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ABSTRACT OF THE DISSERTATION

Wavelet Operators Applied to Multigrid
Methods

by

Doreen Rona Naomi De Leon
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2000
Professor Bjorn Engquist, Chair

The multigrid method is very useful in reducing the convergence time for solving
systems of algebraic equations obtained from approximating partial differential
equations. However, when confronted by certain problems, for example elliptic
problems with discontinuous or highly oscillatory coefficients or the advection-
dominated advection-diffusion equation, the standard multigrid procedure is less
efficient or may break down. Here, we take a new approach to improve the

efficiency of these methods for such problems.

The approach taken here is to use wavelets to obtain new coarse grid, in-
terpolation, and restriction operators for the multigrid method. We do this by
applying the wavelet transform, formed from the scaling and wavelet functions,
to the operators in the original equation. The transform projects onto the coarser
scaling and wavelet spaces. Then, by decomposing the resulting operator, we ob-
tain a solution expressed in matrix form, from which we obtain the interpolation,
restriction, and coarse grid operators. The coarse grid operator thus formed is
a good approximation of the operator formed from homogenization, a technique

used to solve elliptic problems with periodic oscillatory coefficients. To make this

xiv



method computationally more efficient, an inverse component used in the proce-
dure above is approximated, first by using ILU(0) to obtain the LU-decomposition

and then by truncating to allow no fillin in the inverse.

This method is applied to a variety of problems of interest. Among them
are elliptic equations whose coeflicients are highly oscillatory or discontinuous.
This method proves effective in returning the desired performance of multigrid,
i.e., convergence independent of mesh size. Also, we apply this method to the
advection-diffusion equation with dominant advection term. Application of the
wavelet multigrid method, here using symmetric Gauss-Seidel for the smoother,
again yields convergence independent of mesh size. Another problem we look at
is an anisotropic second order partial differential equation, for which convergence
is slow. A last area investigated is the efficiency of the method with respect to
solving the Stokes and incompressible Navier-Stokes equations. For the Stokes
problem, we find that although the original method performs well, the method us-
ing ILU(0) and truncation fails. For the incompressible Navier-Stokes equations,

the original method performs well for zero boundary conditions.
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CHAPTER 1

Introduction

The multigrid method is very useful in reducing the convergence time for solving
systems of algebraic equations approximating partial differential equations. How-
ever, when confronted by certain problems, for example problems with discontinu-
ous or highly oscillatory coefficients as well as advection-dominated problems, the
standard multigrid procedure is less efficient or may break down. One problem is
that smaller eigenvalues do not necessarily correspond to smooth eigenfunctions.
As a result, the coarse grid problem does not approximate the original problem

well.

One method to correct for this for elliptic problems with periodic coeflicients
is by solving a homogenized version of the problem on coarser grids and using the
standard interpolation and restriction operators [EL97]. Another approach in-
volves finding local homogenized coarse grid operators and using harmonic inter-
polation I}, with restriction operator I» = (I3,)" [EL93, ELO6]. This approach
is taken because the homogenized operator provides a better approximation of the
properties (eigenvalues, eigenfunctions) of the original fine grid operator. Neuss,
Jager, and Wittum [NJW98] also use homogenization in their approach, which
uses the finite element method. Here, prolongation is given by the action of the
interpolation operator arising from evaluation at the nodes of the fine triangula-
tion on a sum involving the solution to the homogenized problem and the solution

to the cell problem. A problem with these homogenization techniques is that they



are only applicable to periodic problems and can only be given closed form solu-
tions in certain cases. One alternate approach has been suggested in [ABD81],
which employs a modification of the interpolation operators and uses a Galerkin-

type formulation for the coarse grid operator. The problem examined here is

—V - (D(z,y)VU(z,9)) + o(z,9)U(z,y) = f(z,9),(x,y) €,
v(z,y) - D(z,9)VU(2,9) + v(z,9)U(z,y) = 0,(z,y) € K

More recently, the standard elliptic problem

—alNu+u = f, in{

w = g, on Jf),

where o = const > 0, has been analyzed using wavelets to modify the multi-
grid methods. For example, wavelets have been used to modify the hierarchical
basis method in [VW95a, VW95b]. The wavelet basis functions are used for
the basis functions in the modified hierarchical basis method. This allows the
subspaces thus constructed to be orthogonal. Use of a wavelet-based multigrid
preconditioner for the conjugate gradient method to solve the system of equations
resulting from a wavelet-Galerkin discretization of the boundary value problem
with ¢ = 0 has been used with good results [GRW96]. Here, the basis funciions
are the scaling functions (or, low-pass filter functions). Also, wavelets have been
used to develop multiple scale solutions to more complex elliptic problems [LC95).
Andreas Rieder [Rie94, RWZ94] takes this one step further by using wavelet de-
compositions to obtain 5 multilevel method. His approach uses a choice of the
filter operators obtained from wavelets for the restriction and interpolation oper-

ators.

With respect to the solution of the advection-diffusion equation with dominant



advection term
—V (a(z)Vu) + b(z)Vu +cu = f(z), z €L,

where ||bl| > ||al|, we see various approaches in the literature. Many multigrid
solutions to this problem taken by other researchers involve numbering the un-
knowns in a certain order. For example, in [BW95], the nodes are numbered
so that the unknowns are solved in the direction of flow. Domain decomposi-
tion methods, which resemble multigrid methods, are employed in [KL95]. Here,
upwinding or stabilized Galerkin approaches are recommended. Arnold Reuskin
uses an approximate LU-factorization of the matrix operator (after discretization
of the problem) to determine the interpolation, restriction, and coarse grid opera-
tors for the multigrid method [Reu95]. His method uses the information from the
underlying differential equation in order to get the factorization. P. M. de Zeeuw
uses matrix-dependent prolongations (I%) and restrictions (I7*), the Galerkin
formulation of the coarse grid operator (given fine grid operator A", define the
coarse grid operator A* by A?M = 2 AR and as a choice of smoother either
the incomplete line LU (ILLU) or incomplete block LU methods [Zee93a, Zee93b).
Another article that employs matrix-dependent interpolations is [GK95]. Here,
the coarse grid operator is determined, using the Galerkin approach, to be a
Schur complement. Another recent approach involves using upstream discretiza-

tion combined with downstream relaxation with residual weighting [YVB98].

Other researchers deal more generally with non-elliptic problems or problems
with singular perturbations. Irad Yavneh, in {Yav98], discusses various ways of
computing the coarse grid, interpolation, and restriction operators. He comes up
with requirements for the coarse grid operator (it must approximate not only the
first term in a Taylor expansion of the differential operator, but also the second

term, i.e., the truncation error), as well as for the interpolation and restriction



operators, that should be met for the multigrid scheme to perform well. Boris
Diskin {Dis99] uses semi-coarsening and differential approximations applied to
the full multigrid method. Jinchae Xu [Xu92b] looks at non-selfadjoint problems
or indefinite problems as perturbations of elliptic problems. Here, the origi-
nal equation is solved exactly on the coarsest grid, and the symmetric part of
the; operator becomes the operator for the solution on all other grids. Thomas
Schlinkmann [Sch98] uses an adaptive full multigrid method, using the wavelet

coefficients to determine where grid refinement should occur.

Another area of great interest is the solution of the incompressible Navier-

Stokes equations

—Vu + Re(uuy +vuy) +pz; = f*in
—Vv + Re(uvy +vv,)+py, = f7inQ

uz +v, = 0Oonf

Much of the research that has been devoted to the numerical solution of said
equations involves the use of the FAS (full approximation scheme) in order to
solve using multigrid. In the majority of the works, a finite element or finite
volume based approach is taken for the discretization of the Navier-Stokes equa-
tions, using either staggered grids or non-staggered grids, and, in some cases,
different choices of basis functions for the velocity and pressure terms. For exam-
ple, in [BFP8&9], a finite volume discretization is used, along with a FAS multigrid
scheme, to solve numerically the incompressible Navier-Stokes equations written
in conservative form. In [JV95], the Navier-Stokes equations are discretized on
triangular grids and the control volume procedure is used (which involves inte-
grating over a control volume to obtain the equations to be discretized). Here,
FAS is also used to obtain the coarse grid equations. The solution is obtained

by solving the pressure equations (determined by satisfying the continuity equa-



tion), then the momentum equations. Under-relaxation is used to prevent insta-
bility. R. Webster takes an algebraic multigrid approach to the solution of the
incompressible Navier-Stokes equations in [Web94, Web96]. Here, equations are
discretized using unstructured finite element meshes, employing different inter-
polations for pressure and velocity, but elements of equal order. The discrete
equations are obtained via enforcing the conservation laws on the control vol-
umes, and under-relaxation is used in the iterative scheme. The later work uses
the defect-correction method to solve to second order accuracy, thus eliminating
the need for under-relaxation. In {Sch90], Anton Schiiller takes a finite difference
approach to the solution of the Navier-Stokes equations. This involves a re-
statement of the problem, which makes the finite difference discretization more
efficient and eliminates the need for addition of an artificial stabilizing term. The
standard five-point discretization for second order terms and centered differencing

for the first order terms are then used.

Tn [EL), the wavelet transform W; which involves both high- and low-pass filter
operators (the scaling and wavelet operators, H; and Gj), is used to derive a new
approach, assuming that the matrix on the fine grid is symmetric. Also, some
one-dimensional examples are examined. The goal of this work is to examine
the results of the above approach in two dimensions, taking into account the
implications on the scaling and wavelet operators. The reason we consider this
approach is that we see from, say, [DE98] and [AEL97] that the wavelet coarse
grid operator provides a good approximation to the homogenized coarse grid
operator, but with a reduced number of computations. ‘Also, wavelets can be
applied to problems with periodic as well as non-periodic coefficients. Finally,
application of wavelet operators to vectors and matrices maintains the properties

of the original problem.



The initial procedure followed is much the same as that in [EL], although
care is taken to remove the restriction of a symmetric fine grid operator. As
a result of removing this restriction, we have been able to apply the wavelet
multigrid method to more, and different types of, problems than were examined
in [EL]. As a first step, the wavelet transform is applied to both sides of the

matrix equation. Given the problem
LU=F
on the fine grid, application of the wavelet transform to both sides of the equation
yields
(WijWf)WjU = W,F. (1.1)

The above also uses the fact that the wavelet transform is orthogonal. Now, W

is defined by

Hj
W, =
G;
Thus, we can rewrite (1.1) as
Uy Fr
Wi L;Wy) = : (1.2)
Un Fy

where L denotes the low-frequency part of the vector and H denotes the high-

frequency part. Denote ﬁj = WijWjT . Writing ij in block matrix form, we

obtain
(BB
C; Dy
Using this, (1.2) is written as
7 B\ [\ [Fu
C; D;J] \Ug Fy



Solving for Uy, gives
Uy = (T — B;D;'Cy)™ (Fy, — B;D; ' Fn),

where 1; — BjD;_le is later seen to be the coarse grid operator. The block
UDL decomposition of f/j, where U is block upper triangular with unit diagonal,
D is block diagonal, and L is block lower triangular with unit diagonal is then

obtained. By inverting this and solving for

v=["],
U
the coarse grid, interpolation, and restriction operators are determined, where
the coarse grid operator is the Schur complement of D; in f/j, as seen above. For
computation of similar expressions, see [CGM85, CTW97]. One thing to keep in
mind is that the blocks 7}, B;, C;, and D; are sparse, due to the properties of

the scaling and wavelet operators.

As a vital part of this work, we attempt to make the method more useful in
real-world applications. Again, this aspect was not considered in [EL]. First, we
observe that the construction of the coarse grid, restriction, and interpolation
operators requires inversion of a matrix. Not only does the calculation of the
inverse of a matrix require much work, but also inverting a sparse matrix results
in a great deal of fill-in, yielding a dense matrix. We attack this problem directly,
first calculating the inverse exactly and applying a thresholding strategy to see if
any banding can be detected. In practice, however, we want to assume a banded
structure. Therefore, we apply ILU(0) to calculate the LU-decomposition of the
matrix in a more efficient manner, then compute the inverse via backward and
forward substitution. Finally, we take care of the density issue. Though we have
efficiently calculated the inverse of the matrix, it is still dense. So, we apply a

truncation strategy to obtain a banded, sparser matrix.
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the scaling and wavelet operators.
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in a great deal of fill-in, yielding a dense matrix. We attack this problem direétly,
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any banding can be detected. In practice, however, we want to assume a banded
structure. Therefore, we apply ILU(0) to calculate the LU-decomposition of the
matrix in a more efficient manner, then compute the inverse via backward and
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efficiently calculated the inverse of the matrix, it is still dense. So, we apply a

truncation strategy to obtain a banded, sparser matrix.



In Chapter 2, we discuss some multigrid background. Chapter 3 discusses
wavelets, in both one and two dimensions, as background for later chapters.
Chapter 4 discusses the application of the wavelet transform to multigrid meth-
ods. This chapter is broken up into four parts, an expository part dealing with
one-dimensional problems (as explained in [EL]), a discussion of compression
results in one dimension (not considered in [EL]), an explanatory part dealing
with the two-dimensional results, and examples. In Chapter 5, we investigate the
sparsity patterns of the inverse component of the coarse grid, interpolation, and
restriction operators. Chapter 6 discusses application of ILU(0) to the compo-
nent to be inverted and also gives the results of using ILU(0) and truncation to
obtain sparse versions of the inverse component. Next, Chapter 7 describes the
numerical results of applying the wavelet multigrid method to a variety of prob-
lems, from elliptic problems to generalized problems involving only second order
partial derivatives to the advection-diffusion equation with dominant advection.
In Chapter 8, we discuss the results of applying the wavelet multigrid method
to a reformulated version of Stokes equations and a reformulation of the incom-
pressible Navier-Stokes equations. For all of the numerical results in this paper,
the two-level V-cycle method is used with one Gauss-Seidel iteration in both the
downswing (coarsening) and the upswing (correction) phases, unless otherwise

specified.



CHAPTER 2

Multigrid Methods

The problem we are concerned with solving is the system of linear equations
Au=1b (2.1)

(where A and b arise from discretization of a differential equation on some grid
()", where h represents the step size). Looking at basic iterative methods, such as
Jacobi and Gauss-Seidel, we see that they are successful at reducing the oscilla-
tory (or high-frequency) corﬁponents in the error but not at reducing the smooth
(or low-frequency) components. Thus, we see a rapid reduction of error in the
early iteration steps, followed by a much slower error reduction. We observe,
however, that smooth errors on a fine grid appear less smooth on a coarser grid.
Multigrid methods take advantage of this observation by first performing a few
smoothing iterations on a fine grid, then restricting the residual to the coarse

grid and solving the error equation (Ae = r) on the coarse grid.

Before moving on and describing the standard multigrid methods in more de-
tail, we must point out that the assumptions necessary for the standard method
to work are not met by several types of problems. For problems with discontin-
uous or highly oscillatory coefficients or for advection-dominated problems, the
multigrid methods are not as efficient. One problem is that small eigenvalues
‘ may not be associated with smooth eigenfunctions. For such problems, it is not

as simple to approximate the smooth eigenfunctions on the coarse grids. The



basic iterative methods only smooth out the high-frequency eigenmodes of the
error and we need to approximate the low-frequency eigenmodes on the coarse
grid. But, the homogenized problem approximates the eigenvalues and eigen-
vectors of the original problem [Kes79, SV93]. So, this leads to methods such
as using homogenization to obtain a coarse grid operator, and, in more compli-
cated cases, to obtain the interpolation and restriction operators in place of the

standard operators [DE98, AEL97, EL96, EL9T].

We need to find effective ways to perform the interpolation from the vectors
on the coarse grid to vectors on the fine grid. In standard multigrid, this is done
via an interpolation operator. Let u"' ="u(ih, 7h) be the approximate solution
to (2.1) on the fine grid. In two dimensions, the interpolation operator, defined

by w* = I% u*, may take the form of

h — 2k
Uiz = Uij
2h
ol
Uoit1,2g ™ )
2k
h o ul ity
Ui o541 — —""""“"_2
2h 2h
h Cuft e Uit ult
Ugir12541 = 4 .

We generally obtain the coarse grid operator (our operator A defined on the
coarse grid) in one of two ways. With the first approach, we determine the coarse
grid operator using the step size H = 2h, where h is the step size from the original
problem (if we are considering differential equations). Alternately, we may use
what is known as the Galerkin approach. For this, we define A?*, the coarse grid

operator, ag A% = 2R AR TR

Represent our problem on the fine grid as

Abyh = b, (2.2)
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Now, given u* on 7, the fine grid, let r* = b — A"y denote the residual on the
fine grid. We need to represent r* on 022", the coarse grid. To do this, we use a
restriction operator I2%, defined by r** = I2#+", For the standard multigrid, the

full-weighting restriction in two dimensions is given by

1
o _  * ok h h h
Wi~ 1g [t 11 0541 T Uoig1,2j-1 T Upic1 2541 T Yai-1,2j-1

h h h B A
+2(ug; 9511 F Ui oj—1 T Unipr,25 + Uy _1.95) T Ao 05].

The basic procedure follows. First, relax a few (usually one or two) steps on
the fine grid Q" to get an initial guess u”. Then, compute the residual * =
b — Ahyh and restrict to the coarser grid Q2 : 2t = IZhrh. Then, solve the
residual equation Ae = r on the coarser grid. Then, set u* = u" -+ I};e** and
relax again a few steps on the fine grid (usually one or two steps). This describes

the two-level method.

With this in mind, we can recursively define the V-cycle multigrid scheme:
u? «— MG (u", ")
Step 1: Relax v; times on APu? = b, starting with some initial guess u®.
Step 2: If we are on the coarsest grid, go to Step 4.
(Alternately, solve exactly.)
Otherwise, set 7t = b* — APy, B = [hph, 0,
and u? + MG (u®h, b?").
Step 3: Set u® +— ut 4 I} ut.

Step 4: Relax v times on AuP = b* starting with initial guess u".

The V-cycle schemes are one of a class of p-cycle schemes. In the u-cycle
schemes, Steps 1 through 4 of the V-cycle procedure are the same, with the
exception of the last item in Step 2. In Step 2, we perform the operation u?h

MG (u? 5?%) 14 times, not just once. In practice, the V-cycle (with y = 1) and

11



the W-cycle (with g = 2) are used.

The procedure that combines the V-cycle scheme with nested iteration (which
is using coarse grids to get better initial guesses to finer grids) is the full multigrid
method. Basically, we restrict to the coarsest grid and do some iterations of the
smoothing method, then we correct to the next finer grid and perform one (or
more) V-cycles, and then interpolate to the next finer grid. We continue this
process until we reach the finest grid, whereupon we perform one (or more) V-

cycles.

The above procedures describe a linear multigrid approach. A good lower
level introductory book on multigrid methods is [Bri87]. Another good reference
is [McC87], which contains several articles on multigrid methods, including a brief
introduction to standard multigrid methods and an article on linear multigrid

methods {Wes87].

There are also nonlinear multigrid methods. Typically, these involve using
a nested sequence of subspaces and orthogonal projection operators to get the
restriction and interpolation operators. A variation on this involves using the
finite element method in discretizing the differential equation and then using dif-
ferent levels of triangulation to get a multilevel algorithm. Basically, a nested
sequence of subspaces is defined based on a nested sequence of triangulations.
We suppose that the triangulation on the fine grid is constructed by a succession
of refinements of triangulations from previous grids. For example, in two dimen-
sions, we can form a coarse grid triangulation and then connect the midpoints
of the triangles to get a finer triangulation. A finite element space is then de-
fined for each level. For a more detailed discussion of nonlinear methods, see, for

example, [Ban96, Xu92a, Xu97, BX95, BX94, CZ85, WCS98].

Defect-correction schemes are often used as well. These involve making a

12



correction to the coarse grid equation to ensure that the coarse grid solution will
represent the fine grid solution accurately. This has been applied to nonlinear
problems.

The full approximation scheme (FAS) is another type of multigrid method.
FAS is used for nonlinear problems because the error equation in the standard
multigrid methods is only valid for linear problems. For nonlinear problems, we
need to instead solve on the coarse grid for a function that represents the sum
of a restriction to the coarse grid of the approximate solution, which is found by
iterating on the fine grid, and the error function found in standard multigrid. The
restriction operator used above should accurately represent the solution space on
the coarse grid and need not be the same as the operator used to restrict the

error. For a more detailed discussion of this scheme, see [Bra82].

Another type of multigrid scheme is algebraic multigrid, in which any underly-
ing geometric structure to the problem is not used. Algebraic multigrid only uses
the structure of the matrix in the problem to determine the coarsening process
(choice of coarse grid and definition of interpolation/restriction operators). This
process is performed in order to ensure that the range of interpolation approxi-
mates the errors not sufficiently reduced via relaxation. For a more detailed de-
scription of algebraic methods, see [RS87, Zee90, Den82, DE89, MDH98, BCF98,
VMBY6, Stu99]. Also, in [BX94], an algebraic multigrid formulation of the hier-
archical basis multigrid method (a nonlinear multigrid method) is discussed and
compared to an incomplete LU-factorization. Algebraic multigrid methods are
of particular interest to us, in that they are the nearest methods to the approach
taken in this paper. We will take a moment to describe the approach taken

in [RS87], since that is one of the bases of comparison used later.

Ruge and Stiiben’s algebraic multigrid method, described in [RS87], has a

13



somewhat adaptive nature, in that the restriction and interpolation procedures
depend on the nature of the matrix defining the problem on the fine grid. Basi-
cally the size of a matrix entry, relative to other cntrics on a row, determines the
strength of what the authors call ”connections.” Based on these connections, as
well as certain other criteria, the set of coarse grid points is determined. Interpo-
lation is defined by: if the point is already on the coarse grid, the value remains
the same: if the point is on the fine grid, but not the coarse grid, a weighted
sum of interpolation points is used. The Galerkin formulation of the coarse grid
operator is used. This procedure is then recursively applied to obtain more than

two levels.

Another interesting semi-algebraic multigrid method is discussed in [Rie93,
Rie94, RWZ94]. In this case, Andreas Rieder (and his coauthors, in the latter
paper) uses a choice of either the scaling operator or the wavelet operator for
restriction /interpolation operators. The Galerkin procedure for obtaining the
coarse grid operator is used. Also, a good survey of robust multigrid methods for

elliptic equations can be found in [CW99].

Tt is expected that V-cycle schemes should converge at a rate independent
of the step size, mainly due to the fact that the convergence rate of most relax-
ation schemes is independent of step size for the oscillatory modes. There are
many articles discussing the convergence of multigrid methods applied to specific
problems. For example, [Reu94] discusses max-norm convergence of multigrid
methods for elliptic boundary value problems and [MM85] discusses a conver-
gence estimate for the V-cycle method for symmetric positive definite operators.
Research on convergence of multigrid methods for nonsymmetric problems in-

cludes [Man86, BPX88, Wan93a, Wan93b, ZV85].

In, for example, problems with highly oscillatory coefficients, this mesh-independent

14



convergence is no longer true. New methods for restriction and prolongation (in-

terpolation) or for treating the entire problem must be found.
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CHAPTER 3

Wavelets

3.1 One-Dimensional Discussion

A brief description of wavelets follows. For more details, please refer to [Dau8s,
Dau92]. Wavelets basically separate data (or functions or operators) into dif-
ferent frequency components and analyze them by scaling. We can choose the
wavelets to form a complete orthonormal basis of L?(R). And, by the very defini-
tion of the wavelet functions, they have time- or space-widths that are related to
their frequency. At high frequencies, the wavelet functions are narrow and at low
frequencies they are broader. This is due to the scaling of the wavelet functions.
Therefore, they provide good localization of functions in both the frequency do-
main and physical space, and representation by wavelets seems natural to apply

to analysis of fine and coarse scales as well as local properties of functions.

Basically, a multiresolution analysis (MRA) consists of a sequence of closed

subspaces V; of L*(R) that satisfy

(Vi CVj, Vi€ Z, (3.1)

@V = F(B), (3.2)
b sy

(éis) [ Vs = {0}. (3.3)
i€d

If we define P; to be the orthogonal projection onto Vj, then (3.1) and (3.2)
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ensure that lim; , o Pjf = f, Vf € L*(R). In order for the above to form an

MRA, an additional requirement must be satisfied:
feVie f(2)eW, Vjelk (3.4)

Therefore, all the spaces V; represent scalings of Vg.

Other properties an MRA must satisfy include:

i} if f € Vg, then f(z —n) € Vo, Vn € Z; (3.5)
i1) there exist scaling functions ¢ € Vp such that
{¢(z —n):n €L} (3.6)

forms an orthonormal basis of V4.
Note that this then implies that
{pjn = 2:21¢>(2"5"m —n):n€L}

is an orthonormal basis for V;, Vj € Z.

The main idea is that given a set of closed subspaces satisfying (3.1) - (3.6),

there exists an orthonormal wavelet basis
{4,k € Z}
of L*(R), where 9, = 2% p(277z — k), such that

Pioif = Pif + Y < [rtie > Wip

keZ
(recall that P; is the projection onto V;). These wavelets are constructed by

considering, for every j € Z, the orthogonal complement of V; in V. Let

W; ={f € Vo1 :< f,g>=0, Vg € V;}.
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Then, V;_1 = V; @ W; and W; L W, for j # k. It follows that for j < J,

J—j—-1

Vi =V;® @ Wik

k=0
‘Then,
L*R) = P w;.
icz
Also, W; has the same scaling property (3.4) as the V;, and we can find ¢ € Wy

(the mother wavelet) such that
{¢(—k): k€ Z}
is an orthonormal basis for Wy. This implies that
{iulz) =27 (27w — k) : k€ Z}

is an orthonormal basis for W}, for any 7 € Z.

The simplest example of an MRA is the Haar MRA:

f

1 fo<z<y,
1 f0<z <],

¢(z) = b (=)

0 otherwise,

I

-1 ifi<z<],

! 0 otherwise.

For each j, V; as defined by the Haar scaling functions is a space of piecewise
constant functions. (Also, note that we can easily prove that any f € L*(R)
can be written as a linear combination of piecewise constant functions, e.g., step

functions).

Now, to actually construct 1), we examine some properties of ¢ and Wy. Since

¢ € Vo C V_; and ¢_;, form an orthonormal basis for V_,,

$= 1, (3.7)
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where

hp =< ¢, ¢-1, > and Y _ |ha|* = L. (3.8)

neZ

We can rewrite (3.7) as

$(z) = V2D hnd(2z — ) (3.9)
or
5O = 5 Some 0, (3.10)
with convergence being in L2, We can write (3.10) as
36 = mo$)9), (3.11)
where
mo(£) = % Zn: e, (3.12)

with (3.11) being defined pointwise a.e.

From (3.8), we see that my(£) is 2m-periodic in L?([0, 2]). The orthonormality
of the ¢(- — n) leads to

[mo(&)|? + jmo(E +)]? =1 ae. (3.13)

Using the characteristics of Wy, we come to the conclusion that the wavelet 1)

can take the form of
=3 gndorn With gn = (=1) 1. (3.14)
For the Haar MRA,

L ifn=0,1,
hyp = ﬁf¢(m)¢(2m—n)dx= vi B0

0 otherwise.

)
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So,
ifn=20,

gn = (—1)"h_p1 = 4 ifn=1,

NI

0 otherwise.
\

Now,

$ixlz) =27 $(2 77 — k)
= 27 Zh 23 (279 g — 2k —n)

= Z hn¢j-1,2k+n(m)

=" hn_okbi-1a(®). (3.15)

Given f° € V, = V; ® Wi, we can decompose f° into fO = f1 44" So, f* =
S < fodon > Do = I Cabon, Where e =< f,¢nn > . Then,

Z < frbin > b1n = Z&m,
Z < f7 1/)1;;1 > "pl,n Zd1¢l,n
It follows from (3.15) that

k=< fid1p>=  hn ot < fron >
T

== Z hﬂ“‘“2kc?1,' (316)
Similarly,

1 S—
dk = E On—-2kCqy-
T

So, we define Hy and Gy to be the operators such that, letting o = (a)rez, We

have

¢t = Hy® and d* = Goc.
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By induction on the above procedure, we can obtain

= H;d, (3.17)
&t = G;d. (3.18)

Now, to get f7 from fi*! and §7*!, we have
£ piHl g gt
= Z A i+ Z & e
K k
So,

o), =< ', ¢jn >
— Zc{:—’-l < ¢j+1,k; qf’j,n > -+ Zdi+1 < 'l,[)j+1,k:: Ql’j,n >
k k
= Z[h’nw2kc}l;+1 + gnoardi .
k
Write this as
¢ = Hid + Gyt (3.19)
So, H; is defined by
(Hja)y = Zhn—Zka’n

and (; is defined by

(Gja)e = Z 9n—2k0r-
n
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The properties of H; and G; are

(this follows from (3.17), (3.18), and (3.19)),

(i)H;G} = G;H; =0 (3.21)
(this follows since V; L W;},

(i) H;H] = GG = 1 (3.22)
(this follows from (3.17), (3.18), and (3.19)).

We will assume that the elements of H; and G; are real, as we may choose
them to be so. So, we may replace the conjugate transpose by the transpose.
Now, define W; : V; — Vi1 @ Wy, This transformation maps {¢;«} into
{ds+14 %416} Then, by definition,

H;
G

Wj =

Note that W; is orthogonal, i.e.,

WIW; = W = 1.

The main point to observe here is that the discrete wavelet operators are com-
putationally efficient. With respect to the Haar multiresolution analysis described
above, application of the low-frequency operator to an nxn matrix involves only
9n operations. The same holds for the high-frequency operator. So, the applica-
tion of the wavelet transform requires only 4n operations. In general, application
of the wavelet transform requires O(n) operations, assuming a finite number of

coefficients for the low- and high-frequency operators.
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3.2 The Two-Dimensional Case

In two dimensions, we use the tensor product of one-dimensional multiresolution

analyses. Now, define V; by
V; = V; ® V; (tensor product) = span{®(z,y) = o(x)d(y) : &, b € V;}.

And, F € V; & F(27.,29) € V. Then, the V;’s form an MRA in L*(R%)

satisfying
(1)Vj31 CVy, Vi€ L, (3.23)
@ vy = L*(R?), (3.24)
JEL
(i5) [} V; = {0}. (3.25)
p1=v/

Since the ¢(- — n),n € Z, form an orthonormal basis for Vp, then

{®ri(z,y) = bz —k)oly —1) : kL € Z}

forms a basis for Vy. Similarly,
{(Dj,k’[(l?,y) = qﬁj,k(:c)qu,;(y) = 2Aj(1)(2—j513 — k, 2”jy — l) : k,l I~ Z}

forms an orthonormal basis of V.

Now, for each j € Z, we define W; to be the orthogonal complement of V;
in V;_4. So,

Vi1 =V ® Vi
=V;oW,)e(V;o W)
=V;eV)o[W;eV)e (Ve W, e (W; oW,
=V, dW;. (3.26)
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So, now, W; is made up of three parts with orthonormal bases given by

W k(@) dsu(y) for W; @V,
¢j p(2)t;0(y) for V; ® W, and

W p(2)5u(y) for W; @ W
Then, as in the one dimensional case, we define H; to be
. yeol grrow
and G; to be

col ryrow

G H;
Gj — H;"lG;"w
col Firow

GJ' Gj

Then, as before, define W; by

So, W; : V; — V;,1®W ;1. Note that W; is orthogonal: W;FWJ‘ = WjW? =
I. This is because
H;,Hf — (H;olﬂgow) (H;’OIH;'ow)T
— H;olH;ow (H;‘ﬂw)T(H;ol)T
= 1.

Similarly, G;GY = I, H;G] = G;H] = 0, and, finally, it can be shown that
HTH, + GTG; = I.
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CHAPTER 4

Applying Wavelet Transform to Multigrid

4.1 One-Dimensional Case

We will here give an explanation and example of the wavelet multigrid method in
the one-dimensional case, as discussed in [EL]. We do this simply for expository
purposes, in order to contribute to the understanding of the procedure in the
two-dimensional case. Note that here the fine grid operator is assumed to be

symmetric. Given the problem

where L; represents the operator on the fine grid obtained by discretization of
a one-dimensional boundary value problem, we apply the wavelet transform to

both sides of the equation. For example, consider the equation

d*u(z) :
) — sy m (0) (4.1)
u(0) = u(l) =0,

which we discretize using the standard three-point discretization. Denote the
step size by h, where h = g%y, N being the number of interior gridpoints, and

u; = u(h). Thus, we obtain the following difference problem:

e S 2u; — Ui

- =f;,i=0,.,N-1. (4.2)
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We may then represent this as the matrix problem L;U = F, where F repre-
sents the vector (fo, ..., fv—1)T, U represents the vector (uo, . .. ,un—1)7, and L;

denotes the operator determined from the above cquation,

20 —a
1 |~a 2¢ —a
Lj:ﬁ . L . (4.3)
-—q 20
Let us use the Haar wavelet MRA, so that
11
(L L 0 0 0)
11
0 0 % &5 0 0
H; = :
1 1
0 0 % 5 O 0
11
\ 0 0 % 7/
and
(1 -1 0 0 0\
1 1
0 0 % - 0 0
1 1
0 0 % -% 0 0
1 1
\0 0 5 m_\/_i)

Applying the wavelet transform to the equation yields

W;LWIW;U = W, F
U F,
—wIwH| " =(""] (4.4)
Uy Fy

where U, Fy, € V; and Uy, Fir € W;. The subscripts L and H are used because

the component H; of the wavelet transform can be likened to a low-pass filter (i.e.,

26



only low frequency values can come in) and Gj is like a high-pass filter, allowing

only high-frequency values. So, Uz, and Uy consist of the low- and high-frequency

parts of U, respectively, and similarly for #. And,

H;L;HT H;L;GT
W, LW = 7 ").

GJ,-LJ-H}" G‘ijG;l-ﬂ
Then, we let
T; = H;L;HT,
B; = HijG?,

Dj = GJLJGf

Define f,j as follows:
- T. B;
Li=wWiIwWr=1"’ ") :

So, using (4.3), with ¢ = 1 and h = 3, we see

(162 ~81 0 0 0 0
—81 162 —-81 O 0 0
0 -8 162 -81 O 0
0 -8 162 -8 0

oo o o o O

0 —81 162 -81
0 0 -—81 162 -81

0 0 0 -8l 162 -81
0 0 0 0 81 162/

0
0
0
0
0
0

o o o o o

0
0
0
0
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and

[ &1 —405 0 0 81 —405 0 0 )
405 81 405 0 —40.5 8L —405 O
0 405 81 —405 0 —405 81 —40.5
_ o 0 -405 8 0 0 —405 81
s -405 0 0 243 405 0 0
405 81 —405 O 405 243 405 0
0 —405 81 —405 0 405 243 405
L0 0 405 8 0 0 405 243

The block UDL decomposition of ij, where U is block upper triangular with
unit diagonal, D is block diagonal, and L is block lower triangular with unit

diagonal, is then

—1 —1
i, = I B;D;*\ (T; - B;D;'B] 0 o} (15)
0 I 0 D; ] \D;'B} I

We seek ﬁf:

L7t = (WL = WL Wy

J 7

The inverse of the factorization of Lj; is

( I o) ((I;—BijB{)ml 0 ) (I —ijgl)
—1 -1
—D; BT I 0 D; 0 I

- ( (T; - B; D} B})™ 0 (I —B;D;’
—-D7'BY(T; - B;D;'BfYy™ Djt) \0 I

7
_ ( (T; - B;D} BY)™ —(T; - B;D; ' Bf) "' B;D;" ) |
~DjBf(T; — B;D;'BY)™ Dj'Bf(T;— BiD;"B])™ B;D; " + Dy
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Now, we know that U = L;'F
— WU = W,L7"WIW,F = L;'WjF. (4.6)

U
We obtain from (4.6), noting that W;U = ( L

and similarly for W;F', and
Un

from the calculation of f/;."i that

_ ( (1; — B;D;'BF)"! —(T; ~ B;D; ' Bf )" B; D} ) )
~D;*BJ(T; - B;D;'B])™ Dj'BI(T; - B;D;" B))'B;D;" + D"

—D;*BI(T; — B;D;*B)™ Dj'Bf(T; - B;Dy'Bf)™'B;D;" + D"

J

(
H;
F
G
(

_ ( (T; — B;D; BY)! —(Ty — B;D;*BY)~1B; ;" ) )

T; — B;D; ' B] )™ (H; — B, D;'G) F.
—D;'BJ(T; ~ B;D;*Bf )" (H; — B;Dj"G;) + Dj'G;

J 7
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U, H:
So, since "1 =177 |Uand WIW; =1,
ve)  \G,

0= (1 ) g B )
~D7'BY(1; - B;D;' B}y ""(H; — B;D;'G;) + Dj'G;
= [H](T; — B;D;'B] )" (H; — B;D;'G;)
~ GID; BY (T, - B;D ) (H; — B;D;'Gy) + GI D} G,\F
= [(HT — GTD7*BY)(1; — B;D;*BY )™ (H; — B;D;'G;) + G] D 'Gj]F
(T3 - B;D;'Bf )™t 0 ) (Hj —Ba'Dij) .
0 D! G,

)

~1
(H}’—G’{Dj BY Gg’) (
Denote

If = V2(H] — G} D;'Bf) and

1
I = (5"

as our interpolation and restriction operators, respectively. Then,
= I} (T; — B;D;' B )" ID*F + G} D} ' G, F. (4.7)
We also note that in multigrid, we are working on the residual equation, l.e.,
e = I}, (T; — B;D7' BTy " IP*r + G} D' Gyr.

If we assume that GfDJ”-“lGjr is small, i.e., r is almost in Range(Hf), then we

can approximate the error by
e= I (T; — B;D;'BY) " I2r.
S0,

(Tj - BjD;-‘le)egh = Ighf‘h.
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The above assumption is good for most of the classical iterative methods, like

Jacobi and Gauss-Seidel. Therefore, our coarse grid operator is
Ljt1 =T; — B;D; "By, (4.8)

which is the Schur complement of D; in ij. For the above example, the coarse

grid operator is

73.8469 —40.4659 6.9487 —1.22624
—40.4659  67.307 —39.3759  6.9487

6.9487 —39.3759 67.307 —40.4659
—1.22624 6.9487 —40.4659 73.8469

§+1 =

Now, although the matrices T;, B;, and D; are as sparse as the original operator
L;, D;"l is not. But, we also observe that the fill-in that results from inverting
is decaying exponentially as we move away from the original tridiagonal struc-
ture. This is evident above, in the structure of the coarse grid operator L;iq

(compare {BCRI1}).

We can easily apply the above analysis again, in order to get a next coarser
formulation of the original problem. The procedure may be repeatedly applied
until the desired coarseness is reached. Although the level of fill-in in our D;
operator increases, the magnitude of the values decreases as we go away from the
diagonal. One thing to be kept in mind is that the number of gridpoints used
must be an even number, and the next to coarsest grid can have no fewer than

four gridpoints.

4.2 Investigation into the Compressibility of Dj‘1

Here, we investigate the compressibility of D;l. By this, we mean to investigate

the decay of the values of the elements of D;"l on terms that are not on the main
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diagonal or on the diagonals above and below it. First, we will show that the
matrix D; has the same tridiagonal structure as the operator L;, where L; rep-
resents the operator formed by discretization of the one-dimensional differential

equation

d d d :
—=-(a(z) (@) + bz) pule) = flz), zin @ (4.9)

u(z) = g, z on 94,

where a is nonzero. The discretization of (4.9) takes the form

—agq 1 Ui+ (G + Gy 1)U = @1t N b Uiy + |Bilu; — b wiy

- 2 : . (4.10)

where
b = £~ i), (411)
bt = 32_(52- 1B, (4.12)

Lemma 1. Given L;, the operator obtained from discretizing (4.9) using the
three-point discretization with upwinding ((4.10), (4.11), and (4.12)), the matriz
D; = GijG;r, where G; is the Haar wavelet operator, has the same tridiagonal

structure as L.

Proof. Given the discretization from (4.10), (4.11), and (4.12), L; takes the form

a., 14+a. 1 a1 -
ity - M ity fi’L
h? + h h2 + h
B Tt S S RS S
L = h? k h2 h h# h
j =
et e e et SO ]
h? h h? h
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For simplicity, define

a’H—l +a’1.-—1 !btl
o = o) 2 +T’
_ G b
16 - - h2 h!
G-3 b
TT TR T h
Then, clearly, o = —f — 7. So, we can write L; as
X
44
L= ¥ B
v o
Recall that
1 1
(5 =5 0 0
1 1
0 0 % -5 0
sz .
1 1
0 0 % - 0
1
P ST

Suppose L; is a 4x4 matrix. Then,

2
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So,

a 8 0 0\(1 0
\
A1 | M | P
0 0 v «@ 0 -1
0
_ifa-y f-a -8 0 \|-1 0
S 2 0 vy a—7 -« 0 1
0 -1
1 f2a-7-p —B
2 = 2oo—f—ny
1 3a —pf
S 2 —y 3da

Then, clearly D, is tridiagonal. Looking at the pattern in the multiplication pro-
cess, we can see that we will still have a tridiagonal structure for L; obtained from
a discretization with more unknowns, since L; and G; have the same structure
regardless of size. Therefore, the product G;L; can have at most three terms in
the first and last rows and four terms in the center rows. Then, when multiplying
again by G;r, the resulting product is reduced to having two elements in the first

and last rows and three in the central rows. O

Theorem 1. Define D; = G;L;G7 as in Lemma 4.2. Then, D;* will be such

that there exists constants C > 0 and 0 < p < 1 such that

(D)) < CpP (4.17)

Proof. This proof is done by using a power series expansion to calculate Dj_l.

First, we must establish that JI%IL < 1 and J%% < 1. Note that 3, v <0 and o > 0.
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which is clearly less than 1. A similar argument shows that % < 1. We know

that
3a —f3
D; = % —y 3a —B
—y 3o
This can be written as
3o 0 -5
D, = % BYeY ) N —y 0 =B
Jo —y 0
Therefore, we may write
~1
1 0 -£
D;I _ 3% 1 4 _gc? 0 —%
1 —-L 0

Since we have established that J% <1 and % < 1, a power series expansion may

be used to represent the inverse. Let

0o -4
—x g £
A= * S . (4.18)
_ga 0
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Then, we have

D7t - —3— (I-A+ A+ ..+ (-1)"AamH)

J 3a

I H

2nw1
< .
<¢ (%)

The above error estimate is a worst case estimate that comes easily from the fact
that, at worst, we are multiplying two entries and adding them to the product
of two more fo obtain A2, and the same holds for all other products, since A has

only two nonzero terms in each column. In reality, the error is somewhat less.

The norm of A can be bounded:

1Al = 1A]s = -2,

so that 0 < ||A]| = p < 1, where

p= BT (4.19)

The first appearance of the (ij)th entry in the estimate for D; ' occurs in the
|j — i|th term in the power series approximation. Further appearances occur in

alternating terms of the expansion. This is obvious from the structure of A. This

means
(D7l < TN+ (A2 4
< pL’f—ﬁ 4 p!j“i|+2 4.,
= pill+p+...)
. 1
— i
— Cfpij—ZI,
where

Thus, the estimate (4.17) holds, with C given by (4.20) and p given by (4.19). [

36



4.3 The Two-Dimensional Case

Given the problem
L;=F, (4.21)

where L; represents the operator on the fine grid obtained by discretizing a two-
dimensional partial differential equation, we apply the wavelet transform to both

sides of the equation. Denote W; by W; for simplicity.
W, LW WU = Wy F
U, F
_ (WJLJ‘Wf) g B - s (4.22)
i1 Fy

where Uy, Fy, € V,; and Uy, Fy € W;. Note that for simplicity, we will also let
H; denote H; and G; denote G; Now,

W LW
HJ{:UI H;_"ow
col Trrow

_ Gj Hj Lj ( (H?OlHTm”)T (quleow)T
H;Ol G}'ow 1 J J I
G;olG;aw (H;olG;'ow)T (G;olG;:ow)T )
H;al H;Ow Lj
qul Hrowr,.

— ] l 3 J ( (H;alH;'ow)T (GgolH;jow)T
H;O G;ow Lj

col (¥row col frow col rirow
Gj Gj L; (Hj sz )T (Gj lGj )T)
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SO, Wj L;,Wf -

[ H;olﬂ;‘oij (H;DIH;_"OW T HcolHrowL (G olH;ow)

1
G;ot H;jow Lj ( H:Jc'd H}"ow T Gcol H'row L. G ol Hrow)T

)
Ci
) ilG; l (4.23)
H;on!G;oij (H;olﬂgow)T HcolGrowL (G?’ Hmw)
G;olG;"_ow Lj ( H;ol H;_row)T Gcolew L. (Ggol H;ow)
H;ol H;jow Lj ( H;ot G;_'ow)T H;ol H;ow Lj (G:c’_olG;ow)T
G;ol H;:ow Lj ( H;ol G;ow)T G‘?ol H;'ow Lj (G;;ol G;ow)T
H;ol G;ow Lj (H;alG;‘_ow )T Hj?olgﬂjjow Lj (G’j"l G;ow)T
G;Ol G;ow Lj ( H;ol G;ow)T G;ol G;ow Lj (G;OE G;ow )T
We also observe that in two-dimensions, as well, application of the wavelet

transform only requires @(n) operations. See [BCR91] for more details regarding

the fast wavelet transform.

Now, define

Ty = H;oz HI7 Ly quz Hajo'w)T}
Bl . HcolH'rowL (G;olHrow)T
B? = HEtHY L (HS AGrowT,
B3 _ Hcal HIo"Li(GS oszw)
Cl — GcoIHrowL (HcolHrow)T
C3 = He G Ly(H HIov )T,
C} = GPGv L (HP Hw)T,
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D:I,- = GLH] L;(Get H}*ow)T,
D? = G HT™ Ly( Gy,
D} = GHVL; (Ggongow)TJ
D4 — HElGrv L (G H;;ow)T,
D? = H;OIGE"‘”L:;(H;‘“G?””)T,
D¢ = HEG™ Lj(G?dG;ow)T,
D}' = GGV L (@t H}ow)T’
D? = GG Ly H;;GEGEOM)T,

Dg — G;angoij (GgolG;m)T_

T; - V;—= 'V,

B :V;@W; =V,
B} W, @V; =V,
B! W@ W; =V,
CH:V; > VoW,
C? V2 W; 9V,
c: V=W e W,
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Equivalently, let

DV, @W; = V; @ Wy,
D} :W;®V; = Vi@ W,
D} W;W; = V; @ W;,
D}V, @W; - W, @V,
Db W, @V, = W; 0V,
D W, @W; — W; @V,
Dl :V,; = W; @ Wj,

DY W;@V; = W; @ W,
D W, @W, = W; @ W,

3
I
R

s
I
Pamm N
)
&
g

)

2

(D} D} D}
D= |D} D; D
\Dj D} D

So, ’I'J : Vj — Vj, Bj : Wj - Vj, Cj : Vj —r Wj, and Dj : Wj — Wj. Then,

Define L; as follows:

T; B
W, LW, = ( ik
Ci Dj

Li=wiIwi=|"7 ""]. (4.24)
J I3
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The block UDL decomposition of f/j, where U is block upper triangular with

unit diagonal, D is block diagonal, and L is block lower triangular with unit

diagonal, is then

. I B,D\ {T.— B.D7C;, 0 I 0
L= 7 o . (4.25)
0 I 0 D;) \D;'C; I

We seek ﬁ;l:
E;l = (WijWf)ml = WJL;JW;T

The inverse of the factorization of L; is

( I o) ((Jy—BjD;rlc'j)—l 0 ) (I mijgl)
—-D;j'C; I 0 D;t ) \0 I

_ (T; — B;D;'Cy)™ 0 I -B;D;"
—-D7'Cy(T; - B;D;'Cy)™" Djt) \0 I

7
B (T; - B;D;'Cy)™" —(T; ~ B;D;'Cy) "' B; D}
—D;'Cy(T; — B;D;*Cy)™ D;*Cy(T; — B;Dy'Cy) ' B;Dy' + Di' |

7

Now, we know that U = L;lF

= WU = W,L7"WIW,F = L;"WjF.

So,
Uy, Fy,
U . F '
il Y Rl (4.26)
UHL FHL
UHH FHH
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where i;l is (4.23), with L; replaced by L;"'. Then, let

U

Uy Uy
Un Ugt,

Unn

. Fy, : U, L= .
and similarly for . Then, solving for , replacing L by the inverse
Fy Uy

of the factorization of ﬁj, we see that

(Ty — B;D;'C;)™" —(T; — B;D7'C;)"' B; D} ) .

~D;7'Cy(Ty; — B;D;'Cy)™" Dy Ci(Ty — B;D;7'Cy)7'B; D" + D;*

(T; — B;D7C;)™ ~(T; = B;D;*Cy) 7' B; D} .
~D; C(Ty - B;D;'Cy) "t Di'Cy(T; — ByD;*Cy) ™ B;D; + Dj

(T; — B;D;'Cy) "(H; — B;Dj ' Gy) .
—D;'C,(T; — B;D; C) ™ (H; — B;Dj'G;) + Dy G
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So,
o (mr ) ( | GoBDRO) NI BDNG) ) v
~D;'Cy(Ty — B; Dy C) (H; — B;Dj*Gy) + Dy Gy
= [H] (I3 — B;D;'C;)*(H; ~ B;D;"G;)
— G¥D;7'C(T; — B;D;'Cy) 7 (H; — B;D;'Gy) + G Dy GjIF
= [(HF — GYD;*Cy)(Ty — B;D;'Cy) ' (H; — B;D;'Gy) + GID;'Gy|F

) (T; — B;Dj*C;)™ 0 H; — B;D;'G,
=(#7 - arp'c, G’;-")( E

0 Dt G;
Denote
1t = V2(HT - G} D;'C;) and (4.27)
I = g(ﬁy — B;D;'G)) (4.28)

as our interpolation and restriction operators, respectively. Note that if the fine
grid operator L; is symmetric, then C; = B and I?* = 3(I},)". Using the

interpolation and restriction operators defined in (4.27) and (4.28), we have
U= It (15 — B;D;'C;) " ;" F + G] D; G, F. (4.29)
We also note that in multigrid, we are working on the residual equation, i.e.,
e = I, (T — B;D;'C;) " I} + G Dy *Gyr.

If we assume that G’fD;-“lGjr is small, i.e., 7 is almost in Raﬂge(Hf), then we

can approximate the error by
e =I5 (T; — B;D; Gy~ IPr,
So,

(Tj e BjD:;le)th = I]%hTh.
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The above assumption is good for most of the classical iterative methods, like

Jacobi and Gauss-Seidel. Therefore, our coarse grid operator is
Ly =T; — B;D;*C}, (4.30)

which is the Schur complement of D, in ij.

Notice that this operator is the same as the one we obtain if we solve for Uy,

in Equation 4.26. Solving for Uy, yields

Up = (Ty~ B;D;'Cy) 'y — (T — B;D;*Cy)™ B;D} Fy

= (T; — Bij_le)“l(FL - BijlFH).

Again, if the fine grid operator is symmetric, then the coarse grid operator is
T; - BijmlB;-F. We will denote the multigrid method thus formed as the wavelet
multigrid method. We will take a moment now to point out that although the
wavelet operator is periodic, this method may be applied to any problem, even

those that are not periodic.

4.4 Examples

We consider the following problem:

-V -{a(z,y)Vu(z,y)) = 0,inQ (4.31)

u(z,y) = 0, on 08,

where € is the unit square. We discretize on both 16x16 grids, leading to a
256x 256 fine grid operator, and 32x32 grids, leading to a 1024x1024 fine grid
operator. First, let us consider the problem with a(z,y) =1 0.8 sin(10v/27z).
The Haar MRA is used to obtain the wavelet transform, and Gauss-Seidel is the
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iterative smoother. The homogenized version of multigrid involves finding the

homogenized equations for (4.31). These are given by

&y JPu

oz T "oy
u(z,y) = 0, on 0§,

= 0,in§2 (4.32)

where
1
p=( / (14 0.8sin(2rz)) " dz)! (4.33)
0
is the harmonic average and
1
- f (14 0.8 sin(2ma))da (4.34)
0

is the arithmetic average. Here, we have approximated p numerically and calcu-
lated @ exactly. We compare the convergence of the wavelet multigrid method
(using Haar wavelets) with both the standard multigrid method and the method
that uses (4.32) for the coarse grid operator with the standard interpolation and
restriction operators. The initial solution in all cases is chosen to be u = 1. The
results (see Figures 4.1 and 4.2) show that the wavelet multigrid method is much
more effective than standard multigrid (convergence to a residual with norm less
than 10~ is approximately twice as rapid). Also, the wavelet multigrid method
has a convergence rate that is better than the standard homogenization approach.
This result holds true regardless of the number of levels used or the number of

Gauss-Seidel iterations, as well as regardless of the type of wavelet used.
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Figure 4.1: Comparison of results for oscillation in the z-direction, using Haar

wavelets. (a), (b) show the results for a 16x16 grid, (a) using one Gauss-Seidel

iteration and (b) using two. (c) shows the results for a 32x32 grid with one

Gauss-Seidel iteration.
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- — slandard

nom af residunl

Figure 4.2: Comparison of results for oscillation in the z-direction, using Haar
wavelets. Three levels and one Gauss-Seidel are used. (a) shows a 16x16 grid,

(b) a 32x32 grid.

Next, consider a(z, y) = 1+0.8sin(10v/2m(z—y}). The homogenized equations
for this problem take the form
+adu 52 i+ @ 0%
A - —
2 Oz Ox0y 2 Oy
u(z,y} = 0, on 01,

0, in 2 © (4.35)

where 4 and @ are defined by (4.33) and (4.34). The wavelet multigrid method has
a convergence rate that is comparable to the standard homogenization approach
and is better than the standard multigrid. Figures 4.3 and 4.4 demonstrate that
this result holds true regardless of the number of levels used or the number of

Gauss-Seidel iterations.
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Figure 4.3: Comparison of results for oscillation along diagonals, using Haar

wavelets. (a) shows a 16x16 grid, (b) a 32x32 grid.
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Figure 4.4: Comparison of results for oscillation along diagonals, using Haar

wavelets. Three levels and one Gauss-Seidel are used. (a) shows a 16x16 grid,

(b) a 32x32 grid.
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We also want to examine the results using wavelets that are more regular.
This is because the application of such wavelet operators should give better com-
pression results. We examine this more in later chapters. Comparison with the
wavelet multigrid method using Daubechies wavelets in both of the problems
discussed above yields the same good results (see Figures 4.5 - 4.7). Here,

Daubechies 4 wavelets are used, i.e., with wavelet coefficients ¢o = \/;‘,(:1 =

3+v3 o = 1=v3 ,nd 5 = 3-v/3
427 442 7 44/2
" ostilalion I x, 16x16 grd {16x15 for hamog., sland }, 2 lovals, 1 G-8 5 osciialion In x, 3232 grid (31431 fer homog,, stand.), 2 fevals, 1 65
10 T I 10 ra
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(a) (b)
Figure 4.5 Comparison of results for oscillation in the az-direction, using

Daubechies wavelets. (a) shows a 16x16 grid, (b) a 32x32 grid.
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Figure 4.6: Comparison of results for oscillation in the z-direction, using

Daubechies wavelets on a 16x16 grid. Three levels and one Gauss-Seidel are

used.
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Figure 4.7: Comparison of results for oscillation along diagonals, using

Daubechies wavelets. (a) shows a 16x16 grid, (b) a 32x32 grid.

50



CHAPTER 5

Investigation into Sparsity Patterns of D;' Via

Thresholding

The main goal, now, is to make this procedure more efficient, so as to be prac-
tically useful. Now, although D; is not dense (it is, in fact, a banded matrix),
its inverse is dense due to fill-in. But, we observe that there is a great deal of
decay of the values on certain diagonals. This leads us to believe that we may be
able to increase the efficiency of the calculation in this area. This, then, would
improve the efficiency of the overall algorithm, as this is the only area where the

calculation and density of the matrix results in extra computational cost.

The first step in this investigation is to determine how éparse we can make
D;-'l after computing the inverse exactly. Also, we want to determine whether or
not a banding pattern exists. To do this, we use a simple thresholding approach
— all entries Dj_l(z', 4) such that |D;1(i, i) <€ € > 0, are dropped after exact
computation of D;l. Then, the algorithm is allowed to proceed normally. The
results of testing this approach on the problem with the coefficient function oscil-
lating in the z-direction and the problem with the coeflicient function oscillating

along diagonals follow.

The sparsity pattern of D;"l at the optimum threshold to maintain the con-
vergence properties of the method is shown in Figure 5.1 for the Haar wavelet

multigrid method. We show both oscillation in = and oscillation along diagonals.

51



oscifialion in x, Haar wavelat multigrid, 16x15 grid, 97.8% zeros
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nz = 892 nz = 4550

(a) (b)
Figure 5.1: Nonzero structure of D; ' after thresholding for (a) oscillation in the

z-direction and (b) oscillation on diagonals.

Also pictured in Figure 5.2 is the convergence history for different threshold val-
ues.

For Daubechies wavelets, the nonzero structure for the same cases as before
appears in Figure 5.3. The convergence history for different threshold values is
shown in Figure 5.4

The observed results are quite good. Good convergence is observed for a
sparsity level of over 80% zeros (and even greater than 90% zeros for oscillation
in the z-direction or for a 32x32 grid with either type of oscillation). Convergence
is almost exactly the same, or very close to, the convergence from using the full
inverse, while at the same time remaining much better than either the standard
or homogenized methods. We notice that the resulting structure is for the most

part a banded structure.

These encouraging results prompt us to try a simple banding scheme. The
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Figure 5.3: Nonzero structure of Dj_1 after thresholding for (a) oscillation in the

z-direction and (b) oscillation on diagonals.

procedure is as follows: for the 16x16 grid (i.e., a fine grid operator of size
256x256), we choose the sparsest matrix D;"l that gives results that are opti-
mally comparable to those using the full matrix. Then, we determine a banding
structure that approximates this and code the algorithm based upon the observed
banding. Again, the results are good {see Figure 5.5). The convergence, as can
be seen, is quite close (with respect to oscillation along diagonals, it is almost

identical).

In regards to the above discussion, both the Haar and Daubechies 4 wavelets
give very similar results. However, when considering the simple banding scheme,
the results for the Daubechies 4 wavelets for the case of oscillation in the z-
direction are superior — a higher degree of sparsity is achieved without convergence
suffering. So, with respect to compression, Daubechies 4 wavelets prove superior
in this case. For the case of oscillation along diagonals, the Haar wavelets yield

a higher degree of sparsity than the Daubechies 4 wavelets.
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Now, since we achieve such good results with the two-level method, we want
to determine if this carries through to V-cycles with more levels. The results are
again positive. The above comments for the two-level method carry through to
the three-level method. In Figure 5.6 we display the results for a 16x16 grid.
Here, we have again applied the method of discarding entries of DJ“,-“I based on
their magnitude, i.e., thresholding. As the figure demonstrates, convergence does

not suffer from the thresholding procedure.

In practice, we simply assume that the matrix has a banded structure and

apply an incomplete LU factorization to calculate the inverse.
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CHAPTER 6

Improving Efficiency of the Wavelet Multigrid
Method

6.1 Using ILU(0) to Improve Efficiency

After the encouraging results achieved by using the method of dropping entries via
thresholding and by using banding to achieve sparsity in D;-‘l, we are prepared to
aim for greater efficiency. The first goal is to avoid computing the inverse exactly.
Instead, we propose using ILU(0) to perform an incomplete LU-factorization and

then computing the inverse via a series of forward and backward substitutions.

First, a little background on incomplete ILU methods, in general, and ILU(0)
specifically. Basically, we can derive an algorithm for incomplete LU-factorization
(ILU) from the algorithm for Gaussian elimination by dropping elements in off-
diagonal locations via some prescribed conditions. The determination of which
elements to discard is governed by the amount of fill-in we plan to allow. If we will
allow no fill-in (i.e., the LU decomposition of the matrix will have exactly the same
structure as the original matrix), we are performing ILU(0), where the 0 indicates
we are allowing no fill-in. Tt can be shown that for M-matrices ILU produces an
incomplete factorization A = LU — R of A. (Recall that A is a M-matrix if a;; >
Ofori=1,..,m a; <0fori#j, 4,5 =1,...,n; A nonsingular; and A7l >0

Alternately, one can see that, given A such that a; > 0fori=1,...,n and a;; <
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0fori#3j, 4,5=1,...,n, then A is an M-matrix if and only if p(J - D™'4) < 1,
where D = diag(ay), i =1,...,n.) See [Saa96] for a more detailed description

of ILU methods.

The algorithm for ILU(0) is as follows:

Let Z be the set of nonzero elements of A.

fori=2,...,ndo

for k=1,...,7— 1 and for a;, € Z do
aik:fﬁ‘
forj=k+1,...,nand for a; € Z do
Qi = Qg5 — Qi Ok
end do
end do

end do

So, if the above ILU(0) algorithm works, we have indeed shown that the
wavelet multigrid algorithm can be performed more efficiently. Figure 6.1 demon-
strates that, for both the elliptic problem with oscillation in the z-direction and
the elliptic problem with oscillation along diagonals, this method outperforms
both the standard and homogenized multigrid methods, while having a conver-
gence rate that is admirably close to that of the dense wavelet multigrid method.
In this case, Daubechies 4 wavelets seem to suffer less decay in convergence rate
than do the Haar wavelets. This, however, is to be expected due to the higher

regularity of the Daubechies wavelets.

One thing to observe is that, although using ILU(0) reduces the computational
complexity of calculating Dj‘1 without hurting the convergence of the method,
the resulting inverse is still a dense matrix. In practice, we would like to have a

sparse matrix so that the coarse grid matrix is sparse.
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6.2 Using ILU(0) Plus Truncation to Improve Efficiency

Now, we have increased the efficiency in the calculation of Dj_l, but Duj,-”l is still
dense. This results in a formula for the coarse grid operator (as well as the
restriction and interpolation operators) that is much denser than the fine grid
operator. To avoid this, we use a very simple procedure — any values calculated
in the inverse in locations that are zero in D; are set to zero. Thus, we eliminate
any fill-in. Happily, this procedure generally results in convergence rates that
are very close to those of the original dense wavelet multigrid method. We will
¢call this method the truncated wavelet multigrid method, for brevity, and we
will refer to the original method as the dense or full wavelet multigrid method.
The term wavelet multigrid method will refer to a generality applying to both

versions.

This method is tested with a variety of problems, ambng them the elliptic
problem with Dirichlet boundary conditions (4.31), using different functions for
a. For the problem with coefficient a oscillating in the z-direction, even using two
Gauss-Seidel sweeps for the truncated method with Haar wavelets on a 16x16
grid does not ensure convergence close to the homogenized method. Using ILU(0)
followed by truncation to compute the inverse component of the coarse grid op-
erator obviously degrades the convergence of the Haar wavelet multigrid method
for such a coarse grid size. With Daubechies wavelets, however, the convergence
with the truncated method is as good as that employing the full wavelet multigrid
method. This is clear from Figure 6.2, which demonstrates the convergence of
the wavelet multigrid method using both Haar and Daubechies wavelets. For the
elliptic problem.where a has oscillation along diagonals, however, all things are
equal, as demonstrated in Figure 6.3, which again displays the convergence his-

tory of the wavelet multigrid method using both Haar and Daubechies wavelets.
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We will briefly discuss the complexity of the coarse grid operator for the
truncated wavelet multigrid method. After calculating Dj"1 using the method of
ILU{0) followed by truncation, for most of the cxamples that are discussed in
Chapter 7, we find that the inverse is representative of a stencil that contains
between seven and twenty-three elements. This leads to a coarse-grid opera-
tor T; — BjDJ_;-IOj that corresponds to a stencil having between twenty-one and
twenty-five elements. We observe, however, that the matrix 7} has the same
structure as the fine grid operator, i.e., it corresponds to a stencil with five ele-

ments. The additional elements in the stencil, then, come solely from the product

B;D;'C;.
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CHAPTER 7

Applications

In this chapter, we display the results of applying the truncated wavelet multigrid
method (the more efficient form, employing ILU(0) and truncation to obtain the
inverse component). We compare the convergence with the full wavelet multigrid
method, the algebraic multigrid method (AMG), the homogenization method
(where appropriate), and the standard multigrid method. For all problems, un-
less otherwise specified, numerical results are analyzed using both a 16x16 grid,
leading to a 256 x 256 fine grid operator, and a 32x 32 grid, leading to a 10241024

fine grid operator.

7.1 Elliptic Problems from Previous Chapters Revisited

First, we look at the elliptic problem (4.31) with oscillatory coefficients. Here, we
see that the full wavelet multigrid method actually has a convergence rate that
is comparable to the algebraic multigrid method in both the case of oscillation in
the z-direction and the case of oscillation along diagonals. Figures 7.1 through 7.4
demonstrate the results of these comparisons. In the case of oscillation in the
z-direction, as mentioned in Chapter 6, ILU(0) coupled with truncation causes
the Haar wavelet multigrid method applied on a 16x16 grid to have a conver-
gence rate that is poor. In fact, it is much worse than the algebraic multigrid

method. Using Daubechies wavelets, however, we see a convergence rate that
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is very close to that of algebraic multigrid. For a 32x32 grid, both wavelets
yield approximately the same convergence rate as algebraic multigrid. For the
case of oscillation along diagonals, using either type of wavelets produces conver-
gence rates that are almost identical to those achieved by the algebraic multigrid

method, regardless of the mesh size of the fine grid.
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7.2 Other Elliptic Problems

For the elliptic problem (4.31) with a discontinuous coeflicient, we see similar

results. Here, we define the coefficient a as

10 if03 <z, ¥ <0.7,
1 otherwise.

In this case, the fine grid must contain sufficiently many grid points. A 48x48
grid (h = %) seems to be sufficiently fine to obtain good results. Note that this
yields a 2304x2304 fine grid operator. The convergence rate of the truncated
wavelet multigrid method is approximately the same as that obtained by using

the algebraic multigrid method.
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Figure 7.5: Problem with jump, 48x48 grid. Compare Haar wavelet multigrid
with AMG.
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Next, we look at the checkerboard problem, which is defined by (4.31) with

10° if0<z,y<0bor0b<zy<l,

1 otherwise.

The results for the checkerboard problem are quite good. The full Haar wavelet
multigrid method has a convergence rate that is as good or better than the alge-
braic multigrid method. The truncated wavelet multigrid method also performs
as well or better than the algebraic multigrid, except in the case where two itera-
tions of Ciauss-Seidel are used. In that case, the convergence rate of the algebraic
multigrid method is slightly better. Both methods have a far better convergence
rate than standard multigrid, which diverges for this problem. The results are

shown in Figures 7.7 and 7.8

Having considered the simple 2 by 2 checkerboard problem, we expand our
efforts. Now, we try to solve the 4 by 4 checkerboard problem using our wavelet

multigrid method. For this problem, @ is given in the figure below.

Figure 7.6: The values of a for the 4x4 checkerboard problem.
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Figure 7.7: Checkerboard problem, 16x16 grid. Comparison of Haar wavelet

multigrid method with AMG using (a) 2 levels, 1 Gauss-Seidel iteration; (b) 2

levels, 2 Gauss-Seidel iterations; (c) 3 levels, 1 Gauss-Seidel iteration; and (d) 3

levels, 2 Gauss-Seidel iterations.
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Figure 7.8: Checkerboard problem, 32x32 grid.
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Comparison of Haar wavelet

multigrid method with AMG using (a) 2 levels, 1 Gauss-Seidel iteration; (b) 2

levels, 2 Gauss-Scidel iterations; (c) 3 levels, 1 Gauss-Seidel iteration; and (d) 3

levels, 2 Gauss-Seidel iterations.
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Here, the dense wavelet multigrid method performs quite well. It’s conver-
gence rate is approximately the same as that for the algebraic multigrid method.
The truncated method, however, is not quite as good. The convergence deteri-
orates to about half the rate of the dense method for the 16x16 grid and even
worse for the 32x32 grid. Figures 7.9 and 7.10 demonstrate the results of ap-
plying the method with one Gauss-Seidel iteration on both the downswing and
upswing and with five Gauss-Seidel iterations.

44 chocketbsard problam, 18x16 grid (16115 [or AMG), 2 lsvals, 1G-S x4 checkerboart prabifem, 16x18 grid (16415 for AMG), 2 levels, 5§ G-9
T T T T T ¥ T

«— Haar - ILU{0) + trunc —= Hawsr - ILLH{0) + runs
-6~ Haas - densa -G~ Hasr ~dense
iy - AME

nam of residual
notin of walduat

s : L 1 ) "
10 4 20 25 0 2 4 L 8 10 12 14
Rumber of y-cycles number of y—cyclos

(a) (b)
Figure 7.9: 4x4 checkerboard problem, 16x16 grid. Comparison of Haar
wavelet multigrid method with AMG using (a) 1 Gauss-Seidel iteration and (b)

5 Gauss-Seidel iterations.
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Figure 7.10: 4x4 checkerboard problem, 32x32 grid. Comparison of Haar

" L 4
L] 10 2 50

wavelet multigrid method with AMG using (a) 1 Gauss-Seidel iteration and (b)

5 Gauss-Seidel iterations.

7.3 The Advection-Diffusion Problem

Here, we are investigating the problem

—eAu+b-u = 0,inQ (7.2)
u = f(z), on 8,

where Q is the unit square, and ||b|| >> e.

In this problem, we encounter similar difficulties to the elliptic problem with
highly oscillatory or discontinuous coefficients. Iere, some of the oscillatory
eigenmodes propagate along characteristics. So, moving to the coarse grid with
the standard multigrid approach does not represent a good approximation to the
problem on the coarse grid. See [YVB98, Yav98] for a brief discussion of this. We
apply the wavelet multigrid method to these problems to overcome this difficulty,
since application of the wavelet operator keeps the characteristics of the original

problem.
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To discretize, we use the usual five-point discretization for the diffusion term
and a first order upwind scheme for the advection part of the equation. So, —eAu
is discretized to be

Uiy 2y iy g 2y~ Ui
h? h? '

Letting b = (b%, %), and looking at the term b%u,, the first order upwind scheme
looks like

Ty, . €T R ﬂ'i,‘l‘ . ,
b ’ uz+llj + lb'i,jluzsj b Ui—1,5

h ¥

by (ih, jh) =

where b%~ = 0.5(b%; — [b7;}) and 6% = 0.5(b7; + [bf;]), and similarly for 5¥.

As a test case, we let b* = (2y — 1)(1 — z?) and B = 2zy(y — 1). We define
the boundary conditions
1 ifz=0,
flz) = (7.3)

¢ otherwise.

We vary € to determine the effectiveness of the method when |{b|| >> ¢, allowing

€ =10"% and 107°,

The results appear in Figures 7.11 and 7.12. We observe that the Haar wavelet
multigrid method performs comparably to the algebraic multigrid method and
outperforms the standard V-cycle method. One observes, however, a deteriora-
tion of convergence as the grid becomes finer for values of ¢ sufliciently small.
For ¢ = 10~%, convergence on a 32x32 grid is nearly twice as slow as that on a

16x16 grid.

Although this method performs as well as the algebraic multigrid method, its
convergence rate is far below that which is desired, i.e., convergence depends on
mesh size. The first matter, then, is to determine the reason for this deterioration

in performance. This is done by testing a number of simpler problems using
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Figure 7.11: Comparison of standard V-cycle and AMG with Haar wavelet multi-
grid method. Here, e = 1072, (a) uses a 16x16 grid and (b) uses a 32x32 grid.
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Figure 7.12: Comparison of standard V-cycle and AMG with Haar wavelet multi-
grid method. Here, € = 107%. (a) uses a 16x16 grid and (b) uses a 32x32 grid.
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¢ = 1075, The results of the tests convince us that the problem results from the
sweeping of the Gauss-Seidel counter to the flow of the characteristics for at least
part of the flow field. The solution becomes obvious — use symmetric Gauss-
Seidel. This is expected to solve the problem because not only does it sweep in
the forward direction, but this is followed by a sweep in the reverse direction. By
doing this, we expect to capture all effects of the flow field. In fact, even applying

this simple correction to the standard V-cycle method yields remarkable results.

First, we have a comparison of the methods for (7.2), where b = ({(2y —1){1—
2%),2zy(y — 1)) and f(z) is defined in (7.3). We set € = 1075, The results are
remarkable. Convergence has improved for both the standard multigrid method
and the wavelet multigrid method, as Figure 7.13 demonstrates.

eddvection—diffusion problam, $5x18 g {15x15 or stand), 2 lsvels, 1 symm. G-S advaclion-<ttusion problem, 32¢32 gAd (3131 for stend.}, 2 levels, 1 symm. -5
v 1 v ¥ T T r T ¥ T T T

— Fimar— LE(0) + une = Faar < LU0+ unc
-2~ Ha 56 -5~ Haar-dense
-—- slandard

ar -

Py e Toaanded |l g e

nom of residual
nom of nasidual

. L s 7] : s " ' L i L
2 25 3 85 4 ) 08 1 15 2 25 a a6 4 45 5
AumBer of v-cyclas number of ¥-cyclus

(a) (b)

Figure 7.13: Comparison of wavelet multigrid method with standard multi-

L L L
a [):3 1 3.5

grid method, using symmetric Gauss-Seidel as the smoother. € = 10~° and
b= ((2y — 1){1 — #2),2zy(y — 1)). In (a), a 16x16 grid is used and in (b), a
32x32 grid is used as the finest grid.

Next, we tackle a more difficult problem: a problem with recirculant flow.

Here, b = (4z(x — 1)(1 — 2y), —4y(y — 1)(1 — 22)) and f(z) is defined as above.
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For this particular case, the convergence is quite impressive. For the 16x16
grid, the standard multigrid method fails completely, although convergence does
occur for a finer grid spacing. Here, too, however, the wavelet multigrid method
outperforms the standard multigrid method with respect to convergence rate, as
we can see from Figure 7.14. The contour plot of the solution, which shows the
boundary layer is shown in Figure 7.15.

advaction-diffusion problam, 15x36 gid, 2 lovels, 1 symm, G-5
T T T v
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Figure 7.14: Comparison of wavelet multigrid method with standard multigrid

2
aumbar of y—cycles

method, using symmetric Gauss-Seidel as the smoother. € = 10~° and flow is
recirculant. In (a), a 16x16 grid is used and in (b), a 32x32 grid is used as the
finest grid.
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contour plot of solution; advection—diffusion problem, recirculant fiow, 32x32 grid
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Figure 7.15: Contour plot of the solution of the advection-diffusion problem with

recirculant flow. Results are shown for the 32x32 grid.

Next, the same advection and diffusion are used as in the above problem, but

the boundary conditions are changed. Here, let
f(z) = sin(xz) + sin(137z) + sin(mry) + sin(137y).

Figure 7.16 demonstrates the superiority of the wavelet multigrid method in this

case.

Finally, we use the boundary conditions from (7.3), but we change the advec-

tion component so that the characteristics are closed and the vorticity does not
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Figure 7.16: Comparison of wavelet multigrid method with standard multigrid
method, using symmetric Gauss-Seidel as the smoother. € = 10~° with recirculant
flow and sinusoidal boundary conditions. In (a), a 16x 16 grid is used and in (b),

a 32x32 grid is used.
line up with the axes. Here,
b = (sin(my;) cos(mzy) -+ sin(my,) cos(wza),
— cos{my ) sin({mz;) — cos(nmys) sin{nza)),
where
=22 +05, zo={(x—1)2+05, y1=9"+0.5, ya=(y - 1)2 +0.5.

In this problem, the standard multigrid fails completely, but the wavelet multigrid
method performs very well (see Figure 7.17). The contour plot of the solution,

which shows the boundary layer is shown in Figure 7.18.

One thing to notice in the above examples is that, again, the wavelet multigrid
method performs as the multigrid method should — convergence is essentially

independent of the fine grid size.
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Figure 7.17: Comparison of wavelet multigrid method with standard multigrid

method, using symmetric Gauss-Seidel as the smoother. € = 107% and vorticity

is skewed. In (a), a 16x16 grid is used and in (b), a 32x32 grid is used as the

finest grid.
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contour plot of solution: advection-diffusion problam, skewed characteristics, 32x32 grid
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Figure 7.18: Contour plot of the solution of the advection-diffusion problem with

skewed vorticity. Results are shown for the 32x32 grid.

Next, we look at the problem

~V - (AVu) = 0,in Q
u = 0, on o8, (7.4)

where Q is the unit square and A is a positive definite 2X2 matrix:

a1p G312
A=

o1 Qa2

For our test case, we set aj; = € = 107° and ag = 1, with @12 = a1 = 0. The

wavelet multigrid procedure fails to produce rapid convergence. Why does it fail?
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Suppose that the error has oscillatory components in the z-direction. When the
averaging procedure is done (to get the coarse grid operator), these oscillatory
components will not be represenied on the coarse grid. So, the procedure will
quickly smooth out the error in the y-direction, and, due to the anisotropy, the
error in the z-direction will not be smoothed. Therefore, the method will fail to

converge rapidly, beyond the order of e.
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CHAPTER 8

The Stokes and Incompressible Navier-Stokes

Equations

8.1 The Stokes Equations

Here, we consider the Stokes equations
—Au+p, = finQ}
—DNv+p, = f'in§Q
e +vy = 0Oon Q.

Now, as is done in [Sch90], summing the first two equations and using the

continuity condition (ug + v, = 0), we obtain the following system of equations:

~Autp, = fYinfl (8.1)
—Av+p, = ffinf) (8.2)
Ap = fa+finQ (8.3)

ugy +vy, = 0 on 5. (8.4)

These equations are discretized using centered differencing for the first order
terms (pg, Py, g, Uy) and the usual five-point discretization for the second order
terms (Au, Av, Ap). Both f* and f* are assumed zero for the numerical calcu-

lations and Q is the unit square. We use forward differencing (left-hand side and
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bottom of the square) and backward differencing (right-hand side and top of the
square) to discretize the continuity equation (8.4). This discretization is used to
obtain equations for the outermost interior values on the left and right boundaries
of the square (for u) and on the top and bottom (for v). This can easily be done,
because u and v are specified on the boundary of the unit square. So, we calculate
vy for £ =0 and x = 1, and then add this term to the right-hand side in our ma-
trix equation and put the discretization for u, into the matrix. The same holds
true for the top and bottom, with u, being calculated when y = 0 andy = 1
and v, being discretized. The boundary values of p are obtained by using (8.1)
for 7 = 0 and z = 1 and (8.2) for y = 0 and y = 1. Since the corner values of p
do not appear directly in the discretization, we assign to them the value of the
average of the adjacent boundary values for p. The V-cycle multigrid algorithm
is followed, with Gauss-Seidel as the smoother, but fifty iterations are performed
on the coarse grid in lien of an exact solve (since the matrix is singular). Fewer
iterations are necessary on the coarse grid if more than two levels are used (so
that the coarse grid is actually sufficiently coarse). For the first sample problem,

we assume boundary conditions of v = 0 and v = 0.

Now, for this problem, as well as for the incompressible Navier-Stokes prob-
lem, we have three unknowns, u, v, and p. Therefore, the wavelet multigrid
method must be modified. For example, let H, be the scaling operator that will
be applied to the discrete values for u. Similarly, define H, and H,. We also define

the wavelet operators G, G, and G, accordingly. Let

H, 0 0O
H;,=|10 H, 0
0o 0 H,

Define G; in the same manner. Then, the wavelet transform W; must be defined
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as

(1
W; = .
\G;
Then, the wavelet transform is orthogonal, and the new scaling and wavelet op-

erators satisfy the conditions (3.20) - (3.22). Also, the wavelet multigrid method

still follows as in Chapter 4, letting

U
U=t
p
and
Fu
F= i + boundary terms.
fat 1y

As can be seen from Figure 8.1, the wavelet multigrid method is eflective in
solving the Stokes equations with zero boundary conditions. We also examine
the effectiveness of the wavelet multigrid method in solving the Stokes equations

with boundary conditions of

1 fory=1,

0 otherwise,

Here, t00, the results are good (see Figure 8.2).
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Figure 8.1: The Stokes equations on a 16x16 grid, u = v =0 on the boundary
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Figure 8.2: The Stokes equations on a 16x16 grid, nonhomogeneous boundary

conditions.
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8.2 The Incompressible Navier-Stokes Equations

Here, we consider the incompressible Navier-Stokes equations, given by

—Au+ Re(uuy +vu,) +p, = f'in{l (8.5)
—Av+ Re(uv, +vvy) +py, = f*in (8.6)
Ug+v, = 0in Q. (8.7)

The following theorem allows us to rewrite the Navier-Stokes equations in a form
that will allow our algorithm to be more efficient and eliminate the need for
addition of an artificial stabilizing term. This theorem was stated and in a slightly

different form in [Sch90].

Theorem 2. Given ), a bounded domain in R?, and functions u(z,y) and v(x,y)
in C3OYNCHE), plz,y) in C*(S2), and f*, f* € CY(Q). Then, the system of
equations (8.5) - (8.7) is equivalent to the system

—Au -+ Re(uug +vuy) +p, = fHin ) (8.8)
—Av + Re(uvy +vvy) +py, = fin (8.9)
Ap+ 2Re(vpuy, — ugvy) = fo+fp in (8.10)
Uy +vy, = 0 on 9. (8.11)
Proof.
8 0
%(—Au + Re(uug + vuy) + pg) = P
yields

u

— Nty + Re(—u,vy + Vgly + Uty + Viyg) + Pox = [

after application of (8.7). Similarly,
0 (—Av + Re(uv, + vvy) +py) = —(?—f”
dy R
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yields
— A, + Re(uyvy — vylttg + Ugy + V0yy) + Py = fy-
Adding these two equations and noting that %y, = t,y, We obtain

~Aug +v,) + 2Re(uyty — ugty)

+  Re(u(te + vy)s +v(us +vy)) = f5 + Iy
Applying the continuity condition (8.7) again, this reduces to (8.10). O

Equations (8.8) - (8.10) are discretized using the standard five-point dis-

cretization for the second order terms. So, for example

~Uig1g Qi — Uintg | Ui T 2ig — Ui
h2 h?

—Aufih, jh) =
The advection terms (ug, iy, U, vy) are discretized using first order upwind dif-
ferencing in (8.8) and (8.9). Centered differencing is employed for the first order
terms in (8.10). Both f* and f” are assumed zero for the numerical calculations
and € is the unit square. We use forward differencing (left-hand side and bottom
of the square) and backward differencing (right-hand side and top of the square)
to discretize the continuity equation (8.11). The equations for u and v at the
outermost interior gridpoints are obtained from the discretization of the conti-
nuity equation in the same manner as described for the Stokes equations. The
boundary values for p are calculated using (8.8) for z =0 and z =1 and using
(8.9) for y = 0 and y = 1. Since the corner values of p do not appear directly
in the discretization, we assign to them the value of the average of the adjacent
boundary values for p, as we did for the Stokes problem. Newton’s method is

used to linearize (8.8) - (8.10). Basically, the procedure is as follows: let Fyg

denote the discretization of (8.8), Fi denote the discretization of (8.9), and Fyg
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denote the discretization of (8.10). In each of these, we substitute v +u, v + 0,
and p+p for u, v, and p. Then, we expand, delete any terms involving products of
# and ¥, and put all remaining terms not involving @, ¥, and p on the right-hand

side. This gives us the approximation

(FKTS)’(ﬁaﬁapH) = .f - F}\'}S(U,v,p),

for (8.8), and similarly for (8.9) and (8.10). We do the same for the continuity

equation (8.11). Then, we write the above in matrix form
wsU™ T = f = FnsU™, (8.12)

where Fyg is the matrix operator determined by the discretization of (8.8) -
(8.11), and solve for
s
grtl — | gntt

~n+1
P

This, then, is the problem to be solved in the inner iterations, and the outer

iteration is
Un+1 =" + f}n+1_

The matrix problem (8.12) is solved using the wavelet multigrid method, letting
L; be the matrix operator Fyg, U = Un*1, and F' the right-hand side in (8.12).
The wavelet multigrid method is again applied as described in Section 8.1. The
V-cycle multigrid algorithm is followed, with Gauss-Seidel as the smoother, but
fifty iterations are performed on the coarse grid in lieu of an exact solve (since
the matrix is singular). Fewer iterations are necessary on the coarse grid if more
than two levels are used (so that the coarse grid is actually sufliciently coarse).

Here, we assume that v = 0 and v = 0 on the boundary.

91



As can been seen from the following tables, the wavelet multigrid method
performs well. Convergence is found to be almost independent of the size of the

Reynold’s number, after testing various values from Re =1 to Re = 100.

Table 8.1: Convergence history of Navier-Stokes equations, Re = 1, on a 16x16

grid.
iter | k | norm of resid. in | norm of resid. in
inner iter. outer iter.
0 |0 7.905694e-01 3.952847e-01
1|1 7.008245e+-03
172 1.258527e+03
113 1.446255e+02
114 2.010187e+01
1|5 2.677665e+00
1 16 3.853789e-01
1|7 6.580559e-02
1|8 9.154482¢-03
119 1.247744e-03
1 i10 2.069859%¢-04
1|11 3.254192e-05
1 712 6.012843e-06
1 |13 6.007674e-06
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Table 8.2: Convergence history of Navier-Stokes equations, Re = 10, on a 16x16

grid.
iter | k | norm of resid. in | norm of resid. in
inner iter. outer iter.
0 |0 7.905694e-01 3.952847e-01
1 |1 8.893011e+03
1 ]2 1.658027e4-03
1 |3 1.913211e4-02
1] 4 2.803854e--01
1 |5 3.623013e-+00
116 6.195620e-01
1 |7 1.117080e-01
118 1.382316e-02
119 2.560847e-03
1 110 5.088335e-04
1 |11 6.377358e-05
1 ]12 1.117035e-05
1 113 2.300576e-06
1 113 2.294850e-06
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Table 8.3: Convergence history of Navier-Stokes equations, Re = 50, on a 16x16

grid.
iter | k | norm of resid. in | norm of resid. in
inner iter. outer iter.
0|0 3.952847e-01 7.905694e-01
1 |1 1.712370e+04
1|2 3.322899%e+-03
113 4.149911e+02
1 |4 6.536471e4-01
1 |15 8.950878e-+00
116 2.245120e+-00
117 4.298050e-01
1 | 8 6.098672e-02
119 1.688919e-02
1 |10 3.284410e-03
1111 4.700841e-04
1 112 1.266656¢-04
1 |13 2.438572e-05
1 |14 3.551966e-06
1 |15 3.546535¢-06
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Table 8.4: Convergence history of Navier-Stokes equations, Re = 100, on a 16x16

grid.
iter | k | norm of resid. in | norm of resid. in
inner iter. outer iter.
0 10 3.952847e-01 7.905694e-01
1 |1 2.70293be+4-04
1 ]2 5.345722e4-03
113 6.992212e--02
1 | 4 1.125374e+02
115 1.638484e+-01
1|6 4.608594e+-00
147 9.345795e-01
118 1.388602¢-01
119 4.123109e-02
1 |10 8.631406e-03
1 |11 1.268998e-03
1 (12| 3.643826e-04
1 |13 7.743688¢-05
1 |14 1.135024e-05
1 |15 3.200787e-06
1 116 3.198504e-06
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For the Navier-Stokes problem with boundary conditions of

[1, y=1
u =

10, otherwise,
v = 0,

however, the results are not as promising. The difficulty here is that the Gauss-
Qeidel iterative method does not converge for this problem. Therefore, the multi-
grid method using this as a smoother does not converge. More investigation is

required to determine a remedy.
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CHAPTER 9

Conclusion and Future Research

As we have seen, the new multigrid method, called the wavelet multigrid method,
has proven to be very useful in a wide variety of problems. In many of those prob-
lems where standard multigrid methods fail to converge independently of mesh
size, the wavelet multigrid method does ensure such convergence. Also, due to the
properties of wavelets, in many cases we can more efficiently apply the wavelet
multigrid method through use of compression. For those problems where this
method fails to work (the anisotropic second order problem and the incompress-
ible Navier-Stokes with nonhomogeneous boundary conditions), more research is
required to determine a remedy. With respect to solving the anisotropic second

order problem, one approach is to use semicoarsening instead of full coarsening.

This work has opened the door to many other research options related to this
method. One important direction of research involves improving the efficiency
of the program. Although the truncated wavelet multigrid method does provide
an advantage with respect to sparsity over the full method, a higher degree of
sparsity in the coarse grid operator is desired in order to make the method of
more practical value. Also, Professor Tony Chan at UCLA has been working with
adaptive wavelet techniques, and these may be applied to the wavelet multigrid
method. Use of other basis functions, as well, might be investigated. Investigation
of computational fluid dynamics applications of the wavelet multigrid method is

one other possible direction of research. In addition, the solution of problems
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with unstructured grids using this method may be examined. This may work

because formally, at least, a matrix equation results after discretization of the

probiem.
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