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In this thesis, we propose using Partial Differential Equation (PDE) techniques
in wavelet image processing to reduce edge artifacts generated by wavelet ap-
proximations. We have been exploring in two directions: the first is to apply
the main idea of the WGH developed ENO schemes for numerical shock capturing
to modify standard wavelet transforms so that a fewer number of large high fre-
quency coeflicients are generated. Therefore less distortion near edges is created
when the coefficients are thresholded. Another direction is to use minimization
techniques, in particular the minimization of total variation (TV), to select and
modify the retained s_tandard wavelet coeficients so that the reconstructed im-
ages have less oscillations near edges. Numerical experiments show that both
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CHAPTER 1

Introduction

Wavelet analysis is a well developed field in mathematics. It has many success-
ful applications, especially in digital image processing. There are many ways to
introduce wavelet transforms. One way is to view wavelets as basis functions of
the L? space. This means that every function in L? space can be uniquely de-
composed in terms of the wavelet basis. The coefficients of such a decomposition
fall into two categories: the low frequency part which describes the local average
properties of the function, and the high frequency part which represents the local
differences. There are many papers and books on wavelets and their applications.

For some mathematically oriented books, see [15], [18], [33] and [42].

Tt is well known that wavelet linear approximations (i.e. truncating the high
frequency coefficients) can approximate smooth functions very efficiently: it can
achieve arbitrary high accuracy through the selection of an appropriate wavelet
basis, through concentrating the energy to low frequencies, and in addition, it
has a multiresolution framework with associated fast transform algorithms. But
standard wavelet linear approximation techniques cannot achieve similar results
for general images which typically are piecewise continuous functions connected
by large jumps (edges). Many problems arise near these jumps, caused primarily

by the well-known edge artifacts (Gibbs’ phenomenon {33]).

Several approaches have been proposed to overcome these problems. Within

the wavelet pyramidal filtering framework, non-linear data-dependent approxima-



tions, which selectively retain certain high frequency coefficients, are often used,
e.g. the commonly used hard and soft thresholding techniques of Donoho[19].
A more fundamental approach is to modify the wavelet transforms so as not to
generate large wavelet coefficients near jumps. Claypoole, Davis, Sweldens and
Baraniuk use an adaptive lifting scheme which lowers the order of approximation
near juraps [16], thus reducing edge artifacts. All these approaches have their
limitations, and some residual Gibbs’ phenomenon still exists, especially in high
ratio image compression and in denoising of highly noisy images. Another ap-
proach, due to Donoho, is to construct an orthonormal basis such as wedgelets

[20], rigdelets [21] and curvelets [14] to represent the edges.

In this thesis, we propose applying some PDE techniques in wavelet image pro-
cessing to overcome these problems. In fact, PDE techniques have been commonly
used in image processing since the end of the 1980’s, for example, Mumford-Shah’s
functional [35] in segmentation, Rudin-Osher-Fatemi’s Total Variation in restora-
tion [39], Alveraz-Morel’s formalization in image analysis [2], Perona-Malik’s dif-
fusion model [38], Sapiro-Tannenbaum’s affine scale space [40], Alveraz-Guichard-
Lions-Morel’s fundamental equations for image processing [1], Morel-Solimini’s
book on variational method for segmentation [34], and some more recent works
such as Chan-Vese’s active contour [9], Chambolle-Lions’s total variation analy-
sis [7], Bertalmio-Sapiro-Caselles-Ballester’s image inpainting [3] and the papers
collected in the IEEE special issue on PDE and geometry-driven diffusion image
processing [25]. A crucial observation which makes these methods successful is
viewing images as piecewise smooth functions connected by large jumps (edges)
and realizing the similarity between images and piecewise smooth solutions of
certain kinds of PDE’s. Then well-developed PDE techniques can be used to
handle the edges. Based on this observation, we apply several PDE techniques to

wavelet image processing to reduce the edge oscillations. In particular, we have



been exploring in two directions: the first is to apply the main idea of Essen-
tially Non-Oscillatory {ENO) schemes for numerical shock capturing to modify
the standard wavelet transforms so that a fewer number of large high frequency
coefficients are generated. Therefore less distortion is created near edges when the
coefficients are thresholded. Another direction is to use minimization techniques
to modify the retained standard wavelet coeflicients so that the reconstructed
images have fewer oscillations near the edges. We will briefly introduce these two

approaches in the following paragraphs.

For the first direction, we have designed an adaptive ENO-wavelet transform
for approximating piecewise continuous functions without oscillations near the
jumps. Our approach is to apply the main idea from ENO schemes for numer-
ical shock capturing to standard wavelet transforms. The crucial point is that
the wavelet coefficients are computed without differencing function values across
jumps. However, we accomplish this in a different way than in standard ENO-
schemes. Whereas in standard ENO schemes, the stencils are adaptively chosen,
in the ENO-wavelet transforms, we adaptively change the function and use the
same uniform stencils. The ENO-wavelet transform retains the essential prop-
erties and advantages of standard wavelet transforms such as concentrating the
energy to the low frequencies, obtaining an arbitrary high order of accuracy uni-
formly and having a multiresolution framework and fast algorithms, all without
any edge artifacts. We have obtained a rigorous approximation error bound which
shows that the error in the ENO-wavelet approximation depends only on the size
of the derivative of the function away from the discontinuities. Numerical results
have illustrated these error estimates. The extra cost (in floating point opera-
tions) over standard wavelet transforms is proportional to the number of jumps.
Numerical examples show that the ENO-wavelet compressed images retain more

detail and sharper edges than that of standard wavelet compressed images.



To reduce edge oscillations in wavelet based image compression, we have been
working on another approach which applies variational image restoration tech-
niques, particularly total-variation (TV), in wavelet compression and denoising
to select and modify the retained wavelet coeflicients in a such way that the

reconstructed image has less edge artifacts.

In this direction, our first attempt is advocating the total variation denoising
method, followed by the standard wavelet compression for high noise level images
to obtain high ratio compression [12]. Numerical experiments demonstrate that
TV-denoising can bring more wavelet coeflicients closer to zero thereby making
the compression more efficient while the salient features (edges) of the images

can still be retained.

It has been shown through many simulations that the TV model can effec-
tively suppress the noise while retaining the edges in images. This is because it
allows the existence of discontinuities. In [6], Chambolle et al propose to mini-
mize some Besov norms which are approximations to the TV norm for dencising
and compression in wavelet spaces. In fact, edge oscillations caused by standard
wavelet thresholding significantly increase the TV norm of the reconstructed im-
ages. All this motivates us to embed the TV model into the wavelet compression
algorithms, i.e., minimize the TV norm to find the best m coefficients, where m
is a given maximum allowed number of nonzero coeflicients, to form the least
edge artifact approximation. In general, minimizers of such variational problems
can be found by solving their associated Euler-Lagrangian equations, which are
PDE’s. Many methods have been advocated to solve the PDE’s, such as the
time marching method [39], the fixed-point iterative scheme [45], the primal-dual
method [8], and the level-set approach [37]. We also study some numerical issues

related to this proposed TV norm model for wavelet thresholding. We will show



numerical experiments in the applications of compression and denoising.

The thesis is arranged as follows: In chapter 2, we study the first topic, which
is applying the ENO ides so as not to generate large high frequency coefficients.
In chapter 3, we discuss the TV regularized wavelet compression model for wavelet

thresholding techniques.




CHAPTER 2

Adaptive ENO-wavelet Transforms and Its

Applications

2.1 Introduction

In this chapter, we develop new wavelet algorithms to approximate piecewise con-
tinuous functions, for instance, piecewise smooth functions connected by large
jumps. It is well known that wavelet linear approximation {(i.e. truncating
the high frequencies) can approximate smooth functions very efficiently: it can
achieve arbitrary high accuracy by selecting appropriate wavelet basis, it can
concentrate the large wavelet coefficients in the low frequencies, and it has a
multiresolution framework and associated fast transform algorithms. All these
properties have led to their wide applications, such as in partial differential equa-
tions (PDE’s) and image processing.

Standard wavelet linear approximation techniques cannot achieve similar re-
sults for functions which are not smooth, for example piecewise continuous func-
tions with large jumps in function value or in its derivatives. Several problems
arise near jumps, primarily caused by the well-known Gibbs’ phenomenon. The
jumps generate large high frequency wavelet coefficients and thus linear approx-
imation cannot get the same high accuracy near the points of discontinuity as in

the smooth region. In fact, the jump points generate oscillations which cannot



be removed by mesh refinement.

To overcome these problems within the standard wavelet transform frame-
work, non-lincar data-dependent approximations, which selectively retain certain
high frequency coefficients, are often used, e.g. hard and soft thresholding tech-
niques, see [19], [24], [23], [33] and corresponding references listed there. The
main idea of these thresholding approximations is to truncate the wavelet coeffi-
cients by their magnitudes, not frequencies. For instance, hard thresholding sets
all wavelet coefficients whose magnitudes are less than a given tolerance to zero
and retains the other coefficients unchanged. However, these technigues often
require more complicated data structure to record the location of the retained
wavelet coefficients and still cannot remove the effects of Gibbs’ phenomenon

completely.

A more fundamental approach is to modify the wavelet transform to not
generate large wavelet coefficients near jumps. A few papers in the literature have
discussed this approach. Claypoole, Davis, Sweldens and Baraniuk [16] proposed
an adaptive lifting scheme which lowers the order of approximation near jumps,
thus minimizing the Gibbs’ effect. Of course, this scheme suffers from reduced
approximation accuracy near jumps, and some residual Gibbs’ phenomenon still
exists. Another way due to Donono is to contruct orthonormal basis such as

wedgelets [20] and rigdelets [13], [21] to represent the discontinuities.

In this chapter, we develop a new wavelet algorithm by borrowing the well
developed Essentially Non-Oscillatory (ENO) technique for shock capturing in
computational fluid dynamics (e.g. see [29] and [41]) to modify the standard
wavelet transform near discontinuities in order to overcome the above mentioned
difficulties. ENO schemes are systematic ways of adaptively defining plecewise

polynomial approximations of the given functions according to their smoothness.



There are two crucial points in designing ENO schemes. The first is to use
one-sided information near jumps, and never differencing across the discontinu-
ities. The second is to adaptively form the divided difference table and select the
smoothest stencil (the support of the basis) for every grid point. ENO schemes
lead to uniform high accuracy approximations for each smooth piece of the func-

tion. We will only use the first point in our design of the ENO-wavelet transforms.

Combining the ENO idea with the multiresolution data representation is a
natural way to avoid oscillations in the approximations. In fact, it has been
explored by Harten in his general framework of multiresolution [26], [27] and
[28], which is similar to the lifting scheme of Sweldens [44]. His approach is to
directly blend the two ideas, and to fully implement the ENO schemes at every
point. However, his method cannot be directly applied to the more interesting
and generally used pyramidal filtering algorithms which the standard wavelet
transforms are implemented in because in this context we have to work with a
fixed size filter and the adaptive divided difference algorithm does not fit into

this framework.

Our goal is to design a more direct functional replacement of the standard
wavelet transforms such that there are no oscillations at the discontinuities in the
approximations. We want to stick with the pyramidal filtering framework because
they are easy to use, and have been successfully applied in many applications.
Compared to Harten’s multiresolution approach, which is more flexible and easier
to adaptively implement the ENO idea, the standard wavelet transforms are more
regular and rigid in algorithmic structure, therefore directly applying the ENO
idea would leads to a more drastic perturbation of the underlying pyramidal

filtering algorithms. This is the challenge we face.

The way we accomplish this is to not change the wavelet transforms or the




filter coeflicients, which most data dependent multiresolution algorithms do, but
instead locally change the function near the discontinuities in such a way that
the standard filters are only applied to smooth data. By recording how the
changes are make, the original discontinuous function can be exactly recovered by
using the original inverse filters. Indeed, by applying the idea of using one-sided
information near the discontinuities, we directly extend the functions from both
sides of the discontinuities, thus we can apply the standard wavelet transforms
on these extended values such that there are no large coefficients generated in
the high frequencies and the low frequency approximations are essentially non-

oscillatory, and therefore Gibbs’ phenomenon can be completely avoided.

In addition, in this modified wavelet transform, the low frequency part pre-
serves the piecewise smoothness of the original function. In particular, the jumps
in fhe low frequency part is not spread widely as in the standard transform.
Therefore, the same ENO idea can be recursively used for the coarser levels of
the low pass coefficients. By doing so, the multiresolution framework can be kept

too.

We show that the resulting wavelet transform retains all the desirable prop-
erties of the standard transform: it can have uniform arbitrarily high order of
approximation (with a rigorous uniform order error bound), it concentrates the
large wavelet coefficients to the low frequencies, it preserves the multiresolution
framework and fast transform algorithms, and it is easy to implement. Further-
more, since we do not fully adopt the ENO schemes, in particular, we do not build
the divided difference table and compare the smoothness of all possible stencils at
every point, the extra cost (in floating point operations) required by the modified
ENO-wavelet transforms is insignificant. In fact, it is of the order O(dl) where d

is the number of discontinuities and ! the stencil length. Compared to the cost of



the standard wavelet transform, which is of the order O(nl) where n is the size
of the data, the ratio of the extra cost over that of the standard transform is of

the order Of ff—) which is independent of [ and negligible when n is large.

There are many possible applications of the ENO-wavelet transforms, for ex-
ample, in image compression, image restoration, data representation and initial-
boundary value problems for PDE’s. We will show some examples of applications

to image compression.

The arrangement of the chapter is as follows. In section 2.2 , We review the
standard continuous and discrete wavelet transforms. In section 2.3, we give a
general algorithm to implement the ENO-wavelet transform discretely. In section
2.4, we prove an error bound for the ENO-wavelet approximation which shows
that the error in the ENO-wavelet approximation depends only on the size of
the derivative of the function eway from the discontinuities. Finally, in section
2.5, we give some numerical examples to illustrate the main advantage of the

ENO-wavelet transforms, including some examples in image compression.

2.2 Wavelet Transforms

Before we introduce the adaptive ENO-wavelet transforms, we briefly review the
standard wavelet transforms, e.g. see [15], [18], [33] and [42]. We will go over
both continnous and discrete wavelet transforms, because we will present our
ENO-wavelet transforms in the discrete form and prove the approximation error

bound by using the continuous form.
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2.2.1 Continuous Wavelet Transforms

First, we review the standard continuous wavelet transforms. To simplify the

notation, we assume zeros have been padded to the data at the boundaries.

The standard wavelet transforms are based on translation and dilation. Sup-
pose ¢(z) and (z) are the scaling function and the corresponding wavelet re-
spectively with finite support [0,1] where [ is a positive integer. It’s well known

that ¢(xz) satisfies the basic dilation equation:
60) = VIS cibza - ) @1
and (z) satisfies the corresponding wavelet equation:
P(xz) = \/ﬁi hs¢(2x — 3); (2.2)
5=0

where the ¢,’s and h,’s are constants called low pass and high pass filter coeffi-

cients respectively.

We assume that ¢(z) has p vanishing moments:
/T/J(m)mjdmz(), for =01, - p—1. (2.3)
We will use the following standard notations:
dinl(w) = 28¢(25 — k), (2.4)

and

i x(z) = 256(29z — k). (2.5)
Consider the subspace V; of L* defined by:

V; = Span{¢;x(z), k € Z},
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and the subspace W; of L? defined by:
W; = Span{v;x(x), k € Z}.

The subspaces V;’s, —oo < j < oo, form a multiresolution of L? with the subspace
W; being the difference between V; and Vj.. In fact, the L? space has an

orthonormal decomposition as:

I?= V@ Z Wj. (2.6)

j=d

The projection of a L? function f(z) onto the subspace V; is defined by:

filz) = ; 05650 (T), (2.7)
where

ajp = [ 1(@)ds(2)do. (2.8)
Similarly, we can project f(z) onto W; by:

wj(x) = Zk: Bijbip (@), (2.9)
where

Bi = [ F(@)bin(e)da. (2.10)

Therefore, the function f(z) can be decomposed by:
fz) = film) + D wi(w). (2.11)
i=3

The projection f;(z) is called the linear approximation of the function f(z) in

the subspace V;.

From (2.4) and (2.5), the projection coefficients a; and §;x of f(z) in the
subspaces V; and W; can be easily computed by the so called fast wavelet trans-

form:
!

Qi = D CsQy1 gits) (2.12)

s=0
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and

!
Bii = hsQjt1its- (2.13)

s==0
2.2.2 Discrete Wavelet Transforms

In practice, discrete wavelet transforms are often used. Unlike in the continuous
case where the wavelet transform is applied to the L? function f(z), in the dis-
crete case, we start by considering a set of discrete numbers which are the low
frequency coefficients of the L? function f(z) at a fine level subspace Vj;;. In
many applications, this set of numbers are sample values of the function f(x) on

a fine grid (although in [42], this is called a ”wavelet crime”).

Let us define the following matrices:

C € - O
I = Co ¢ 0 ,
g € €1 }
and
ho h1 -+ hi \
e he hi - B
ho hy - ho

We also denote &; = (-, 04k, ®j g2, -)° and B; = (-, Biks Bikras - )7
The fast wavelet transform equations {2.12) and (2.13) in discrete form can
be written as:
a; = Léij; (2.14)
and

B = Hajy. (2.15)
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It is well known that the wavelet transform matrices L and H are orthogonal:
L'L+H*H=1. (2.16)
It follows that the inverse wavelet transform is simply:
& = L@ + H*B;. (2.17)

In this discrete case, the linear approximation refers to reconstructing &;4;

by discarding the last term in (2.17).

The standard linear wavelet approximation achieves arbitrary high accuracy
away from discontinuities, but it oscillates near the jumps. The reason for the
oscillations is that some stencils cross jumps and cause the corresponding high
frequency coefficients to becoming large and therefore, more information is lost

when the high frequency coefficients are discarded.

In Fig 2.1, we display a piecewise continuous function (left) and its DB-4
wavelet coefficients (right). From the right picture, we see that most of the high
frequency coefficients are zero, except for a few large coefficients which these
coefficients are computed near jumps. Fig 2.2 displays the linear approximation
(solid line) compared to the initial function (dotted line). The right picture is
the zoom-in to show the approximation behavior near a jump. In this figure, we

clearly see oscillations (people call them Gibbs’ phenomenon) near discontinuities.

Since the oscillations are generated by discarding large high frequency coef-
ficients which are computed on the stencils crossing. discontinuities, to get rid of
the oscillations, we want to avoid stencils crossing discontinuities. This motivates

us to apply the ENO idea to avoid stencils crossing jumps.

Before we introduce the ENO-wavelet transforms, we give the following defi-

nition which we will use in the later sections. Given a function f(z) which has
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Figure 2.1: The initial function (left) and its DB4 coefficients (right). Most of the
high frequency coefficients (right part) are zero except for a few large coefficients

computed near the jumps.
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Figure 2.2: The approximation function (left) and its zoom in (right), Oscillations

are generated near the discontinuities in the linear approximation.
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discontinuous set D, i.e.
D= {x;: f(z) is discontinuous at uz;}.
Denote t as the closest distance between any two discontinuous poeints, i.e.
t = inf{|z; — x| : z;,z; € D}

Definition 1 For a given wavelet filter with stencil length [, we say a projec-
tion of f(z) in space V; with spatial step Az = 277 satisfies the Discontinuity
Separation Property (DSP) if (I +2)Az < t.

A projection satisfying the DSP implies that any one discontinuity is located
at least one stencil and two data points away from other discontinuities. In
other words, there are no two consecutive stencils containing two discontinu-
ities. We assume that all projections we consider in this paper satisfy the DSP.
Since our ENO-wavelet transform is essentially using ENO techniques to mod-
ify the standard wavelet transform near discontinuities, this property will avoid
the modifications near one discontinuity interacting with the modifications near

other discontinuities.

Remark: For any piecewise discontinuous function, a projection will satisfy
this DSP if j is sufficiently large, i.e. if the discretization is fine enough. On the
other hand, at the place where the DSP is invalid, the approximations produced
by the ENO-wavelet transforms are comparable to that by the standard wavelet

transforms. We will show numerical examples in section 2.5 illustrating this point.

2.3 ENO-wavelet Transforms

In this section, we design the ENO-wavelet transforms. In addition to the

standard wavelet transforms, our ENO-wavelet transforms are composed of two
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phases: locating the jumps and forming the approximations at the discontinu-
ities. Firstly, assuming that the location of the jumps are known, we give the
ENO-wavelet approximations at the discontinuities by using one-sided informa-
tion to avoid oscillations. Then, we give the methods to detect the exact location

of the discontinuities.

2.3.1 ENO-wavelet Approximation at Discontinuities

In this subsection, we assume that the exact location of the discontinuities are
known. We want to modify the standard wavelet transforms near the jumps such
that oscillations can be avoided in the approximation. From ENO schemes, we
borrow the idea of using one-sided information to form the approximation and
avoid applying the wavelet filters crossing the discontinuities. Since we assume the
DSP is satisfied by the given projection of the function f(z), we can just consider
the local modification near one jump. The main tool which we use to modify the
standard wavelet transforms at the discontinuities is function extrapolation in

the function spaces or in the wavelet spaces.

Direct Function Extrapolation

The first way is to extend the function directly at the discontinuity by extrapola-
tion from both sides. Then we can apply the standard wavelet transforms on the
extended functions and avoid computing wavelet coefficients using information

from both sides.

To maintain the same approximation accuracy near the discontinuity as that
for away from the discontinuity, the extrapolation has to be (p — 1)-th order

accurate if the wavelet functions have p vanishing moments. For instance, we
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use constant extrapolation for Haar wavelet, (p — 1)-th order extrapolation for

Daubechies-2p orthogonal wavelets which have p vanishing moments.

We use the disgram in Fig 2.3 to show how to extend the function and compute
the ENO-wavelet coefficients.

As shown in Fig 2.3, the discontinuity is located between {z(2i+1 -2}, z(2i+
I—1)}. We extend the function from both sides of the discontinuity using (p—1)-
th order extrapolation, i.e. we use the information from the left side of the jump
to extrapolate the function over £(2i+1—1),- - -, £(2442]—2}; use the information
from the right side to extrapolate the function over #(2i),---,Z(2¢ +1—2). And
then for i < m < i+k—2, we can compute the wavelet coefficients &;,, and Bj}m
from the left side, and compute &;,, and §;,, from the right side by using the

standard wavelet transforms respectively.

In general, we have the low frequency wavelet coefficients on the finer levels
instead of knowing the function values themselves near the discontinuities. We
extrapolate these finer level coefficients from both sides of the discontinnities to
obtain the values of &;y 1 and &;41,m, and use the fast wavelet transforms (2.12)
and (2.13) to compute the coarser level coefficients. For instance, we can compute

&j,i and Bj,i by

o {D N N
Oy 4 ( D im0 CsQjp12ies T Q1@ 4120011 + CIOG41,2i41
4 - -1 . N
Bii o Ps Qi1 2irs T M—1041 20011 + MOy 41260
I Y 41,2041
= + A , (2.18)
\ Vii €¥j.4-1,2i+

where §;; and 7;; are 3572 €0 11,200s and Yooy ReQt1,0i+s Tespectively and de-

pend only on the unextrapolated values of @j41m, and A a 2 X 2 matrix defined
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by the filter coeflicients as:

Ci—1 €
A=

by My
By symmetry, we can compute &;,’s and ﬁj,m’s from the right side in a similar
way.
There are many methods to extrapolate the extended values. For example,
a straightforward way is to use p-point polynomial extrapolation. Least square

extrapolation can be used too [46).

There is a storage problem for this direct function extrapolation. Indeed, it
doubles the number of the wavelet coefficients near every discontinuity. To retain
the perfect invertible property, we need to store the ENO-wavelet coeflicients
btjm and B, from the left side, also &@;m and B;,, from the right side. Thus, the
output sequences are no longer the same size as the input sequences. In many
applications, such as image compression, this extra storage requirement definitely

needs to be avoided.

Remark: In the least square extrapolation case, it is possible to reduce the
demands of the extra storage because not all the wavelet coefficients &;m, Bjm,
&;m and B, are linearly independent [46]. However, it requires complicated

extra computation.
Our Approach: Coarse Level Extrapolation

To avoid computing the wavelet coefficients using the information from both
sides of the discontinuities, to maintain the same high order accuracy near the
discontinuities as away from the discontinuities, and also to keep the size of the

output sequences the same as that of the input sequences without significant extra
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Figure 2.3: Coarse Level Extrapolation Illustration. From the left side of the
discontinuity, we extrapolate the low frequency coefficients &;,, to determine
corresponding high frequency coefficients Bj,m and store them. From the right side
of the discontinuity, we extend the high frequency coefficients Bj,m to determine

and store the low frequency coeflicients &; .

computation, we introduce the coarse level extrapolation schemes. The idea is to
extrapolate the coarser level wavelet coefficients near the discontinuities instead

of the function values or the finer level wavelet coeflicients.

We still use Fig 2.3 to illustrate these schemes. We consider the left side of

the jump first.

In the direct function extrapolation case, the computation process is to di-
rectly extrapolate the finer level wavelet coefficients Gy m, (20 +1—1) <m <

(2i + 21 — 2), then compute the extended coarser level wavelet coeflicients &;m
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and ﬁj,m, 1 <m < (1+k — 2) using the standard filters. We reverse the order
of this process in our coarse level extrapolation. More precisely, we extrapolate
the coarser level low frequency coefficients &;,, using the known low frequency
coefficients from the left, and extend the coarser level high frequency coefficients
ﬁj,m to zero, then determine the extended finer level wavelet coefficients. For
example, in the direct function extrapolation, we extrapolate finer level values
&+1,m and then compute the coarser level coefficients é&;; and B;: by (2.18). On
the contrary, we can first extend the coarser level coefficients &;; and fj; and
then determine the finer level values. Indeed, if the matrix A is nonsingular,
we can uniquely determine the finer level values by solving (2.18). In this case,
we can prescribe both the coarser level coeflicients simultaneously. However, in

Daubechies’ orthogonal wavelet transforms, the matrix A is singular, because:

hiet hy
_ =, 2.19
Ci—1 C ( )

Thus, in order to have a solution of (2.18), we must extend the coarser level

coefficients &;; and §,; in a way such that they satisfy:

Gy 554
,‘m - 7 € R(A)7
Bji Yip

where R{A) is the range space of A. This requirement implies that:

& 5
N | I e |
ki -
B Vi
which we can also rewrite as:
5 i,
Bii =i + c_l(aj,z' — &), (2.20)
or
~ Cy, 5
G = by + h_l(ﬁj,i — Vi) (2.21)
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Therefore, we cannot prescribe both é&;,,, and Bj,m simultaneously. Thus we have

two choices:

(1) We can extrapolate the low frequency coefficients &, first, then determine

the corresponding high frequency coefficients [S’j,m by (2.20);

(2) Or we can extend Bj,m to zero first, then determine the corresponding &;

by (2.21).

Remark: We notice that in both cases (2.20) and (2.21), the coefficients are
computed by applying the standard filters to the extended data which is smooth.
This implies that there are no large coefficients generated by them, which also
means that the extension is stable, although we do not explicitly use the extended

finer level values in the computation formulas.
By symmetry, we have two analogous choices for the right side of the jump.

Using this coarse level extrapolation technique, we can easily solve the storage
problem which we have in the direct function extrapolation. In fact, we just need
to store the high frequency coefficients ,@j,m for choice (1) and the low frequency
coefficients d;,, for choice (2). In our implementation, we use choice (1) for the
left side of the jumps and choice (2) for the right side of the jumps, therefore
we store ﬁj,m and &;,, for every m. This satisfies the standard wavelet storage

scheme, i.e. storing one « and one 3 for every stencil.

Remark: We select choice (1) from the left side of the jumps and choice (2)
from the right side because we want to keep half of the output sequence to be
a’s and half B’s. It is possible to select choice (1) or choice (2) for both sides
of the jumps, but that will not give equal number of &’s and S’s in the output

sequence.
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Since we know the way we extend the data at the discontinuities, we can
easily extrapolate the low frequency coefficients &;,, from the left sides of the
discontinuities. Using them fogether with the stored high frequency coefficients
ﬁj,m, we can exactly recover data at the left sides by applying the standard inverse
filters. Similarly, the data at right sides of the discontinuities can also be exactly
restored. Moreover, since all the data are smoothly extended, the reconstruction

process is also stable.

Remark: In the ENO-wavelet transforms, to retain the perfect invertibility
property, we have to store all adaptive information, i.e. the locations of the
discontinuities. In our implementation, we just use one extra bit for each stencil

near the discontinuities to indicate it contains a discontinuity.

For each stencil crossing a jump, an extra cost (in floating point operation) is
required in the extrapolation low frequency coefficients, which is of the order O(1)
per stencil, and in the computation of the corresponding high and low frequency
coefficients by (2.20) and (2.21), which is of the order O({) per stencil. Overall,
the extra cost over the standard wavelet transform is of the order O(dl) where d
is the number of discontinuities. Compared to the cost of the standard wavelet
transform, which is of the order O(nl) where n is the size of data, the ratio of
the extra cost over that of the standard transform is O(£), which is independent

of | and negligible when n is big.

2.3.2 Locating the Discontinuities

In the previous subsection, we showed how to modify the standard wavelet trans-
forms at the discontinuities to avoid oscillations if we know the exact location
of the jumps. In this subsection, we introduce the methods to detect the exact

location of the discontinuities for piecewise smooth functions with and without
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noise. First we give a method for smooth data.
Piecewise Smooth Functions

Our purpose is to avoid wavelet stencils crossing discontinuities. Theoretically, a
discontimuity can be characterized by comparing the left and right limit of f @) (x)

at the given point z, i.e. we call a point z a discontinuity if for some ¢, we have:
FO(z-) # 1O (a+).

It is well known that the high pass filters in wavelet transforms measure the
smoothness of functions: they produce smaller values at smoother regions, and
larger values at rougher regions. In fact, at smooth regions, the magnitudes of
high frequency coefficients |8, ;| have the order of | f®)(x)|O(Az?). On the other
hand, if a stencil contains a discontinuity, no matter a discontinuity in function
value or in its derivatives, the magnitude of the corresponding high frequency
coefficient |8;] is at most of the order of | f*~1(z)I0O(AzP~1)). Therefore, instead
of fully adopting the ENO comparison idea which compares the magnitudes of
divided differences on all possible stencils, we can use the magnitudes of the high

frequency coeflicients as our criterion to identify the discontinuities.

The obvious way, also the cheapest way, to identify the discontinuities is to
compare the magnitudes of the high frequency coefficients on the current standard
stencils |B;,| with that on the previous standard stencils |8;;-1]. As we already
know that for the smooth functions, we have |8;;] = |f®(z)|O(AzP), this implies

that at smooth regions, we have:

1Bl = (1 + O(Ax))|Bj - (2.22)

In contrast, the magnitudes of high frequency coefficients |8;;] based on the

stencils containing the discontinuities are at least one order lower than that at
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the smooth regions. Thus, we can design a method to detect the discontinuities as
follows: For each standard stencil, suppose we know that the previous standard
stencil does not contain any discontinuities, if we have |3;:| < a|B;;-1], where
a > 1 is a given constant, then we treat the current stencil as a smooth stencil.

Otherwise, we conclude that there are discontinuities contained in it.

To completely avoid oscillations, we also need to know the exact locations
of the discontinuities so that we can avoid computing the wavelet coefficients
crossing them. In fact, the above comparison method based on the magnitudes
of high frequency coefficients can also help us to locate the exact positions of the
discontinuities. We will use the diagram in Fig 2.4 to explain how to find the

exact jump positions.

Assume we consider the wavelet filters with length (I + 1) where [ = 2k -
1. We compare the magnitude of the high frequency coefficient |8;;| on the
current stencil, which starts at z(24) with |8;;_1| on the previous stencil. If we
have [8;;] > a|Bji-1], we identify the discontinuity lying in the current stencil.
Since there are no discontinuities in the previous stencils, we know that this
discontinuity must be located between {z(2i + ! — 2), z(27 + [)}, where it only
has two possible positions: between {z(2i + 1 — 2),z(2{ + { — 1}} or between
{z(2i+1-1),5(2i+1)}. In fact, we can determine the exact position of the jump
by continue comparing the subsequent values of ;,,. As shown in Fig 2.4, we
must have at least (k—1)} consecutive ”large” f;m, ¢ < m < (i+k—2), because the
subsequent {k—1) stencils also include the discontinuity. We compute 31,1 and
Bj.i+k on the corresponding standard stencils, if we have |5;:45-1| > a Biitkl, then
we have k consecutive stencils containing the discontinuity, which implies that the
discontinuity is located between {z(2i+1—1),2(2i+21—1)} (see Fig 2.4 (a)). If

we have exactly (k--1) consecutive standard stencils containing the discontinuity,
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k consecutive stencils containing the jump which is between x(2i+]-1) and x(2i+])
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Figure 2.4: Locating the exact position of the jump by counting the namber
of consecutive stencils containing the jump. (a) If & stencils contain the jump,
then the jump position is between x(2 + ! — 1) and z(2i +1). (b) If (k — 1)
consecutive stencils contain the jump, the jump is located between x(2i + 1 — 2)

and z(2i +1 — 1).
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which implies that the jump must be located between {z(2:+1~2),z(2i+1—1)}

(see Fig 2.4(b)). We summarize the above arguments in the following lemma.

Lemma 1 Consider the wavelet filters with length | = 2k — 1. For a given index

i, assume we have |ﬂj,i_1’ S a|/3jﬂ-_2| but |6j,il = a|ﬁj,i_1|. Then

(1) if |Bjitk—| > alBjitx], which means there are k consecutive standard sten-

cils containing the jump, then the discontinuity is located between {x(2i +

[ 1), z(2¢ + D)}.

(2) else we have \Bn-1) < alBjitxl, which implies that there are (k — 1)
consecutive standard stencils containing the jump, then the discontinuity is

located between {x(2i +1—2), (21 +1 ~1)}.

Remark: The constant @ in the comparison scheme is proportional to 315. It
also depends on the norms of the function and of its derivatives at smooth regions

| £ ()} (a0 Where 0 <4 < p and D is the set of the discontinuities.

The extra cost introduced by this comparison jump identification method over
the standard wavelet transforms is just the comparison |8;;| > a|B;,-1| for each
stencil. In section 2.5, we use this detection method for all noise free numerical

examples.
Noisy Data

The above described detection method may not be reliable if the function is
polluted by noise, especially when the noise is ”large”. This is because the
high frequency coefficients 8’s may not be able to measure the correct order

of smoothness of the functions. Indeed, the high frequency coefficients have the
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order ||f®(z) + on®(z)||O(AzP), where n{z) is the random noise and o a pos-
itive number indicating the noise level. In general, the derivatives of the noise
n® (x) have large values. The noise term onl)(z) can dominate the function
term f®(z) if the noise level o is large and thus, the high frequency coeflicients
B’s may not be able to detect certain discontinuities, e.g. if the jump is small or
the discontinuity is in the higher derivatives. In this situation, we need to use
heuristics to locate the exact position of the essential discontinuities. Here, we
give a simple method to detect the significant large jumps in function values in

noisy data.

In many applications such as in image processing, large discontinuities in func-
tion value are the most significant features. Using the standard wavelet trans-
forms, these large discontinuities will generate high frequency coeflicients which
can be much larger than those generated by the noise. (this is also the funda-
mental principle in the design of wavelet thresholding). A simple way to detect
this kind of discontinuities is to look for these large magnitude high frequency
coefficients and then compare the data values in the corresponding stencils to
locate the exact jump positions. For example, we can look for the places which
have the largest difference between two adjacent data values within the stencils.

In section 2.5, we will show an example using this method.

Remark: Other jump detection methods can be used for noisy data. As long
as the exact location of the discontinuities are correctly determined, the coarse
level ENO-wavelet approximations can be formed at the discontinuities, and our

experience shows that it is not sensitive to the presence of noise.
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2.3.3 Yorward and Inverse Transform Algorithms

In this subsection, we explicitly present the complete forward and inverse ENO-

wavelet transform algorithms for the noise free piecewise smooth data.

We consider the forward transform algorithms first. We denote by {cq, - - -, a1}
and {hg, - -+, by} the standard wavelet filter coefficients, and {ry, - -+, r;} and {dy,
-+, d;} the corresponding inverse filter coefficients. We use a one-bit variable s;

to indicate whether a stencil contains a jump in our algorithms.
Forward Transform Algorithm

For each 1,

(i) Compute B;; by (2.13).
(11) If llﬁj,il > a|ﬁj,iwl| and |/Bj,i| > €, then,

L COmpute )Bj,i+k and Bj,i-l—k-%—l by (213)

e Find the exact location of the jump by Lemma 1. Fori <m <i+k

ore<m<i+k+1,

— For the left side of the jump, compute &;,, by extrapolation, com-

pute f3;,, by (2.20). Then set:
ﬁj,m = Bj,m: 8y = 1;

— For the right side of the jump, set 5;,, = 0 and compute @;,, by
(2.21). Set:

aj}m = aj:m'

(iii) Otherwise, compute a;; by (2.12). Set s; = 0.
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In the algorithm, ¢ is a predefined small positive number which is used to
prevent the numerical instability caused by small 5;;. More precisely, if both 8;;
and f3;; 1 are less that the given tolerance €, we treat the current standard stencil

as a smooth stencil.

In step (ii), it is possible to use any extrapolation techniques to handle the

discontinuities.

Inverse Transform Algorithimn

For each ¢,

(i) f s; =0 and s; =0,7 =% —1,---,i — 1, then the standard inverse wavelet

transforms are applied,

i

01,28 = Z(Tzs+1aj,z‘—s + d3s11Bj-s)s (2.23)
s=0
and
I
Oj41,2041 — Z(Tzsaj,z‘_s + Ao B is)- (2.24)
5=0

(i) Hs;=1,i~1<j<i,

Use Lemma 1 to locate the position of the jump by counting the num-

ber of consecutive s; = 1.

Extrapolate d&;; from the left side of the jump.

Set §;; as zero for the right side of the jump.

Using &, and B to restore the left side by (2.23).

Using «;x and Bj,k to restore the right side of the jump by (2.24).

Two Simple Examples
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We give two simple examples in the ENO-Haar case to illustrate the algorithms.

First, we consider computing the transform coefficients of the following initial

(111222)-

The standard Haar produces the low and high frequency coeflicients:

(5 & H)o=(0 = 0)

The corresponding linear approximation is:

(11%%22),

which cannot recover the discontinuity correctly.

data:

sk

Using the ENO-Haar wavelet, we break the initial data sequence into two

smooth pieces as shown in the following two rows:

y 2 2 2
111 =z

where z and y are some smooth extensions of the corresponding pieces. In fact,
we extend x in a way such that the low frequency coeflicient &, (boxed in (2.25))
based on the stencil (1,z) is the same as the previous ey, which is based on
the stencil (1,1) giving z = 1. Similarly, we extend y in a way such that the
high frequency coefficient 5, (boxed in (2.25)) is zero giving y = 2. Therefore
we compute the high frequency coefficients B, based on stencil (1,z) and the
low frequency coefficients @y based on stencil (y,2) by using the corresponding

standard filters giving [3’2 =0 and a; = %. Thus we have the coeflicients:

4
*1.8= o] 0 : (2.25)
0 0

e

Sk
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Since we know how we extended &, and B,, we do not need to store them. In

fact, we just need to store the low and high frequency coefficients as:

AY / hY
=] 2 4 4 =
a(ﬁﬁﬁ),ﬁ (ooo),
which have the same storage schemes as the standard Haar wavelet transform.

When we reconstruct the linear approximation, we can first recover &, and
B2 by the same way as in the forward transform, and then apply the standard
inverse filters to the smooth data to build the approximation. In fact, in this case

the linear approximation is exactly the initial data.

In the next example, we show a similar example in which the ENO-Haar linear
approximation is not exactly the same as the initial data but it still preserves the

jump well. The initial data is given as:

(0 1 2 10 11 12)-
The standard Haar low and high frequency coefficients are:
(%% 2)e=(-% -5 )
Notice that in this case, we have a large high frequency coefficient (middle) which

corresponds to the discontinuity. If we discard the high frequency part, the

corresponding linear approximation is

(0.5 0.5 6 6 115 11.5);

and the discontinuity cannot be preserved.

If we use the ENO-Haar wavelet transform, we have the coeflicients:
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The recovered linear approximation is

(0.5 0.5 0.5 10 11.5 11.5)-

In this case, although the linear approximation is not the same as the initial data,

it forms a much more accurate approximation than that of the standard Haar

transform. More importantly, this approximation preserves the discontinuity

sharply in contrast to the standard Haar wavelet which takes the average at the

discontinuity.

Remarks

(i)

(i)

(iv)

The ENO-wavelet transforms are just simple modifications of the standard
wavelet transforms near discontinuities. The computational complexity of

the algorithms remains O(n) and they are relatively easy to implement.

In the transform algorithms and the corresponding inverse algorithms, the
extended low frequency coeflicients &, ,, and the high frequency coefficients
Bj,m can be computed by other extrapolation schemes such as least square

extrapolation. This may be more robust, especially for noisy data.

The adaptive ENO wavelets idea can also be used for other kind of wavelets.

They do not necessarily have to be orthogonal wavelets.

Like other wavelet transforms, 2-dimensional or even higher dimensional
transforms can be formed by tensor products. In the numerical example

section, we will give a 2-dimensional example.

The adaptive ENO-wavelet idea can be recursively used even if the projec-
tions do not satisfy the DSP. In such case, of course we will not get the nice

error bound (see section 2.4), but the approximation error are comparable
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to that of the standard wavelet transforms. Also, it is easy to modify the
algorithms such that the standard wavelet transforms are applied at the

place where the DSP is invalid.

2.4 Approximation Error

In this section, we consider the ENO-wavelets approximation error for piecewise

continuous functions.

Given a function f(z) in L?, in standard wavelet theory [33] [18] {42], it can
be linearly approximated by its projection f;(z) in V; as in (2.7) and (2.8). This
linear approximation has a standard error estimate which we state in the following

theorem, see also [42].

Theorem 1 Suppose the wavelet 1(z) generated by scaling function $(z) has p
vanishing moments, f;(x) is the approzimation of f(x) in V; with basis ¢;(x),
then,

1 (=) = f3(@)]l < Ay fP (), (2.26)

where Ax =27 and C is a constant which is independent of j.

This theorem holds for the L? norm in general. Moreover, if the scaling
function and the wavelets have finite support, then it also holds for the L™

normi.

In this theorem, we can see that the approximation error is controlled by
two factors. One is the p-th power of the spatial step Az; the other is the
norm of the p-th derivative of the function. This implies that the approximation
could be poor for irregular functions even if the spatial step Az is small. For

piecewise continuous functions, especially functions with large jumps, this error
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estimate does not give a real upper bound because ||f'?(z)|| is infinite. In fact,
in the standard approximation function f;(z), oscillations are generated near the
discontinuous points and they will not disappear even if the spatial step size is

reduced (Gibbs’ phenomenon).

In contrast, in our ENO-wavelet transforms, since no approximation coeffi-
cients are computed using information from both sides of the discontinuities, we
can obtain a similar error estimate without taking derivatives across the jumps.
In the next theorem, we state the estimation and prove it in the rest of this

section.

Theorem 2 Suppose the sealing function ¢(z) and its y(x) have finile support in
[0,1], () has p vanishing moments, f(z) is a piecewise conlinuous function in
[a,b], and f;{z) is its j-th level ENO-wavelet projection obtained by using any one
of the three extrapolation methods given in section 2.4. If the projection f;i1(x)

satisfies the DSP, then

17 (=) = fi@) < C(A=)P [ F2 (@)l @enp, (2.27)

where Az = 277 and D is the set where f(z) has jumps. The norm || - || can be

either the L? or the L™ norm.

Proof: We prove the inequality (2.27) under the L* norm, which implies the IL?

result.

The DSP allows us to separate the discontinuities and individually consider a
small neighborhood around each jump. Therefore, without loss of generality, we

consider a piecewise function f{z) with one jump at the origin. i.e.

fi{z) a<z<0

f2($) OSHJSI);

flz) =
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where fi(z) € CPa,0] and fo(z) € C?[0,b]. The small neighborhood affected
by the ENQO decision is [—IAz,lAz]. In fact, the ENO wavelet coeflicients only
depend on one sided information and therefore, by symmetry, we just need to
prove (2.27) in [—IAz,0).

Before we prove that (2.27) holds for the three types of extrapolation methods,
namely direct function extrapolation and the two choices of coarse level extension
((1) and (2) in section 2.3.1), we give some notations which we will frequently

use in the proof.

Denote by g:(z) the (p — 1)-th order polynomial which is the first p terms of

the Taylor expansion of fi(z) at the origin, i.e.

(»)
/ 11;!(5) 2P, (2.28)

where £ is in interval [—[Az, 0]. Also denote by o, and §;,, the ENO-wavelet’s

filz) = g1(z) +

low and high frequency coefficients respectively and @, ,, the low frequency coef-

ficients of the polynomial g;(z), i.e.,

&im = [ 91(2)pim(x)do

and
915(2) = D Ajmbjm(2)-
Now, we are ready to prove that (2.27) holds for the three types of extrapolation

methods. We first prove (2.27) for direct function extrapolation.

Direct Function Extrapolation

The direct function extrapolation extends f;(x) to interval [0, [Az] by defining

f}(ﬂ?) —Azx <z <0
az) 0<z <IAxz.

fa(z) =
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The corresponding ENO-wavelet low frequency coefficients a;,, are computed by

Qi = f fal@) by () d, (2.29)

and the approximation function is defined as
fag(z Z P m z € [—1Az,0)]. (2.30)

For any point 4 € [~1Az, 0], by using (2.28) and the fact that since g (z) is
a (p — 1)-th order polynomial, g ;(z) = ¢:(x), we have:

|f1(mo) — fai(zo)l < |fime) — gulzo)| + 1g1,5{zo) — fa3(z0)]
CADY| FP + grwo) — fagzo)l.  (2.31)

IA

Let ¢ be an integer in [, 0] such that zg € [gAz, (¢ + 1)Az), then the last term
of {2.31) can be bounded by:

|l915(%0) — faz(zo)] = |Za’ym m) @m0 )|
< Z |Gj,m = ] |hj,m (o)

g—i<m=<g

= Y |@Gm— ¥mll(A2) 3 ¢(2m0 —m)|. (2.32)

g-l<m<q
To prove (2.27), we now need to estimate |®;,, — a;m|. In fact, for every m,

—I < m < 0, we have:

@i — il = | [ (fal®) = (7)) sm ()]
[ (@)~ 9:(@)bimladie
4 [ (1u0) - @)l

[ A

Because fy(z) is the same as g;(z) in [0, (m + [)Az], using (2.28), we have:

Gim — il = | [ (h(2) ~ 9:(@)Bim(x)e
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AN

([ 16 - a@Pdot([ | 1dyn(a) P}
< O(azp|f@)|(Az)?

< C(Azy*a||f@)).

Therefore, combining this with (2.32), we have:

91,3 (o) — fai(mo)l < C(AZ)P(|FP.

This and (2.31) complete the proof of (2.27) for the case of direct function ex-

trapolation.

Coarse Level Extrapolation

As described in section 2.4, there are two ways of extrapolating coefficients
on the coarse level. One way is to set the extended high frequencies to zero. The
other way is to extrapolate the low frequency coeflicients by a (p — 1)-th order
polynomial in wavelet space. In the following part of the proof, we consider them

separately.
We consider the high frequency zero extension first.

Similar to the direct function extrapolation, we also extend fi(z)} to the in-

terval [0, lAz] and denote it by

fh(x):{ fi(z) @ € [-1Ag,0]
gn(z) = € (0,lAg],

where g;(z) is implicitly defined such that it makes fj(z) satisfy
j @) Vim(z)ds =0,  ~l+1<m<0, (2.33)

and

ffh($)¢j,m($)d$ =,  —1+1<m<Z0. (2.34)
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The difference between fy(z) and fi(z) is that in the direct function extrap-
olation fy(x), we know that ¢:(z) is the (p — 1)-th order polynomial, but in this

case, gn(r) is unknown.

Formally following the proof of (2.27) for the direct function extrapolation,
(2.31) and (2.32) also hold for this case. Therefore, we only need to estimate
1@ m — Qjml|, = < m < 0. We consider m = —I + 1 first. Unlike in the direct
function extrapolation where |d;, 111 — @;,—i+1} can be computed directly by the
Taylor expansion, here we cannot bound |@j_i41 — 41| in the same way.

Instead, we use the following trick to obtain the estimate we need.

From the dilation equation (2.1) and the wavelet equation (2.2), we have the

following relationships:

i—1

Gim(x) = §Cs¢j+1,s+2m($), (2.35)
and
Yjm(Z Z hs®jt1,s+2mlE). (2.36)

Using (2.35), @&;,z1 and o,41 can be computed by

A (- l+2)

aj's {+1 — ffh $)¢J}—l+1 E /m(s 2,“+2) $)¢J‘§'1 5_21+2($)
and
Az (s z+2)
Q141 = f a(z)phij 141 = ;} f 8o 2z+2) (%) Pjt1,s—usa(z)d.
Therefore, we have
_ =2 %{s—wz)
|0fj,—z+1 - a!j,—t+1| < |Ecs) fA (g1(z) — fh(x))¢j+1,s-_21+2(fﬂ)d$|
5=0 S (s—20+2)
Aa:
e do( 1)( gi(z) — fal(@))djri-r{z)dz|.  (2.37)
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We know that only the last term involves the value of fi(z) in [0, 5%]. The other
terms use f,(z) in {—IAz,0], which is fi(z). Then, by Taylor expansion and

Schwartz inequality,

Am (s_

|Z S 0(0) = @) ann(a)a] < (AP

Ax (g 91y

> (2.38)

Thus, to bound |&;, ;41 ~ ej—41|, the only remaining task is to estimate the last

term in (2.37).

Considering that g1{z) is a (p — 1)-th order polynomial, we obtain

[ 5@ty (@)de = 0= [ 01(@)san (@)da

Substituting the wavelet equation (2.36) into the above equation, we have:

Zh f fu(®) — g1(2)) j41,5-242(z)dz = 0.

We can rewrite this equation in the following form:

Az

P [, (ul®) = 91(2)) i1 1-1(2)da

2 (~1+1)

82 (51 2)
- _z o — g1(5)) b4 1,0 ats2(2)da

Ar (5 2z+2)
We note that the left hand side contains the term we need to estimate, whereas
the right hand side only uses f,(z) at the left side of the origin and thus can be

controlled by Taylor expansion. This means that we have:
| (fa(z) — 92(2))bj1,1-1(w)d]

Az:( l-f—l)
Az (s
< {hy_ ;!Z B o
=) (
< C(Am)f’nf“’)uz

T

|f1(5”) g1 {2)| |41, 5—0142(x) |d

(2.39)
Combining (2.37), (2.38) and (2.39), we have:

(1)
(5,101 — @j10a] < CAD)| fP )2~
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Similarly, we can prove that for all m, -l +1<m <0,

_ ki
|5 — im| < C(ATP[FP 2775

Substituting them into (2.32), we prove that (2.27) holds for the high frequency

extension case.

The last case we need to consider is the coarse level extrapolation of low

frequency coefficients. To prove (2.27), we use the result obtained for the direct

function extrapolation.

We denote by a;?’m the low frequency coefficients for fy{z). The j-th level low

frequency extrapolation approximation fi;(z) is defined as:
fri(x) = 3 0jmbiim ().
m
For any point zy € [gAz, (g + 1)Az) C [-IAz,0], we have:

|fi(@o) — frg(mo)l < |filwo) — fa;(wo)| + | fag{zo) — fri(zo)l.

Using (2.27) for the direct function extrapolation case, we know that:

|F1(0) = fag(z0)] < C(AP| 7).

And the remaining term can be bounded by:

£a5(30) = fis@o)| < 2 | — aimll28 @@ 20 — m)).

g—l<m<yg

N . d X
Again, we need to estimate |a/j,m — Qg

(2.40)

(2.41)

(2.42)

Unlike the previous two cases where the low frequency coefficients a;,, are

computed by integration (2.29) or (2.34), in this case ;,, are determined by

the low frequency extrapolation on coarse level in wavelet space. So, to estimate
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t d

O — ®jm|, we need to consider them in wavelet space. We introduce the

following operator notations first.
Define the continuous wavelet transform (WT') of any function f{z) in space
Vi by
WT()(e) = [ F@)ss(@)de =2 [ (2)9(2o — s)da.
Also define the following Taylor extrapolation operator (EX) of f(z):

f{z) z<0
glz) >0

EX(f)(z) :{

where g(x) is the (p — 1)-th order Taylor polynomial of f(z). Using these nota-

tions, we can represent the wavelet coeflicients:
@jm = EX,(WT(f1))(m), for —I+1<m<0,

and

af’m =WT(EX;(f1)}(m), for —-1+1<m=<0,
where EX,, and EX; represent the extrapolation operator £X in the wavelet
and physical space respectively.

Instead of estimating |o¢;??m—aj,m| directly, we prove the following more general

result.

Lemma 2 Given a smooth function g(z), let gu.(s) = WT(EX(g))(s) and
Gew(8) = EXW(WT(g))(s), then

|9e(8) — Gew($)] < C(AzY|lg®]|27F,

Using this lemma, we obtain the desired bounds for |aj,{m — Oy m| easily by
taking s = m. Combining them with (2.41) and (2.42), we prove that (2.27)

holds for the low frequency coeflicient extrapolation case.

42



Proof of Lemma: Denote g(z) = EX[(g)(z), then:

Guels) = 2% [ §(2)p(2 s — 8)do
= 2% [57 - )o@y

By changing variable z = 2775, and denoting:

2) = [ 927y - 9(v)dy,
we have:
Jue(s) = 275e;(2795).
We also know that e;(z) is a smooth function, and by differentiating p times, we

have:

12 = 1} [ (<1052 %y — 2)ew)ayll < Cllg Il [ ¢(wdvl < Cllg® ]l
(2.43)

Taking the (p — 1)-th order Taylor expansion of e;(2) at z = —{Az, we have:

ei(2) = &1(e) + e (O EE L

where &;(z) is the (p— 1)-th order Taylor polynomial and £ € [2{,0]. Since geu(s)
is the same as g,.(s) if s < —I, it is defined as the Taylor polynomial for s > —I

according to the definition of EX, i.e. we have:

gew(s):{ 2" %e, (2 35) § < —|

2“2ej(2_33) 5> ~l

Therefore,

'gwe(s) - gew(s)l < 2—%|8j(2_j8) - éj(QﬂjS”

< ClAzy||lgP)2?

This completes the proof of Lemma 2 and also completes the proof of Theorem

2.
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2.5 Numerical Examples

In this section, we give some 1-D and 2-D numerical examples by using the ENO-
wavelet transforms. In particular, we show results of the ENO-Haar, ENO-DB4
and ENO-DB6 wavelet transforms.

In all examples, for simplicity, we just consider functions with zero values
at the boundary. For non-zero boundary functions, we can easily extend the

function by zero and treat the boundaries as discontinuities.

To illustrate the performance of ENO-wavelet transforms, we show picture
comparisons of the standard wavelet approximations and corresponding ENO-
wavelet approximations. In addition, we compare the L., and Lg errors of the
standard wavelet approximations and the ENO-wavelet approximations at differ-
ent levels by measuring E., ; = inf, || f(z) — f; ()|, which is computed by finding
the largest difference on the finest grid, and E»; = || f(z) — f;(z)||2. Using them,

we compute the orders of accuracy defined by:

Ordery, = lo oo
« &2 Eoo,i—i
and
Es;
Ordery, = lo =
2 g2 Ez,i,—-l

which indicates the order of accuracy of the approximation in the L, norm and

L, norm respectively.

For all noise free examples, we use the method described in section 2.3.2
to locate the exact positions of the discontinuities. And we select ¢ = 2 and

¢ = 0.0001 (as used in the algorithms in section 2.3.3) for all 1-D examples.

Firstly, we compare the approximations for smooth functions. Table 2.1 is

the comparison of Haar and ENO-Haar approximations for the smooth function
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level | Haar E,, | ENO-Haar FE, | Ordery
4 0.0919 0.0919
3 0.0430 0.0430 1.0670
2 0.0184 0.0184 1.202
1 0.0061 0.0061 1.585

Table 2.1: Comparison of maximum error of the standard Haar and the
ENO-Haar wavelet approximation for the smooth function sin(z). We see that

they have the same approximation error for the smooth functions.

f(z) = sin(z),0 < z < 2 at different levels, and Table 2.2 the comparison of DB4
and ENO-DB4 approximations for the function f(z) = exp[~(L + )0 <z <
1,

We see from these tables that for smooth functions, the ENO-wavelet trans-
forms have exactly the same approximation error as the standard wavelet trans-
forms. Both of them maintain the approximation order 1 and 2 for Haar and

DB4 respectively, which agree with the resulis in Theorem 1.

Next, we consider a piecewise smooth function defined by

;

0 0<2<0.2
~50x — 5 02<z<04
f#) =1 10sin(4rz +087) -1 04<z <11
52 — 100 11<z <16
0 16<z <2

%

We apply Haar and ENO-Haar, DB4 and ENO-DB4, and DB6 and ENO-DB6
transforms to this function and compare the approximation error. Fig 2.5 shows
the comparison of the order of accuracy in the L, and L, norm. It is clear that

both L, and Ly order of accuracy for ENO-wavelet transforms are of the order
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level | DB4 E,, | ENO-DB4 E, | Ordery,
4 | 3.316e-5 3.316e-5

3 | 7.650e-6 7.650e-6 2.104
2 | 1.590e-6 1.590e-6 2.232
1 1 2.972e-7 2.973e-7 2.406
Table 2.2 The Comparison of maximum error of the standard

DB4 and the ENO-DB4 approximations for the smooth function
flz) = exp[—(2+:),0 < = < 1. They have the same error and both
achieve second order of accuracy which agrees with the results in Theorem 1 for

the smoeoth functions.

1, 2 and 3 for ENO-Haar, ENO-DB4 and ENO-DB6 respectively. And they agree
with the results in Theorem 2. In contrast, standard wavelet transforms do not

retain the corresponding order of accuracy for piecewise smooth functions.

To see the Gibbs’ oscillations, we display the 4-level ENO-wavelet and stan-
dard wavelet approximations in Fig 2.6, 2.7, and 2.8 for ENO-Haar, ENO-DB4
and ENO-DB6 approximations respectively. In the left column, we show the
original function (dotted line), the standard wavelet linear approximations (dash-
dotted) and the ENO-wavelet approximations (solid line). The right pictures are
zoom-in’s of the left pictures near a discontinuity. We clearly see the Gibbs’
oscillations in the standard approximations; in contrast, the ENO-wavelet ap-

proximations preserve the jump accurately.

In Fig 2.9, 2.10 and 2.11, we also present the standard Haar, DB4 and DB6
wavelet coefficients (dotted line) and the ENO-Haar, ENO-DB4 and ENO-DB6
wavelet coefficients (solid line) respectively. The left part corresponds to the low

frequency coefficients and the right part the high frequency coefficients. We notice

46



& Hur I

- ENC-Haar o= EHO-Hax
-4 BB 5

-4~ EHO-E84

o W heezop
4 ENO-DBS

b

W

srrorgovstVemerilovat )

[ m 1 I
lvelogldiz) everlog o)

Figure 2.5: The approximation accuracy comparison of ENO-wavelet and wavelet
transforms. Both L. (left) and L, (right) order of accuracy show that
ENO-wavelet transforms maintain the order 1, 2 and 3 for ENO-Haar, ENO-DB4
and ENO-DB6 respectively and they agree with the results of Theorem 2. In
contrast, standard wavelet transforms do not retain the order of accuracy for

piecewise smooth functions.
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Figure 2.6: The 4-level ENO-Haar and Haar Approximation. The left pic-
ture shows the original function (dotted line), the standard Haar approximation
(dash-dotted line) and the ENO-Haar approximation (solid line). The right pic-
ture is a zoom in near a discontinuity. We see the Gibbs’ phenomenon (staircase)

in the standard Haar approximation but not in the ENO-Haar approximation.
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Figure 2.7: The 4-level ENO-DB4 and the standard DB4 Approximations. The

original discontinuous function (dotted line), the standard DB4 approximation

(dash-dotted line) and the ENO-DB4 approximation (solid line) are displayed.

Gibbs’ phenomenon is clearly seen for the standard DB4 approximation but not

for the ENO-DB4 approximation.
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Figure 2.8: The 4-level ENO-DB6 (solid line) and the standard DB6 (dash-dotted

line) Approximation. The standard DB6 generates oscillations near discontinu-

ities, but the ENO-DB6 does not.
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Figure 2.9: The 4-level ENO-Haar (solid line) and the standard Haar coefficients
(dotted line). The left part corresponds to the low frequencies, the right part
the high frequencies. In the standard Haar coefficients, large high frequency
coefficients present near discontinuities while in the ENO-Haar case, there are no

large high frequency coefficients.

that there are some large standard high frequency coefficients near the disconti-
nuities. On the other hand, no large high frequency coefficients are present in the
ENO-wavelet coefficients. This illustrates that the ENO-wavelet coeflicients have
better distribution than standard wavelet coefficients, i.e., no large coeflicients in

the high frequencies and the energy is concentrated in the low frequency end.

The next 1-D example we present here (Fig 2.12) is a comparison of the stan-
dard DB6 and the ENO-DB6 transforms to illustrate the performance at places
where the DSP is not valid and also at jumps in the derivative. The original
data (circles) has two discontinuities (the middle bump) which viclate the DSP
assumption, which requires that there are at least 9 data points between any
pair of discontinuities, Although the ENO-DB6 approximation (solid line) does

not preserve this pair of discontinuities exactly, its approximation error is still
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Figure 2.10: The 4-level ENO-DB4 coeflicients (solid line} and the standard DB4
coefficients (dotted line). There are large high frequency coefficients (right part)
near the discontinuities in the standard DB4 transform but not in the ENO-DB4

transform.
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Figure 2.11: The 4-level ENO-DB6 coefficients (solid line) and the standard
DB6 coefficients (dotted line). There are large high frequency coeflicients near
the discontinuities in the standard DB6 transform but not in the ENO-DB6

transform.
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Figure 2.12: The level-1 approximation comparison of the ENO-DB6 and the
standard DB6 wavelets at places where the DSP is invalid (the middle bump).
The initial data (circles) has two close discontinuities. The ENO-DB6 approxima-
tion (solid line) error is comparable to that of the standard DB6 approximation
(dotted line). The left bump satisfies the DSP and therefore the ENO-DB6 ex-
actly recovers it. The right kink is a discontinuity in the first derivative, the
standard DB6 still generates oscillations although their magnitudes are not sig-
nificant. The ENQO-DB6 restores it perfectly, We display a zoom-in picture of
this kink in Fig. 2.13.

comparable (actually better in this case) to that of the standard DB6 approxi-
mation (dotted line). At the left bump where the DSP holds, the ENO-DB6 does
preserve the exactly discontinuities as we expected. In the same example, we also
display the comparison of the ENO-DB6 and the standard DB6 approximations
at the right kink, which is not a discontinuity in function values but in its first or-
der derivative. The standard DB6 approximation has oscillations although their

magnitudes are small, but the ENO-DB6 restores it exactly (see Fig. 2.13).

The next 1-D example is also about the DSP for the ENO-DB6. As we defined
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Figure 2.13: The zoom-in of the Fig 2.12 at the kink where there is a discontinuity
in its derivative. The ENO-DB6 (solid line) can recover it perfectly but the

standard DB6 (dash-dotted line) generates oscillations.

before, in this case, the DSP requires that any two discontinuities be separated
by at least 9 data points. In Fig 2.14, we have a sequence of bumps satisfying the
DSP and the ENO-DBS6 exactly recovers them. But in Fig 2.15, there are only 8
data points between every pair of neighboring discontinuities (and therefore the
DSP is invalid), and the reconstruction of the ENO-DB6 has oscillations but the

error is comparable to that of the standard DB6 approximation.

The last 1-D example is applying the ENO-DB6 wavelet transform to a piece-
wise constant function polluted by Gaussian random mnoise (see Fig. 2.16). For
this example, the jump detection method corresponding to Lemma 1 does not
work. Instead, we use the simple method given in section 2.3.2, which detects
jumps by looking for stencils with significant larger high frequency coeflicients
than their neighbors and then locates the exact jump locations by directly com-
paring the differences between two adjacent function values within the stencil.

Despite the presence of noise in the initial data (circles), the level-3 ENO-DB6
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Figure 2.14: The number of data points between every two consecutive jumps is
exactly 9, the DSP is satisfied in this case, the ENO-DB6 perform the exactly

approximation of the original data.
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Figure 2.15: The number of data points between every two consecutive jumps is
exactly 8, the DSP is invalid in this case, the ENO-DB6 approximation contains

oscillations. But the error is comparable to that of the standard DB6.
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Figure 2.16: Left: The comparison of the 3-level ENO-DB6 approximation (solid
line) with the standard DB6 approximation (dash-dotted line) for noisy initial
data {circles). The ENO-DB6 approximation retains the sharp jumps but the
standard DB6 approximation does not (right picture). Right: A zoom-in of the

left. example at a discontinuities.

approximation (solid line) still retains the sharp edges (see zoom-in in the right
picture in Fig. 2.16) compared to the standard DB6 approximation (dash-dotted

line) which not only has oscillations at the discontinuities but also smears them.

Finally, we give two 2-D) image compression examples to compare the standard
Haar and the ENO-Haar approximations. Here we use tensor products of 1-D
transforms. In the first 2-D example, the original picture is shown in Fig 2.17.
Fig 2.18 is the 3-level standard Haar approximation and Fig 2.19 is the 3-level
ENO-Haar approximation. Both use low frequency approximation and store the
same number of coefficients (gz; of the original data). It is clear that in the
standard Haar case, the function becomes fuzzier than the ENO-Iaar case. This

illustrates that the ENO-Haar approximation can reduce the edge oscillations for
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Figure 2.17: Original 2-d Function

2-D functions.

The Final 2-D exmaple is to apply the ENO-Haar wavelet transform to a
standard designed testing image for compression algorithms shown in Fig 2.20.
Similar to the previous example, we use 3-level standard Haar and ENO-Haar
wavelet transforms, and keep the 64 x 64 coeflicients. Fig 2.21 shows the stan-
dard Haar linear 5pproximation which loses all details. Fig 2.22 displays the
same setting ENO-Haar linear approximation. It retains much more details and
keeps sharper edges than the standard Haar linear approximation. In addition, it

is well known that the wavelet hard thresholding (nonlinear) approximation can
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Figure 2.18: The 3-level standard Haar Approximation, the edges are fuzzier than

that in the next picture.
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ENO-Haar, level=3, keep 84x64 coefficients
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Figure 2.19: The 3-level ENO-Haar Approximation, both the edges and the inte-

rior of the characters are clearer than that in the standard Haar approximation.
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Figure 2.20: The original 2-D testing image

reconstruct more details and better edges, we show the standard hard threshold-
ing approximation image by retaining the largest 48 x 48 coeflicients in Fig 2.23.
Similarly, we can apply the same thresholding techniques to the ENO-wavelet
transforms. In this example, we give the compressed image by using ENO-Haar
hard thresholding technique in Fig 2.24. In this image, more details have been

recovered and the edge artifacts are much less severe.
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Figure 2.21: The 3-level standard Haar approximation, the edges are fuzzier than

that in the next picture. Most of the details are lost.
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ENO-Haar, levei=3, keep 64x64 coefficients
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Figure 2.22: The 3-level ENO-Haar approximation, both the edges and the in-
terior of the features are clearer than that in the standard Haar approximation.

More details have been shown.
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Figure 2.23: The 3-level standard Haar hard thresholding approximation, More
details are preserved than the standard linear approximation. Also the edge
artifacts are less severe than the standard linear approximation. On the other

hard, the picture is just comparable to the ENO-Haar linear approximation.
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ENO-Haar, Hard Thresholding, level=3, keep 64x64 coefficients
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Figure 2.24: The 3-level ENO-Haar hard thresholding approximation, Much more
detailed features are retained and less severe edge artifacts are generated com-

paring to the previous images.
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CHAPTER 3

Total Variation Improved Wavelet Thresholding

and Its Application in Image Processing

3.1 Introduction

In this chapter, we are concerned with the suppression of edge artifacts caused
by wavelet thresholding in digital image denoising and compression. As we have
described in the previous chapter, that wavelet thresholding, including linear (i.e.
truncating the high frequencies) and nonlinear thresholding (i.e. retaining large
coefficients,) may generate oscillations near discontinuities, especially when the
functions or the images contain high level noise. This Gibbs’ phenomenon is the

primary reason for edge artifacts in digital image processing.

Many methods have been proposed to overcome this problem. Doncho’s soft
thresholding truncates wavelet coefficients on different scale levels subject to dif-
ferent thresholds [19]. Another type of approach also due to Donoho is to a con-
struct special basis for discontinuities; such as wedgelets [20], ridgelets [21], and
curvelets [14]. A different approach is to modify the wavelet transforms so that
fower large high frequency coefficients are generated near discontinuities, resulting
in fewer large coefficients truncated in the thresholding process. Along this direc-
tion, Claypoole, Davis, Sweldens and Baraniuk [16] proposed an adaptive lifting

scheme which lowers the order of approximation near jumps, thus minimizing
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the Gibbs’ effects. We have proposed ENO-wavelet transforms which apply the
one-side approximation idea of constructing Essentially Non-Oscillatory (ENO})
schemes in numerical shock capturing to design adaptive wavelet transforms such
that no large high frequency coefficients are generated through differencing across
discontinuities [11], essentially eliminating oscillations in the reconstructed im-

ages.

In this chapter, we propose an alternative method, which uses other Partial
Differential Equation (PDE) techniques, especially PDE’s from variational princi-
ples, to reduce the oscillations in wavelet thresholding approximations. Our goal
is to use a variational framework, in particular, the techniques for minimizing to-
tal variation (TV), to select and modify the retained standard wavelet coefficients

so that the reconstructed images have fewer oscillations near the edges.

It has been shown through many simulations in the literature that the TV
model can effectively suppress noise while retaining sharp edges in images ([39],
[10], and [5]). Chambolle, DeVore, Lee and Lucier i6] attempted to use wavelet
based variational forms to accomplish compression and denoising. Using wavelet
coefficients, they compute the best fitting of the observed images subject to min-
imizing certain norms in Besov spaces, which are close to the Bounded Variation
(BV) space corresponding to the TV norm. An essential difference between the
Besov spaces and the BV space is that Besov spaces do not admit the discon-
tinuous functions. Therefore, sharp edges are unaviodably smoothed out in the

reconstructed images.

Our first attempt is combining TV norm denoising model with the standard
wavelet compression algorithms [12]. we demonstrate that compressing TV de-
noised images may produce higher ratio compression and better quality than

denoising and compressing the images by directly using wavelets.
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On the other hand, we notice that edge oscillations caused by standard wavelet
thresholding significantly increase the TV norm of the reconstructed images. All
this motivates us to select and modify the nonzero wavelet coefficients 1 the
thresholding procedure subject to minimizing the TV norm of the reconstructed

images so that they can produce fewer edge artifacts while retaining sharp edges.

In general, minimizers of such variational problems can be found by solving
their associated Euler-Lagrangian equations, which are PDE’s. In particular, the
PDE produced by the TV minimization problem is highly nonlinear and usually
degenerate at flat regions. Many works have been advocated to speed up the
solvers in physical space, for instance, see [45], [8] and [37]. In the present work,
we deduce the corresponding PDE’s in wavelet space and solve them in analogous

ways. We will discuss some aspects of the numerics in this paper as well.

The above described method can be easily embedded into a image compres-
sion framework by simply replacing the standard wavelet thresholding step by
TV regularized wavelet thresholding . The produced non-zero wavelet coeffi-
cients can then be forwarded for quantizing and coding in the standard ways. In
this situation, at the reconstruction end, the standard wavelet procedure will au-
tomatically restore the images with fewer edge artifacts. We will concentrate on
selecting and modifying the non-zero wavelet coefficients subject to minimizing
the TV norm of the reconstructed images, and we will not consider the quantiza-
tion and coding steps. In addition, the ideas introduced here can also be used as
a post-processing technique for the reconstructed images so that it can suppress

the edge oscillations generated in the compression process.

The chapter is arranged in the following way. In section 3.2, we discribe the
procedure of combining TV norm denoising with the standard wavelet compres-

sion algorithms [12]. In section 3.3, we give the general TV regularized wavelet
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compression model for wavelet thresholding. In section 3.4, we study some re-
laxations of the general TV regularized model and their associated PDE’s. In
section 3.5, we discuss some numerical aspects of solving these PDE’s. And in

section 3.6, we show some examples to illustrate the results of the models.

3.2 TV Denoising Followed by Standard Wavelet Com-

pression

In this section, we describe our first attempt in combining TV denoising model

with the standard wavelet compression algorithms.

3.2.1 'Wavelet Thresholding

Suppose we are given an observed image z(x) = uy(z) + n(z), where ug(z) is the
original noise free image and n(z) the Gaussian white noise with ||n{z)l2 = o.

Let us denote the standard orthonormal wavelet transform of z(z} by:
2(é,z) =Y o (%), (3.1)
ik

where ¢, ,(z) are wavelet basis functions and & = {e;1} the corresponding coef-

ficients defined by
o= [ #()diu(a)ds. (3.2)

One way to describe the wavelet thresholding technique is to prescribe a
wavelet coefficient index set I, then retain all coefficients with indices belong

to T and truncate the other coefficients to zero:

" Qi ke (J: k) el

Qjk = _
0 otherwise
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For example, in linear thresholding, I is taken as the set of low frequencies; and in
hard thresholding, I is defined as the set of all coefficients whose magnitudes are
larger than a given tolerance, otherwise, it is smalier than the tolerance. Since
orthonormal wavelets form an orthonormal basis of the L? space, it is obvious
that the hard thresholding selection of J minimizes the L? error between the

compressed image u(z) and the observed image z(x).

The hard thresholding approximations introduce oscillations at the edges,
although they are optimal in the L? space. This is due to the fact that the L?
norm minimization does not penalize oscillations. In Fig 3.1, we show a 4-level
Daubechies-6 (DB6) wavelet hard thresholding approximation (dash-dotted) to a
discontinuous function (dotted). The approximation is reconstructed by retaining
the largest 64 non-zero coefficients and truncating the other coefficients to zero.
It is obvious that it generates severe oscillations at each jump. Fig 3.2 is a 2-
D image containing four noisy squares with different sizes and intensities. We
show its 4-level DB6 wavelet hard thresholding approximation in Fig 3.3. The
approximation contains edge artifacts along the boundaries of the objects, while

in the observed image, these objects have sharp edges.

3.2.2 TV Denoising Model

The objective of TV denoising is to compute a denoised image by solving the fol-
lowing constrained minimization problem proposed by Rudin, Osher and Fatemi
[39]:

m&nTV(u) = / |Vul|dz, (3.3)
subject to

||u — wol|* = &*. (3.4)

Here o is the standard deviation of the noise n(z, ).
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Figure 3.1: The observed function (dotted) has large jumps. The 4-level DB6
wavelet hard thresholding approximation (dash-dotted) is reconstructed by re-

taining the largest 64 coeflicients. It generates oscillations at each jump.

Intuitively speaking, the TV norm measures the jumps of the images, no
matter whether they are continuous or discontinuous. An important feature of
TV norm denoising is that it does not penalize discontinuities in the image. For
example, in Fig 3.4, the four functions have the same TV norm. Therefore,
by solving the minimization problem (3.3) and (3.4), the data automatically
determines whether a smooth function or a discontinuous function best models
the restored image. It is important to note that it doesn’t artificially over sharpen
the edges. Hence, the most significant advantage of TV denoising is that while
smoothing out the high frequency oscillations (corresponding to noise) in the

image, it preserves the edges systematically (8], [43] and [12].

3.2.3 Wavelet Compression of TV Denoised Images

For very noisy images, denoising and compression using wavelet thresholding may
not work well since the features of the images may be lost while removing the

noise. The reason is that wavelet decomposition cannot efficiently distinguish
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Figure 3.2: The observed image has features with sharp edges despite of the

present of noise.
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Figure 3.3: The 4-level DB6 wavelet hard thresholding reconstruction which re-
tains the largest 16x16 coefficients. Edge artifacts are clearly seen along the

boundaries.
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Figure 3.4: The four functions in graph have the same TV norm.

70




edges from noise, because they both generate high frequencies. We propose using
the TV norm denoising method, followed by wavelet compression so that we can
obtain high ratio compression which still keeps the features. Numerical experi-
ments in [12] show that TV-denoising can bring more wavelet coefficients closer
to zero than that of the original noisy image, thus making the compression more
efficient, i.e., compared to the standard wavelet compression, this approach can
get better quality images with the same compression ratio, or it can obtain higher

compression ratio for similar image quality.

This approach cannot remove the edge artifacts generated by wavelet thresh-
olding as shown in Fig 3.1 and 3.2, although it improves the compression results.
It is simply because the thresholding is done after the TV denoising. This leads
us to embed the TV norm into the wavelet compression algorithms so that it can
suppress the oscillations generated by the thresholding as well as the noise while

retaining the sharp edges in the compressed images.

3.3 General TV Regularized Wavelet Compression Model
for Wavelet Thresholding

In this section, we give our TV regularized wavelet compression model for sup-

pressing the oscillations generated by wavelet thresholding.

As we have shown in the previous section, wavelet thresholding can cause
oscillations near edges, consequently increasing the TV norm of the reconstructed
image. To suppress these oscillations, we propose the following model to select
the index set 7, and modify the values of the retained wavelet coefficients 5, such

that the reconstructed image u(ff , ) form a less severe oscillatory approximation:

. . = 1 9
,mn  F(u,z) = ) [ 19.u(B,2)lds + Sllu - 2I} (3.5)
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subject to

1] = m, (3.6)

where u(f, z) has wavelet transform:
ﬁ: 3;) Z /Bj,k ¢J,

Here we have 8, = 0if (4,k) ¢ I, |I| represents the number of elements in I, m

is a given integer, and A the regularization parameter.

Compared to the standard TV denoising model, the two crucial points we
introduce to the TV regularized wavelet compression model are the integer con-
straint and the minimization in terms of coefficients in wavelet spaces. They are

essential for accomplishing the compression task.

The first term in the objective functional reduces the oscillations of u(z) by
diminishing its TV norm. The second term is the standard L? fitting term which
controls the difference between u(x) and the observed image 2(z). The regular-
ization parameter )\ is used to balance the trade-off between the suppression of
oscillations and the fitting term. When A tends to zero, u{x) goes to the standard
hard thresholding approximation. On the other hand, when A tends to infinity,
the suppression term dominates the objective functional, and therefore u(z) tends
to a constant. As a TV regularization parameter, A also controls the smallest
scale of features which are preserved [43], i.e. for a given value of A, there exists
a size of feature such that the model treats all features smaller than this size as
oscillations and eliminates them, while preserving features which are bigger than
this critical scale. In practice, A can be determined in many ways, for instance,
using the L-curve technique [30] to select the best A, or determining it by using
a set of training images. In this paper, we do not discuss these approaches in

detail, though we use the latter choice to select A in our numerical experiments.
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Compared to the approach discussed in the previous section, which uses the
TV denoising method followed by standard wavelet thresholding to obtain high
ratio compression for noisy data, the advantage of the proposed TV regularized
wavelet compression model is that the TV regularized model can reduce the
oscillations generated by wavelet thresholding as well as the noise, while TV
denoising followed by standard thresholding may generate new oscillations after
denoising. Also, the TV regularized wavelet compression model can directly
work on wavelet coeflicients, making it easier to be {it into practical compression
schemes, especially for images given in a wavelet coefficient format (e.g. the
upcoming wavelet based JPEG 2000 compression standard). In addition, the
TV regularized model operates on a smaller number of coeflicients (in the hard
thresholding case). Potentially, it could be faster than TV denoising followed by
standard thresholding.

Remark: The TV regularization term in the model can be replaced by the
H; regularization term ||Vull3, or other regularization terms. Compared to the
TV term, these other norms usually smooth out sharp edges in the reconstructed

images. We will show a comparison in our numerical experiments in section 3.6.

The TV regularized model for wavelet thresholding is a nonlinear integer
optimization problem which in general cannot be solved efﬁcieﬁtly. There are
two crucial tasks in finding the global minimizer of {3.5): selecting the index set
I; and modifying the retained coefficients B, (7, k) € I. The major difficulty
is in the selection of the index set I, because there are too many combinations
for possible I. In fact, for each selected I, which forms a subspace of the L2
space, there is a local minimizer in this subspace. And the global minimizer is
among these local minimizers. On the other hand, both the magnitude and the

location of wavelet coefficients reflect the significance of corresponding features,
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although they may not necessarily determine the index set I which contains the
global solution. So, we can use them to approximate the optimal set /. We will
consider several relaxations of such approximations in the next section. After the
set I has been determined, finding the minimizer in such a subspace becomes a
convex unconstrainted optimization problem. We will address some numerical

methods to solve these problems in section 3.5.

3.4 Relaxations of the TV Regularized Wavelet Compres-

sion Model

In this section, we consider several relaxations of the TV regularized wavelet
compression model and give their Euler-Lagrangian equations. The purpose is to

reduce the difficulty in determining the index set in the integer constraint (3.6).

3.4.1 The Standard Hard Thresholding

A simple way to select the index set I is to choose it according to the magnitude
of the coefficients. In other words, we can simply use the standard hard thresh-
olding nonzero coefficient index set Ig to approximate I. Then the TV model is

simplified as:

min  F(u,2) = A / Vou(B, 2)|dz + |Ju— 2|2 (3.7)

Bjpdk)eln
As we mentioned before, once we restrict the index set to Iy, the minimization
problem becomes convex and unconstrained, and has an unique solution u(z)
in this subspace. The solution u{xz) satisfies the Euler-Lagrangian equation in

wavelet space:

—A[Vm (lg—:a) qu,k(m)d:c + Q(ﬁj}k - aj,k) = 0, (j? k) = IH. (38)
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3.4.2 Smooth Approximations of the Constraint

Another way to relax the integer constraint |7} = m is to approximate |I| by
smooth functions so that we can apply standard techniques for continuous opti-

mizations. Notice that we have the fact:

1= 11810,

where ||-]lo is defined as the number of non-zero elements in the vector. Olshausen
and Field [36] proposed using 3, log(1 + 63;) to approximate the 0-norm in
controlling the number of non-zero patches in sparse images. Donoho [22] showed
that the p-norm function ||-||5 forms a more accurate approximation to the integer

constraint.

Using these smooth approximations, we can relax the integer constraint to

continuous constraints:

(> log(1 + 1) — m)* <% (3.9)
(Zk |Bil? — m)* < %, (3.10)

where « is a given small positive number used for controlling the number of

non-zero components in the coefficients.

Since both approximations are smooth, we can easily convert the constrained

problems to unconstrained problems by introducing the Lagrangian multiplier 7:

min  F(u,2) = A [ Vau(f, )ldn+u—zlr (3 log(1+62,)-m)?, (311

.Bj,k:(j:k)EIH ik
or

min  F(u,2) =) [ Vau(F,2)|do + |[u = 213 + (2 |l —m)”. (3.12)
ﬂj,k}(.?)k)EIH j,k
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Then it is easy to obtain the corresponding Euler-Lagrangian equations in wavelet

space as:
Vi Bk
—)\/Vm (W) G p(z)da+2(8;p — ot p) +27( J,Zklug lTka)—rlb)1+ 7, =4,
(3.13)
or
“.A./V ( ) bjk(x)dr + 2(Bjx — ajx) + QT(Z | kl” —m) i = 0.
Vol ) S il Bl
(3.14)

Remark: In these two approximations, since the log-function 37, ; log(l—i—ﬁ?,k)
and p-norm function 37, 18,47 (p < 1) are not convex functions, there may exist

many local minimizers which are also solutions to the Euler-Lagrangian equations.

3.5 Numerics

To find the solutions for the relaxations of the TV regularized wavelet compression
model, we want to solve the associated Euler-Lagrangian equations (3.8), (3.13),
and (3.14). In fact, many numerical methods for similar equations in physi-
cal space have been proposed in literature, such as Rudin, Osher and Fatemi’s
time marching scheme [39], Vogel and Omen’s fixed-point iterative method [45],
and Chan, Golub and Mulet’s primal-dual method {8]. All these methods can
be adapted to the wavelet space. Here, we use the simple fixed-point iterative
method as an example to show some numerical aspects involved in the computa-

tion.

The fixed-point iterative method linearizes the nonlinear terms in the Euler-
Lagrangian equations with approximations from the previous iteration. We de-
note D, (D, ) as the forward (backward) finite differences in physical space.

We discretize the V,u in (3.7), (3.11) and (3.12) by the forward finite differences
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D, i, then the fixed-point schemes to the three relaxations are:

a1 |
_)\f ( /iD ﬂLu 2+ ) ¢j,k(x)dx -+ 2(5n+1 _ aj,k) _0, (k)€ In,
A -+ i €1

(3.15)

and
n+1
_)‘f Dy, ( et $j()dz (3.16)
\/|D$’+'U.n|2 + 51
n n gt
2088 — ez} + 21D Tog(1 + (B1)") — m)—F 7 = 0,
3.k 1+ ( j,k)

and

Dm .;.’U,"_;_l
-A| D, : d;n(x)de (3.17)
/ (\/|Dm,+u"!2+el) ’
Bk

n+l . nop__ =0
+2(18 aj,k) + T(% |ﬁ],k| m) (lﬁﬁk' n 62)2wp ’

respectively, where u" = u(z, 5”), €1 and e, are small positive numbers which are
used to prevent blow-up in regions where Vu = 0, or §;; = 0. Equations (3.15),
(3.16) and (3.17) are linear equations in the unknowns f;, which we solve by

Conjugate Gradient (CG) without preconditioning.

We note that the unknowns ,6’”“ are in wavelet space but the finite difference
operators D; . and D, are defined in physical space. To compute them, we
need to transform the data from wavelet space back to physical space. Then
after calculating the finite differences, we transform the data back to wavelet

space.

Remark: On the other hand, since wavelet transforms are local, we can in
fact directly compute the finite difference terms locally in wavelet space so that
it is not necessary to transform the data back and forth between the two spaces.
In our numerical examples, we do not use this method, so we will not discuss it

in detail.
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3.6 Examples

In this section, we will show some 1-D and 2-D examples to demonstrate the
improvement in images of the TV regularized wavelet compression models for
wavelet thresholding. In all computations, we use the fixed-point schemes (3.15),
(3.16) and (3.17) introduced in section 3.5. We choose the parameters ¢ and ¢,

as 1073, and 7 = 107® in all situations.

In the first 1-D example, we show a sequence of images (Fig 3.6 to 3.9 ) which
are computed by hard thresholding relaxation (3.15) of the observed function
shown in Fig 3.5. We use the 4-level Daubechies-4 (DB4) wavelet transform, and
take A = 0.001,0.01, 0.1, and 1 respectively. In each picture, we show the standard
wavelet hard thresholding approximations (dotted line) restored by retaining the
largest m = 50 coefficients (with respect to the original 519 coefficients), and
the TV regularized wavelet compression approximations {solid) which are also
reconstructed by these 50 non-zero coeflicients with perturbed values. We notice
that when A tends to 0, the TV regularized model results are getting closer to the
standard wavelet hard thresholding approximation which has more oscillations
at the discontinuities. As A increases, the TV norm of the reconstructed images
decrease, specifically the oscillations at discontinuities are suppressed. When
A = 1, the reconstructed images are almost flat. All features of the observed
image have been lost. This reflects the domination of the TV norm regularization

over the fitting term.

More importantly, from these figures, we notice that when A = 0.01, the
TV regularized approximation has fewer oscillations than that of standard hard
thresholding but still retains the silent features of the image and keep the sharp
edges. For all images generated using larger ), some features have been altered,

while on the other end, for all images generated using smaller A, the edge artifacts
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Figure 3.5: The observed function {(dotted) and the original noise free function

(solid).

<+ hard threshalding
—— ¥V compressiof

Figure 3.6: Left: A = 0.001, As X becomes smaller, the TV norm approximation
(solid) tends to the hard threshold approximation.

79



-+ hard thresholding
—— TV compressicn

" 2 L L L
o 100 200 300 400 S500 [=lele)

Figure 3.7: A = 0.01, The TV norm reconstructed approximation (solid) has
fewer oscillations at the discontinuities than that of the wavelet hard thresholding

approximation (dotted).

++++ hard threshaldhng
— TV compression
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Figure 3.8: A = 0.1, The TV norm hard thresholding approximation (solid)

smooths the oscillations out but also alters the features.
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-~ hard thresholding

rassion

Figure 3.9: A = 1, The TV reconstructed approximation (solid) is almost a
straight line which indicates that the regularization term dominates the objective

functional. All features have been eliminated.

hard threshalding
— TV compraseion
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Figure 3.10: X = 0.0002, the H-1 regularization approximation (solid) smooths

all sharp edges in the reconstructed image.
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Figure 3.11: X = 0.02, TV norm hard thresholding approximations (solid) have

fewer oscillations at discontinuities. It keeps all features.

are still significant, although all features are preserved.

For the next 1-D example, we display in Fig 3.10 the reconstructed image
using the H; regularization ||Vul||2 term instead of the TV term in (3.3) with
A = 0.0002. The approximation {solid) is also reconstructed by using m = 50
non-zero coefficients. Comparing to the previous examples, it is obvious that H;
regularization smears all sharp edges because it doesn’t allow the existence of

discontinuities.

The next 1-D example shows another sequence of images (Fig 3.11 to 3.13)
which correspond to the TV regularized wavelet compression models with the
hard thresholding (3.7), the log function (3.11), and the p-norm (3.12) approx-
imations of the noisy image in the previous example with A = 0.02. They are
computed by the fixed-point scheme with 10 iterations. All of them are restored
by keeping m = 50 non-zero wavelet coefficients. The three approximations re-
tain the features of the observed function and have less severe edge oscillations
at the discontinuities. Among them, the p-norm approximation fits the original

function better than the two others in this example, although all are very similar.
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Figure 3.12: A = 0.02, The TV norm log function reconstructed approximation
(solid) has fewer oscillations at the discontinuities than that of the wavelet hard

thresholding approximation {dotted). It keeps all features as well.

-+ hard thresholding
— ¥V somprassion

Figure 3.13: X = 0.02, the p-norm approximation (solid) keeps all features as

well as eliminating most of the edge oscillations.
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Figure 3.14: The approximation obtained by TV denoising followed by standard
hard thresholding.

We also compare the results of this TV regularized wavelet compression mod-
els with that of the procedure we described in section 3.2 which is to denoise
the image by the TV denoising model first, and followed by the standard hard
thresholding compression (shown in Fig 3.14). The results are very similar to
the approximations obtained in the previous example except that in the result of
TV denoising followed by standard hard threshold, there exist more edge oscilla-
tions (at the right jump of the first bump) than the results of the TV regularized

wavelet compression shown in the previous examples.

In the last 1-D example, we show another comparison of approximations ob-
tained by different numbers of fixed-point iterations. The pictures in Fig 3.15
to refiteration3 are calculated using 5,10, and 20 fixed-point iterations of (3.15)
with A = 0.01 respectively. The approximations are very close. This illustrates

that the fixed-point scheme converges fast in the first few iterations.

The next example is for a 2-D comparison of the standard hard thresholding
and the TV regularized wavelet compression model images. As shown in Fig 3.3),
the standard 4-level DB6 wavelet compression by retaining the largest m = 16x16

coeflicients (the ratio of compression is 256:1) has obvious edge artifacts along the
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Figure 3.15: A = 0.01, TV hard thresholding reconstruction after 5 fixed-point

iterations.

-« hard thrastolding
=TV comprassion

Figure 3.16: A = 0.01,TV hard thresholding reconstruction after 10 fixed-point
iterations. The difference between it and the result shown in Fig 3.15 are also

invisible.
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Figure 3.17: X = 0.01, TV hard thresholding reconstruction after 20 fixed-point
iterations. The difference between it and the results shown in Fig 3.15 and 3.16

is also invisible.

boundaries of the objects. In Fig 3.18, the image is obtained by solving the TV
regularized hard thresholding approximation (3.8) with A = 0.05. We perturb
the values of the 16 x 16 non-zero coefficients retained in the standard hard
thresholding. It is obvious that in this picture, the edge artifacts are less severe
than in the standard case. Meanwhile, since the regularization parameter A also
controls the smallest size of features to preserve, in the TV regularized restored
image, smaller features (such as the smallest square) are altered more than the
large features, i.e. the intensities are lower than the standard approximation.
In Fig 3.19, we show the cameraman image with Gaussian white noise. We
display the 64 x 64 non-zero coefficient reconstruction calculated by standard
hard thresholding in Fig 3.20, and the TV regularized wavelet compression model
with hard thresholding in Fig 3.21. Compared to the standard hard thresholding

image, the edge artifacts in the TV model approximations are much less severe.

We also use our TV regularized wavelet compression model on color images
by applying it to the RGB channels independently. In Fig 3.22 and 3.23, we

show the original color image and the noisy color image respectively. Fig 3.24
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Figure 3.18: The TV norm hard thresholding. Also keep the same 16 x 16
nonzero coefficients but perturb their values. There are less edge artifacts in the

compressed image.
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Figure 3.19: The noisy cameraman image.
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Wavelet Hard Thresholding
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Figure 3.20: The standard hard thresholding approximation, keep the largest

64 x 64 coefficients. Severe edge artifacts present in the compressed image.
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Figure 3.21: The TV norm hard thresholding. It keeps 64 x 64 nonzero coeffi-

cients. There are much less edge artifacts in the compressed images.
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and 3.25 correspond to compressed images obtained by using the standard 4-
level DB6 hard thresholding and the TV regularized wavelet compression model.
Both of them keep 64 x 64 non-zero wavelet coefficients. We also display a
similar pair of images with more compression in Fig 3.26 and 3.27. This pair
of images retain only 32 x 32 non-zero coefficients. Both compressed images
obtained by TV regularized model have much less severe edge artifacts than that
of the standard hard thresholding images. This tells us that the TV regularized
wavelet compression model improves the quality of the compressed images. In the
last comparison, we show in Fig 3.28 the standard hard thresholding compression
image of the noise free image (Fig 3.22), and in Fig 3.29 the TV regularized model
compression image. In the Fig 3.28, the severe edge artifacts are caused purely by
wavelet, thresholding. Compared to it, the image in Fig 3.29 has less severe edge
artifacts which is reduced by perturbing the retained wavelet coefficient according

to TV regularization.

3.7 Conclusion

, We have used the TV regularized model to select and modify the non-zero
wavelet coefficients in the thresholding procedure. The resulting compressed
images contain less severe edge artifacts than those in the standard thresholding
images, especially when large noise is present in the image. The model can
directly operate on the wavelet coefficients, and therefore, can easily be embedded
into practical compression schemes. More work needs to be done to improve the

speed of convergence and to make the method more practical.
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Figure 3.22: The original color image. This image and the subsequent color
images can be found at the website:

http://www.math.ucla.edu/applied/cam/index.html .
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Figure 3.23: The noisy color image.
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Figure 3.24: The standard hard thresholding compressed image, keep the largest

64 x 64 coefficients. Severe edge artifacts present in the compressed image.
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Figure 3.25: The TV regularized model compressed image, also keep 64 x 64

non-zero coefficients. Less severe edge artifacts present in the compressed image.
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Figure 3.26: The standard hard thresholding compressed image with more com-
pression, keep the largest 32 X 32 coefficients. Severe edge artifacts present in the

compressed image.
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Figure 3.27: The TV regularized model compressed image, also keep 32 x 32

non-zero coefficients. Less severe edge artifacts present in the compressed image.

97




Wavelet Hard Thresholding

50

100

150

200

250

50 100 150 200 250

Figure 3.28: The standard hard thresholding compressed image of the noise free
image, keep the largest 24 x 24 coefficients. Severe edge artifacts caused purely

by wavelet thresholding present in the compressed image.
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Figure 3.29: The TV regularized model compressed image of the noise free image,
also keep 24 x 24 non-zero coefficients. Less severe edge artifacts present in the

compressed image.
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