy Ay = 0 with I' wrapped around
p = 0. This is actually the convex hull for the set of points satisfying p = 0,
giving an approximate convex hull for ©. As before, the p term keeps the surface
from passing through ©. We remark that the |V¢| on the right hand side of
our partial differential equation will make the level sets of ¢ move in the inward

normal direction with speed p(dg)A;.

We calculate \; by solving for it as the smallest nonzero eigenvalue of the

matrix

1
WPWVququg,
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where P, is the orthogonal projection matrix projecting vectors onto the plane
with normal v, and V2¢ is the Hessian matrix of ¢. This is a relatively simple
procedure in R since we know that the above matrix has a zero eigenvalue. So
we only need to solve for the smallest root of a quadratic polynomial coming from
the characteristic polynomial. This can be done using the quadratic formula. In

higher dimensions, other methods can be used.

Numerically, we use second order central differencing on all spacial derivatives
and third order T'VD-RK in time. The CFL restriction says that At needs to be

less than a constant times Az?.

We show our results in Figures 6.8, 6.10, and 6.11. For Figure 6.8, we have
an initial set consisting of six points, four forming a square and the other two
above and below the square. Thus the convex hull should be like two pyramids
stuck together. In Figure 6.9, we show the convex hull of the set of points in
two spheres of different radii. In Figure 6.10, we look at the convex hull of three
spheres of different radii. The resulting boundary is a surface wrapped around
these three balls. In Figure 6.11, we compute the convex hull of the set of points
in two linked rings. The resulting boundary is a surface wrapped around the two

linked rings.

Other methods currently available, for example [28], do not handle sets with

disconnected components.

6.7.2 Wulff Minimal Surfaces with Constrained Volume

In this problem, we study Wulff minimal surfaces passing through a prescribed
boundary © with the added constraint of having a prescribed enclosed volume.
Let the initial ¢ pass through the boundary and have the wanted enclosed volume.

Then the problem becomes solving for the minimal Wulff surface while retaining
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the same volume for all time. This can be solved using a projection gradient

method (see {]). The partial differential equation takes the form
{ Ve \\
¢r = ul{do) | V- [ V7 kw)) - AVl
where ) is a Lagrange multiplier enforcing
Ll Jos H(=9)dz =0
dt /R’ o

H here denotes the one dimensional Heaviside function. Thus A can be solved by
differentiating the Heaviside function and using the expression for ¢;. In fact, A

takes the form

_ fRaﬂ(de)V- (V’y (]%%)) IV¢|5(¢)5(¢)|V1[)|dm.
Josti(d0) V9I6(8)6 W) Vlda

So the u term holds our surface in place, the A term enforces the volume condition,

A

and the rest flows the surface to minimize the Wulff energy.

As before, for most cases, we can chose our initial ¢ to just have its zero level
set surround the boundary points. Then we have to think of the boundary points

as tiny balls with radius related to Axz.

We have programmed this up in R?. The same finite difference schemes are
used as in the Wulff minimal surface problem for the degenerate elliptic term on
the right hand side of the partial differential equation. The integrals in A are
approximated using a second order scheme and the integrands are approximated
using a discrete delta function and second order central difference schemes on
all spacial derivatives. The term —\|V¢] is then solved using WENO-Godunov
of fifth order. The time derivative is once again discretized using third order

TVD-RK.

We show our results in two dimensions in Figures 6.12 and 6.13. Figure 6.12

shows the initial shape that passes through the boundary points and the final
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shape minimizing length and preserving the enclosed volume. Note the final
shape is like that of a lens. Figure 6.13 shows the initial shape surrounding the
boundary points and the final shape minimizing a Wulff energy and preserving

the enclosed volume. Note the final shape is like a squarish lens.

6.7.3 Domain Splitting by Wulff Minimal Surfaces

In this problem, we want to cut a given domain into two pieces of equal volume
using a minimal Wulff surface passing through a prescribed curve on the domain
boundary. Let d be the signed distance function for the domain, with d negative
outside the domain. Let ¢ initially pass through the prescribed curve on the
domain. If we require ¢ to initially cut the domain into two pieces of equal

volume, then by the same reasoning as before, the equation is

b= H(d) (V - (vﬂ/ (l%)) - ,\) V4,

where ) enforces that the enclosed volume in the domain is fixed and H is the one
dimensional Heaviside function. Thus we can solve for A from this condition, by
taking a time derivative of the expression for the volume, and the equation for ¢;.
In fact, the form of A will be the same as in the constrained volume computations
except p{de) is replaced by H(d).

We can also create another equation for this problem that can also be used
to initialize ¢ for the above equation. This equation is a penalty method based

equation and takes the form

oo=1@) (v-(v1(55) ) 1961 = [ (110 - 5) iz),

where ) is a penalty term. So as A gets large, the solution tries to satsify

fR"’ ( @_")d"c’_o
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which is what we want. The initial ¢ is chosen to pass through the prescribed
curve on the boundary of the domain. The equation then flows the curve by
Wulff flow to satisfy the volume condition in steady state. For X very large, i.e.,
dropping the Wulff flow term, we get a fast method for initializing the ¢ to split

the domain into two regions of equal arca.

We use just the initialization equation with a large A for our simulations in
two dimensions. The integral is approximated using a second order scheme and
the rest is discretized the same as before. Also, H is replaced by a smoothed out
numerical Heaviside function. The results are shown in Figures 6.14 and 6.15.
Note the curve that splits the domain should is allowed to wander out of the
domain a little but as the grid size gets smaller, the curve being in the domain
is more strongly enforced. For cleaner plots, we can erase the parts of the curve

that are on the outside of the domain.

6.8 Conclusion

We note that our method for Wulff minimal surfaces requires a small amount
of information to be given. The rest is automatically handled by the algorithm.
All types of boundaries can be considered since we only need to find do(%),
ﬁhich is easily computed and just once, for any type of boundary. Also, in
many cases, the initial shape does not have to pass through the boundary. This
greatly simplifies the input information. The method can be successfully used
for constructing minimal surfaces and is easily extended to higher dimensions or.
down to two dimensions. Computer simulations have yielded many Wulff minimal
surfaces, especially minimal surfaces, for many different boundary curves. The
applications of the method also can handle convex hulls and a variety of other

energy minimizations.
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Figure 6.1: This is a minimal surface with a boundary consisting of two squares.
The surface looks like a catenoid. We can cut off the parts of the zero level set

surface that extend beyond the squares in post processing.
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Figure 6.2: This is a minimal surface with a boundary consisting of two angled

circles. The complete zero level set surface is shown here. The surface looks like

a catenoid.

Figure 6.3: This is a minimal surface with a boundary consisting of three squares,
a large one on top and two small ones that touch at a corner on the bottom. The

complete zero level set surface is shown here.
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Figure 6.4: This is a minimal surface with a boundary consisting of three circles,
ignoring the rounded part above each circle. The complete zero level set surface
is shown here. The rounded parts that should be flat come from setting the
velocity to be zero there since we were not interested in that part of the surface.

It is possible to cut these parts out with the plotter.
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Figure 6.5: This is a minimal surface with a boundary consisting of a rectangular
wire bent at two of its ends, ignoring the surface extending out of the wire. The
complete zero level set surface is shown here. The extra surface parts are there
for the surface to have the right topology and are not interesting. It is possible

to cut these parts out with the plotter.
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Figure 6.6: This is a Wulff minimal surface with a boundary consisting of three
circles, as in Figure 6.4. The Wulff energy used is a smoothed out version of
~(&) = |z1| + |z2| + |za]. The complete zero level set surface is shown here. Note

the squarish nature of the surface.
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Figure 6.7: This is a Wulff minimal surface with a boundary consisting of
two parallel circles. The Wulff energy used is a smoothed out version of
(&) = |z1| + |z} + |zs]- The complete zero level set surface is shown here.
Note the squarish shape of the resulting surface. For minimal surfaces, the shape

would be a catenoid.

Figure 6.8: This is the boundary of the convex hull of six points. The shape is

two pyramids.
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Figure 6.9: This is the boundary of the convex hull of the points in two spheres.

Figure 6.10: This is the boundary of the convex hull of the points in three spheres.
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Figure 6.11: This is the boundary of the convex hull of the points in two linked

rings.
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Figure 6.12: This is curvature flow with fixed enclosed volume in two dimensions
of a curve passing through two boundary points. The original shape (left) is a
box surrounding the boundary points. The final shape (right) is a lens that is

the union of two circles.
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Figure 6.13: This is Wulff flow with fixed enclosed volume in two dimensions of
a curve passing through two boundary points. The original shape (left) is a box
passing throught the boundary points. The final shape (right) is a lens with a

more squarish structure due to the Wulff energy.
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Figure 6.14: This is the splitting of a domain with the minimal length curve into
two equal volume pieces. The domain here is a square and the initial curve is a
circle not satisfying the volume constraint. Thus the circle expands outward into

the final shape.
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Figure 6.15: This is the splitting of & domain with the minimal length curve into
two equal volume pieces. The domain here is a circle and the initial curve is a
line not satisfying the volume constraint. Thus the line grows and into the final
shape. On the left is the program on an 80 by 80 grid and on the right is the
program on a 160 by 160 grid.
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CHAPTER 7

The Level Set Method Applied to Unstable

Cases in Irreversible Aggregation

7.1 Abstract

We consider cases in irreversible aggregation that produce unstable solutions and
compare solutions derived using the level set method with theoretical results. We
will look for dendritic formation in the computed solutions as well as compare
the island boundaries, growth rates, and initial velocities with exact solutions.
Results will show the level set method can reproduce the characteristics of the

instability in the problem.

7.2 Setup

The level set method[24] has recently been applied to island dynamics in molecu-
lar beam epitaxy[4]. Each of the islands has a discrete height and we are interested
in the shapes of their boundaries at future times. Different levels of a level set
function are set to denote the island boundaries. The time evolution of the level
set function then gives the location of the island boundaries at future times. We
consider here only the case of a step train under the process of irreversible ag-

gregation without nucleation and we will compare the calculations from the level
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set method with theoretical results.

7.3 Theoretical Results

Let the graph of Y(y, ) denote the step boundary and let p(z, y,t) be the density

of adatoms on the substrate. Then the evolution of the step is given by the

equations,
(8, — DV*%p = F, Y-L<y<Y+L
p =70, y=Y - LY +L
D{n-Vp(Y +L)—n -Vp(Y — L)} = —a"v - n,
Yi=wv-n,

where

(_Y:C: 1)

n_—_“”“"—m

denotes the normal to the step and F is the flux of adatoms, 2L the period of the
step in the y-direction, a the diameter of an adatom, and D the surface diffusion

constant.

Now performing a shift, Y = wvgt + Y7, to center the step, the evolution
equations become, also replacing p by p(z, v, t),
(8y — voBy — DVH)p=F, Vi-L<y <Y +1L
p =0, Y=Y -LY+L
D{n -Vp(Y'+L)~n-Vp(Y'— L)} = —a"%v - n,
Y/ =v-n—w,
and we may begin a perturbation analysis of the Y/ and p equations.

Let
plz, v, t) = poly) +ep(z, 9/, ) + ...
Y'(y',t) = Y] (', 1) + ...
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Then the first order approximation is,

Po = bo -+ bly' + bgem/\yl

where
vo = 2a*°FL,
A=2a2D71FL,
bo = (2a?)~ coth(AL),
by = —(2a2L)7,

by = —(2a? sinh(AL)) 72,

and so the second order approximation is,

prL = eikm+wt(ﬁ+ea+y + ﬁ_ea_y),

}/{ — lfi ezk:n+wt’
where w, ., p_, ay, and «.. are derived from the equations,

(w+ DE?) — vy — Daf?Ir =0,

(w + DK?*) — vya_ — Do? =0,

pre®+t 4 p_e L + Viph(L) =0,

pre~l 4 p_emo=F 4 Viph(—L) =0,

D((aypre®’ + a_pre®L) — (appretr + o pre 1))+

DYi(py(L) — ph(—L)) = —a~"w¥1.

Now since we would like 5, p_, and Y7 not all zero, this means the coefficient

matrix needs to be singular and so its determinant is zero, i.e.,

ea.,.L Ba"L / (L)

0
e—a+L e—a..L .Oz)("““L) = ).

2Dq, sinh(e L) 2Da. sinh(a_L) D(ph(L) — ph(—L) + a™w

=
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This reduces to

0= (coth{cyL) — coth(e_L))(D(p4{L) — ph(—L)) + o w)+
(pb(L) + pp(—L)) (- — o) + (po(L) = ph(—L))}D (0 coth(eL)—
a_ coth(a. L)).

From this equation, we see that in leading order,
w = a”D{py (L) + py(— L))k,

since oy = |k| and a— = —|k| in leading order, from the first two and the last
equation of the five above equations, and also coth(e; L) ~ 1 and coth(a_L) =~

-1. Now

po(L) + pp(—=L) ~mi—)(sinh()@) — AL cosh(AL))

e 1— AL
S L __ ,=2AL
2 Lsnb(aD) T { 1+ ° } !

but

1—AL_
1 AL

so this means that pf(L) + gfp(—L) > 0 and so w > 0. So we have found a class

e <

of unstable solutions.

7.4 Comparing with Level Set Method Calculations

The level set method essentially considers a function ¢, called a level set function,
defined on a uniform grid in space. ¢ incorporates all island boundaries at a given
height into one of its level sets, preferably one related to that height. The level
set function is then updated at each time step by solving for p, using it to form
the velocity at the island boundaries, extending this off the island boundaries to

each point in the spacial grid, and then moving all level sets of ¢ by this velocity.
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The end result is that at any time step, we can recover the island boundaries at
a given height by finding its associated level set contours in ¢. One advantage to

this method is that it automatically treats the merging of island boundaries.

We would like the level set method to mimic the theoretical behavior in the
situations we looked at above. We consider the case of initial steps ¥ (y,t = 0) =
ecos(ky) with initial density p(z,y,t = 0) = po(y) + epi(z,y,t = 0). These two

are compatible when ¢ is small.

In the simple case of a straight step, i.e., where e = 0, we see that the solution
derived from the level set method agrees with the theoretical solution and the

step travels at the correct velocity vy (see Figure 7.1).

af

-1t

=2}

-3 . . . . .
-3 -2 -t 0 1 2 3

Figure 7.1: straight step, D = 100, ¢ = 0.0,0.2 from left to right, exact and

computed solutions overlay.

But the required size of ¢ turns out to be restrictive. We see this when we
compare the velocities of the step derived from Y and from p. In order to make

the initial velocities match, € must be very small (see Figure 7.3) and so the step
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may be under-resolved. If ¢ is chosen to be too large, then the velocities will not

match. Then since the exact solution gets the step velocity from the Y equation

and the level set method derives it from the p equation, the two solutions will

il, b2

not agree.

7

-3 -2 -1 ¢ 1. 2 3

Figure 7.2: velocities due to Y (solid) and p (dotted), D = 20, k =4, ¢ = 0.1
(left), € = 0.01 (right).
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Figure 7.3: velocities due to Y (solid) and p (dotted), D = 10, s =1, e = 0.1
(left), e = 0.02 (right).

However, solutions obtained using the level set method show the inherent
instability and dendrites do form (see Figures 7.4 and 7.5). But these dendrites

sometimes do not occur at the correct time. The computed solution for a case
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with a small w may blow up faster than one with a larger w (compare Figures 7.1
and 7.6). This is because of the appearance of small oscillations in the calculation,
probably due to numerical errors, which will blow up very fast {see Fignres 7.6
and 7.7) since when the frequency k is large, w is of order k and this drives the

oscillations immediately to blow-up.

7.5 Conclusion

Because of the constraint on the size of €, solutions computed from the level set
method may not be well resolved. Also small oscillations that may result from
minute errors can quickly magnify, complicating the ability to get meaningful
data. But the existence of the instability in the computational results cannot
be questioned and solutions seem to grow at the correct rate when spurious

oscillations do not occur.
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Figure 7.4: exact (smooth) and computed (dendritic) solutions, D = 20,
¥, = —0.01, k = 4, w = 6.8789, ¢ = 0.0,0.0125,0.025,0.05,0.1,0.2,0.4 (bot-

tom), first 5 curves zoomed in (top).
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Figure 7.5: exact (smooth) and computed (dendritic) solutions, D = 10,
eV = —0.02, k =4, w = 11.946, ¢t = 0.0,0.05,0.1,0.2.
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Figure 7.6: unstable computed solution of straight step, D = 10, ¢ =0.0,0.2,0.4.
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Figure 7.7: exact (smooth) and computed (dendritic) solutions, D = 10,
¥, = 002, k = 1, w = 1.8346, ¢ = 0.0,0.05,0.1,0.2,0.4 (bottom), first 3

curves zoomed in (top).
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