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A novel framework for solving variational problems and partial differ-
ential equations defined on surfaces is introduced in this paper. The key
idea is to implicitly represent the surface as the level set of a higher di-
mensional function, and solve the problem in a fixed Cartesian coordinate
system using this new embedding function. When this is combined with
the general theory of harmonic maps, we can address such problems as in-
trinsic regularization of data defined on the surface and pattern generation
using the intrinsic surface geometry. We describe the hasic technique and
present examples in image processing and computer graphics. More pre-
cisely, we address the problems of isotropic and anigotropic regularization
of images and direction maps defined on the surface and the problem of
intrinsic texture synthesis.
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1. INTRODUCTION

In a number of applications, variational problems and partial differential equa~
tions need to be solved for data defined on arbitrary manifolds, three dimensional
surfaces in particular. Examples of this exist in the areas of mathematical physics,
finid dynamics, image processing, medical imaging, computer graphics, and pattern
formation; specific examples will be given later in this paper. These equations are
generally solved on triangulated or polygonal surfaces. This involves the tedious
discretization of the equations in general polygonal grids, as well as the difficult nu-
merical computation of other quantities like projections onto the discretized surface
(when computing gradients and Laplacians for example). In this paper we present
a new framework to solve these variational problems and partial differential equa-
tions. The three dimensional surface is represented in an implicit form, as the
zero level set of a higher dimensional function. All the computations are intrinsic
to the surface, but are performed in the Cartesian grid of the higher dimensional
embedding. We can then use well studied numerical techniques for solving these
equations, and derive simple and elegant implementations.

Representing deforming curves and surfaces as level sets of higher dimensional
functions was introduced in [38] as a very efficient technique for numerically study-
ing the deformation. The idea is to represent the surface deformation via the
embedding function deformation, migrating from a Lagrangian system {(attached
to the deforming object) to an Euclidean one. When the velocity of the deforma-
tion is given by the Euler-Lagrange of a pre-described variational formulation, the
authors in [57] extended the level set ideas to a “variational level set” method (see
also [58] for an application of this in surface reconstruction). The basic concept
is to transform the variational problem governing the surface deformation into a
variational problem defined for the whole embedding function (the whole Euclidean
space). The trick for doing this is, in the energy, to penalize only on the level set of
interest. This is done via delta functions (in the sense of distributions), see below.
The advantage of this approach is that the surface deformation is obtained from the
gradient descent of this new variational problem, and can then be implemented in
a fixed Cartesian coordinate system. That is, in the variational level set approach,
the energy is first re-defined on the embedding, higher dimensional function, and
then the gradient descent is computed. For a recent comprehensive review of the
level set method see [39]. :

In this paper we combine the concepts of the variational level set technique with
those from areas like harmonic maps. In order to solve a variational problem that
is intrinsically defined on a given surface (that is, the data is defined on a surface),
we consider the surface as the (zero) level set of a higher dimensional function, and
redefine the corresponding variational formulation. We then compute the gradient
descent of this energy, and implement it on the natural Cartesian coordinate sys-
tem. Similarly we proceed for general partial differential equations, not necessarily
gradient descent flows (in this case, we just recompute the needed components of
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the equation for an implicit representation). Note that in the variational level set
framework (as well as in the original level set technique), the surface is deform-
ing. In our case, the surface (and the corresponding higher dimensional embedding
function) are fixed, and given by the problem at hand. What is “deforming” is
the data defined on the surface. The deformation is given by the corresponding
gradient descent flow or PDE,

Before we proceed, it is important to make a number of remarks. Note that in
a number of applications, the surfaces are already given in implicit form, e.g., [11],
therefore, the framework introduced in this paper is not only simple and robust,
it is also natural in those applications. On the other hand, not all surfaces are
originally represented in an implicit form. Actually (and unfortunately), triangu-
lated representations, for example, are still much more popular (especially in the
computer graphics community). We will then need to apply an algorithm that
transforms the given explicit representation into an implicit one. Note of course
that this needs to be done only once for each non-implicit surface. Although this is
still a very active area of research, many very good algorithms have been developed
for this, e.g., {21, 35, 55]. The triangulated surfaces could also be represented in
implicit form via polynomials, e.g., [23]. We therefore assume from now on that
the three dimensional surface S of interest is given in implicit form, as the zero
level set of a given function ¢ : R® — JR. This function is negative inside the
closed bounded region defined by &, positive outside, Lipschitz continuous, with
S = {z € R® : 1(z) = 0}. Related to this, it might happen that the data to be
processed is only defined on the surface &, hence on the zero level set of 1). We need
then to extend this data in a smooth fashion to be defined for all points =z € IR®
in order to be able to work with 1 and the Cartesian coordinate system. One
possibility, inspired by the extension of velocities first suggested and implemented
in [14] and then analyzed carefully in [57] for the classical level set technique, is
to extend the data u defined on S (and on the zero level set of ¢) in such a form
that it is constant normal to each level set of 1. This means the extension satisfies
Vu - Vi = 0. (For simplicity, we assume now u to be a scalar function, although
we will also address in this paper problems where the data defined on 5 is vector
valued. This is solved in an analogous fashion.) To solve this we numerically search
for the steady state solution of

%;i + sign(y)(Vu - Vi) = 0.
Note that this keeps the given data u on the zero level set of ¢ (the given surface)
unchanged. As a result of this process, the data is now defined on the whole space,
and not just on the level set of interest. This data extension needs to be done
only once, before the gradient descent or PDE given by the problem is applied.
In spite of this, to improve stability and accuracy, we will run this data extension
step every few iterations of the PDE (this is analogous to the embedding function
re-initialization commonly performed in the classical level set framework). Finally,
and also inspired by techniques by now classical in the level set framework, e.g.,
[40], we will solve the variational problem or PDE only in a band surrounding the
zerc level set.
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The remainder of this paper is organized as follows. In Section 2 we briefly
introduce the general theory of harmonic maps. This provides a natural framework
for defining variational problems and PDE’s on surfaces, and will be used in this
paper to exemplify our framework. The general framework is then given in Section
3. Specific examples in image processing, diffusion of direction data, and pattern
formation are given in scctions 4.1, 4.2, and 4.3 respectively. Section 5 addresses
areas of future research opened by this new [ramework.

2. HARMONIC MAPS
The theory of harmonic maps comprises one of the most studied areas in math-
ematics. The basic idea is to search for maps u between Riemannian manifolds
(M,g) and (N, h) which are critical points (that is, minimizers) of the p-harmonic
energy

Eﬂuymf;HVMuﬂp¢mML (1)

where || Vazu || is the length of the differential in M. The critical points of (1) are
called p-harmonic maps (cr simply harmonic maps for p = 2). This is in analogy
to the critical points of the Dirichlet energy [, || V£ {i* for real valued functions
f, which are called harmonic functions. For the most popular case of p = 2, the
Buler-Lagrange equation corresponding to (1) is a simple formula based on Ay,
the Laplace-Beltrami operator of M, and An(u), the second fundamental form of
N (assumed to be embedded in RF) evaluated at u; e.g., [22, 24, 47]:

Apru+ An(u){V aru, Varu) = 0. (2)

This leads to a gradient-descent type of flow, that is,

% = AMu-i-AN(U)(VMU}vMU)- (3)

Particular and important examples of this theory include:

1. M = R? and N = IR (with the classical metrics): In this case, u : R> - R
and we obtain an energy of the form

%M=/HWW®M& ()
M
where V stands for the ordinary gradient. For p = 2 we obtain

"55 = Au, (5)
as the gradient descent, where A is the Laplacian. That is, we have obtained the
classic heat flow, commonly used for isotropic diffusion and/or regularization of
data. {e.g., [34, 53]). For p = 1 we obtain the Total Variation equation [43], whose

gradient descent is
du , Vu
o= () ©
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This gives anisotropic diffusion of u (see also [2, 7, 42]).

9. M = IR? and N = §™1: This is the classic liquid crystals problem, and was
recently introduced in {49] for addressing general image processing and computer
graphics problems dealing with directional data (see also [13, 41, 46] for related
works). Let then u(z,y,0) : B2 —» S™ ! be the original image of directions.
That is, this is a collection of vectors from /R? to IR™ such that their unit norm
is equal to one, ie., || u(z,y,0) ||= 1, where || - || indicates Euclidean length.
ui(z,y,0) : IR? ~» IR stand for each one of the n components of u(z,y,0). Let us
define the component gradient Vu, as

611,,; N 3%,’ -

where # and 7 are the unit vectors in the  and y directions respectively. From

this,
1/2
6'&«; z 3’!1,,; 2
|| Vg ||= ((E) + (a—y) ) ) (8)

gives the absolute value of the component gradient.
The component Laplacian is given by
32%; Bzui

A= T g

We are also interested in the absolute value of the image gradient, given by

I u = (g ((%%) + (%";—)))1/ (10

The problem of harmonic maps in liguid crystals is then formulated as the search
for the solution to

min / |} Vu ||? dzdy, (11)
Q

u:JR2p 81

where 2 stands for the data domain and p > 1. This variational formulation can
be re-written as

min / | Ve ||P dedy, (12)
Q

w2+ R
such that
| wil=1. (13)

And these reduce to (1) for the selected manifolds.

The corresponding gradient descent flows for p = 2 and for general p’s are given
respectively by {e.g., [49])
Ou;

E:Aui+ui V| 1<i<n, (14)
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% =div (|| Vu [P~ V) +us | Vu ||P, 1<i<n. (15)

These equations, which can be easily derived from the general gradient descent flow

presented above, or by explicit computation of the Fuler-Lagrange, define isotropic
and anisotropic (p = 1) diffusion for directional data defined on the plane.

3. M is a three dimensional surface and N = JR: This will be one of the cases

studied in this paper. It basically deals with scalar data defined on a surface. The

corresponding variational problem is given by (1) and the gradient descent for p = 2

is (since the second fundamental form is zero):

-(% =A M. (16)
Note the use of the Laplace-Beltrami operator Ayr. This leads to isotropic diffusion
of data defined on three dimensional surfaces. Similarly we obtain the gradient
descent for p = 1, anisotropic diffusion.

4. M is a three dimensional surface and N = §7~1: Here we obtain directional
data defined on a three dimensional surface, and this constitutes an additional
example that will be later detailed in this paper. The minimization problem is as
in (1) {with the minimizers restricted to be a direction, that is, a unit norm vector),
and for p = 2 the corresponding gradient descent flow is given by

au‘i 2 .

E=AMU1;+U§§|VH”, 1<y <n. (17)
This leads to isotropic diffusion of vectorial data on three dimensional surfaces (note
again the use of the Laplace-Beltrami operator). Similarly, anisotropic diffusion is
obtained for p = 1.

Before proceeding with the presentation of our framework, which will be exem-
plified among other cases for the cases in points 3. and 4. above (work onto general
three dimensional target surfaces is reported in [36]), we shall make a few remarks
on harmonic maps.

The general form of the harmonic energy, normally from a three dimensional
surface (M) to the plane () with p = 2 (the most classical case, e.g., [22, 24]), was
successfully used for example in computer graphics to find smooth maps between
two given (triangulated) surfaces (again, normally a surface and the complex or
real plane); e.g. [3, 20, 28, 56]. In this case, the search is indeed for the critical
point, that is, for the harmonic map between the surfaces. This can be done
for example via finite elements {3, 28]. The use of the most general form of the
p-harmonic maps for problems in image processing and computer graphics, from
general non-flat manifolds into general non-flat manifolds, was introduced in [49]
(see also {13, 46] for closely related approaches). Particular cases addressed were
M = IR? (the real plane) and N = S§™1, with applications in the regularization of
optical flow, gradient directions, and chroma. (These cases will be here extended for
M a general three dimensional surface.) In this paper, as well as in {49}, we are not
just interested in the harmonic map, but in the corresponding gradient descent flow,
that is, in the process of computing the map via a partial differential equation (the
gradient-descent type flow of the harmonic energy (1)}). This is partially motivated
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by the fact that the basic diffusion equations for multiscale representations and
denoising of gray-valued images are obtained as well as gradient descent flows acting
on real-valued data; see for example [7, 42, 43]. Isotropic diffusion (linear heat flow)
is just the gradient descent of the L norm of the image gradient, while anisotropic
diffusion can be interpreted as the gradient descent flow of more robust functions
acting on the image gradient. FEven more important than this, Jooking at the
gradient-descent flows will help us to show how our framework can be applied not
only to solving variational problems for data on three dimensional surfaces but also
to general PDE’s defined on surfaces.

Since in the cases above we have an energy formulation, it is straightforward
to add additional data-dependent comstraints on the minimization process, e.g.,
preservation of the original average; see for example [43] for examples for gray-
valued images. In this case we might indeed be interested in the critical point
of the modified energy, which can be obtained as the steady-state solution of the
corresponding gradient descent flow.,

Most of the literature on harmonic maps deals with p = 2 in (1) or (11), the
linear case. Some more recent results are available for 1 < p < oo, p # 2, [18, 19,
and very few results deal with the case p = 1 [27]. The papers [22, 24] are an
excellent source of information for regular harmonic maps, while [29] contains a
comprehensive review of singularities of harmonic maps (check also [47], a classic
on harmonic maps). A classical paper for harmonic maps in liquid crystals, that is,
the particular case of (11) {or in general, M being a domain in R™ and N = S™71),
is [8]. A review of some of the relevant literature for image processing and computer
graphics problems, as well as a large list of corresponding references, can be found
in [49].

3. THE GENERAL FRAMEWORK
We will exemplify our framework with the simplest case, given in point 3. in the
previous section, for p = 2. That is, we have a scalar function v defined on a three
dimensional closed surface S without boundary, u : & — IR, and we want to find
the minimizer of the energy given by

1
3 [ 19sulfas, )
8
whose gradient descent flow is
S
—é? = ASU. (19)

We assume that S is given as the zero level set of a function ¢ : R® = R,
4 is negative inside the region bounded by &, positive outside with § = {z €
IR® : 1(z) = 0}. We proceed now to redefine the above energy and compute its
corresponding gradient descent flow. Let ¥ be a generic three dimensional vector,
and Py the operator that projects a given three dimensional vector onto the plane
orthogonal to

<)

7@

B=I-1

(20)

[+
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It is then easy to show that the harmonic energy (18) is equivalent to (see for
example [45])

1
5 1 Pgvule as, (21)

where N is the normal to the surface S. In other words, Vgu = P3Vu. We now
embed this in the function -

@ : minuif | Vsu||* dS (22)
2J/s
.1 2
= mingz [ || PgVul|{*dS
2Js
1
= ming [ | PoyVu |I” 8() || V4 | de,
Qem?

where §(-) stands for the delta of Dirac, and all the expressions above are considered
in the sense of distributions. The last equality includes the embedding, and it is
based on the following simple facts:

1 Ve il N.
2. [0 || V¢ || dx = [; dS = surface area.

Intuitively, although the energy lives in the full space, the delta function forces the
penalty to be effective only on the level set of interest.

We need now to compute the gradient descent of this energy, and we proceed to
do this now. Considering

1
B =3 [l PoyVull 6) I V¢ |
Qe s
and g a perturbation of u,

o Euttp) = /ﬂ (PoyVuu- Py Viu)d() || V4 || da

dt
_ y- _Vy-vp g;
= [ (Rosvu- (v O ECIAAL
_ f (PoyVu- Vp)s() || V4 | de
Vip - Vi
[ (PoyVu- V)G bd@) | 90 | do

= [ (Poyu- Vst i Ty | do
— — [ V(P Vusw) | 7 Ipde
= — [ V- (PoyTull V¥ IDé)pda

- [ (Poyvu- V)8 ) 1 93 | e
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- fg V- (PoyVu || Vip 1)) pds

1
- oY (PesVu [l Vo [udS.
[SE{¢=0} | V¢ ”V (PyyVu ] Vi [)p

Since the above has to be zero for all u, we conclude that at the zero level set of

¥,

oV (PopVa | Ve [) = 0

I Vol '
and we naturally extend this to the whole domain 2 by consider this to hold on
it.! We then obtain that the gradient descent for the “implicit harmonic energy”

is given by

ou 1

Bt = WV {(PyypVu || Vi []). (23)

Note of course that all the gradients in this expression are defined in the three
dimensional Cartesian space, not in the surface S, thereby making the numerical
implementation straightforward. This is the beauty of the approach! Basically,
for this equation we use a classical scheme of forward differences in time and a
succession of forward and backward differences in space. Backward differences are
used for the computation of the projected gradient, while forward differences are
used for the computation of the divergence. The other equations in this paper
are similarly implemented. This follows techniques as those in [43]. Once again,
due to the implicit representation, classic numerics are used, avoiding elaborate
projections onto discrete surfaces and discretization on general meshes, e.g., [30].
It is easy to show a number of important properties of this equation:

1. For any second embedding function ¢ = ¢(v), we obtain the same gradient
descent flow. Since both % and ¢ have to share the zero level set, and we are only
interested in the flow around this zero level set, this means that the flow is (locally)
independent of the embedding function.?

2. If v is the signed distance function, a very popular implicit representation of
surfaces, the gradient descent simplifies to

% =V - (PyyVu). (24)

3. The expression WV - (PyyVu || V4 ||} is equal to the Laplace-Beltrami As
of a surface represented in implicit form (see for example [45] for the formula for
this Laplace-Beltrami). We could also derive (23) directly from the harmonic maps

19e have assumed that || V4 || 0, at least on a band surrounding the zero level set. 'This
asstmption is valid since we can make the embedding function to be a distance function {|| V4 [i=
1), or simply multiply % by another function that guarantees that the zero-level set S is preserved
and that the gradient of the new embedding function is not zero. Note that although generating
an accurate distance function for a given surface might be a costly procedure, it needs to be done
only once for each non-implicit surface.

2We thank F. Mémoli for helping with this fact.
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flow
— = Agit,
ot °°
via the simple geometry exercise of computing Agu for § in implicit form.

This last property is of particular significance. It basically shows how to solve
general PDE’s, not necessarily gradient-descent flows, for data defined on implicit
surfaces. All that we need to do is to recompute the components of the PDE for
implicit representations of the surface. Note that in this way, conceptually, we can
re-define classical planar PDE’s on intrinsic surfaces.

Similarly, we obtain the corresponding gradient-descent flows for scalar data on
4 = 0 for p = 1 (anisotropic flow):

du 1 BV( PyyVu

3 = Tven” \TFegvul V7 ”) ! (25)

and the equations for unit vectors defined on ¥ = 0 {maps from S to S*~)

Ou 1

Y = WV ) (Pv,qu 1V ). +uli PogpVu |121 p=2, (26)
ou 1 PgyVu _
¥ (TR IV )l Poyul, p=1 @)

Note that basically, in the harmonic maps gradient descent flow (1), the first com-
ponent is related to the domain manifold, while the second one relates to both the
target manifold (second fundamental form) and the domain manifold (norm of the
intrinsic gradient). This explains these last two equations. Since we are embed-
ding the domain manifold, only the components related to it change. The case of
embedding the target manifold is addressed in [36].

4. EXPERIMENTAL EXAMPLES

We now exemplify the framework just introduced for a number of simple and
useful cages. In addition to the particular equations exemplified below, we can use
this framework for solving problems such as mean curvature motion of level sets
on manifolds [31], segmentation on manifolds following [10], regularized inverse
problems [26], and filling-in on manifolds following [4, 5]. General motion of curves
on implicit surfaces is studied in [6, 16].

The numerical implementation used is, as we mentioned before, quite simple,
and requires a few hundred lines of C++ code. The CPU time required for the
diffusion examples is of a few seconds on a standard PC (128Mb RAM, 300MHz)
under Linux. For the texture synthesis examples, the CPU time ranges from a few
minutes to a few hours, depending on the pattern and parameters chosen. All the
volumes used contain roughly 64° voxels.

4.1, Diffusion of images on surfaces
The use of partial differential equations for image enhancement has become one
of the most active research areas in image processing [12]. In particular, diffusion
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equations are commonly used for image regularization, denoising, and multiscale
representations (representing the image simultaneously at several scales or levels of
resolution). This started with the works in [34, 53], where the authors suggested
the use of the linear heat flow for this task. That is, given u : IR® — IR, they
proposed to use the isotropic diffusion flow (or heat flow) given by

with the original image as initial condition. When the image is defined on the
surface, that is, v : § — IR, the equivalent to this equation is

This is the first equation we exemplify. Note that this is simply the gradient
descent of the harmonic energy for M = & and N = R. Figure 1 shows examples
of intrinsic isotropic diffusion, implemented using the implicit technique described
in the previous section (see equation (23)). We present examples for three different
surfaces, at three different steps of the evolution, and from different angles. This
type of flow and its implementation using the general framework here introduced
is crucial for regularization of ill-posed problems, e.g., [26].

The heat flow is the gradient descent of [ || Vu |}? d§2. Similarly, this last flow is,
as we have seen, the gradient descent flow of the harmonic energy. Following [43],
we can use p = 1 to obtain an intrinsic anisotropic diffusion flow. This is given by
equation (25), and examples are given in Figure 2. Figure 3 shows an example of
adding a constraint to the surface PDE, following [43]. In this case, the variance
of the noise is known and this is added to the variational formulation. To the flow
(25) we add

Au — ug),

which comes from the Euler-Lagrange when the constraint 3 [ slu— ug)3dS {or
2 [iga (u — ugY28(9) || V4 || d) is added to the harmonic energy (X is a parameter
and ug is the initial noisy image). In the same figure, compare the results obtained
when no constraint is imposed.

The same approach, that of anisotropic diffusion with a stopping term, may be
used to perform intrinsic deblurring, see [16].

In the examples above we have painted images on the surface. In Figure 4 we
regularize intrinsic data. In this case, we have selected to regularize the mean
curvature of the surface.

We should note that [33] also showed how to regularize images defined on a
surface. The author’s approach is limited to functions (not generic surfaces) and
only applies to level set based motions. The approach is simply to project the
deformation of the data on the surface onto a deformation on the plane.

4.2. Diffusion of directional data on surfaces
In [49], the authors introduced the framework of harmonic maps for the regu-
larization of directional data (unit vectors). The framework was described, and
experimental results were presented for flat (JR?) domains. Here we give examples
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for unit vectors defined on surfaces. That is, v are now unit vectors (i.e., in S%),
defined on the surface & (zero level set of ).

First, in [49, 50] the authors proposed to use direction diffusion for color image
enhancement. The basic idea is to normalize the RGB vector (a three dimensional
vector) to a unit vector representing the chroma, and diffuse this unit vector with
the harmonic maps flow. The corresponding magnitude, representing the bright-
ness, is smoothed separately via scalar diffusion flows. That is, we have to regularize
a map onto S? (the chroma) and another one onto IR (the brightness). This is now
extended for a color image defined on the surface 8. In the top row of Figure 5
we use the flow (26} to isotropically smooth color artificially painted on a surface,
while the brightness is smoothed using (23). This is repeated in the middle row
for anisotropic diffusion both of the chroma, eguation (27), and of the brightness,
equation (25). Note how the color spreads for the isotropic flow and doesn’t spread
for the anisotropic one (color edges are preserved). In Figure 6 we repeat this for
a real color image painted on the surface, where for smoothing the chroma we use
the flow (27) with a constraint related to the noise variance, as discussed before.
The brightness is left unchanged. *

4.3. Pattern formation on surfaces

The use of reaction-diffusion equations for texture synthesis became very popular
in computer graphics following the works of Turk [52] and Witkin and Kass [54].
These works follow original ideas by Turing [51], who showed how reaction diffusion
equations can be used to generate patterns. The basic idea in these models is to
have a number of “chemicals” that diffuse at different rates and that react with
each other. The pattern is then synthesized by assigning a brightness value to the
concentration of one of the chemicals. The authors in [52, 54] used their equations
for planar textures and textures on triangulated surfaces. By using the framework
here described, we can simply create textures on (implicit/implicitized) surfaces,
without the elaborated schemes developed in those papers. We proceed to present
some examples now. We only present simple examples to illustrate an additional
application of our framework. Further studies of this application will be reported
elsewhere,

Assuming a simple isotropic model with just two chemicals u; and u;, we have

% = F(UI,UQ) + Dy Awus,
ot
"'%ift'% = G('llq,’uz) -+ DQA’U]_,

where D; and Dy are two constants representing the diffusion rates and F and G
are the functions that model the reaction.

3We re-normalize at every discrete step of the numerical evelution to address deviations from
the unit norm due to numerical errors [17]. We could also extend the framework in [1] and apply
it to our equations.
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Introducing our framework, if u; and u. are defined on a surface S implicitly
represented as the zero level set of i we have

8u1

1
28 = Flus, ) + Duro V- (Poy P [ V1, 28)
Oy \ 1 Ly S : TR v N [T £
e U (Poy T _ 29)
5t G(u‘ls uz) TD2” V'!,b ” v ( vy v Uz |i Vi I’J’ )

For simple isotropic patterns, Turk [52] selected

F(ul,ﬂz) = 5(16 - ’Ml'h',z),

Glu1,uz) = s{upus — ug — ),

where s is a constant and J is a random function representing irregularities in the
chemical concentration. Examples of this, for implicit surfaces, are given in Figure
7 (the coupled PDE’s shown above are run until steady state is achieved). To
simulate anisotropic textures, Figure 8, instead of using additional chemicals as in
[52],.we use anisotropic diffusion, as suggested in [54]. Additional patterns can be
obtained with different combinations of the reaction and diffusion parts of the flow.

5. CONCLUDING REMARKS

In this paper, we have introduced a novel framework for solving variational prob-
lems and partial differential equations on surfaces. The technique borrows ideas
from the level set theory and the theory of harmonic maps. The surface is embed-
ded in a higher dimensional function, and the Euler-Lagrange flow or PDE is solved
in the Cartesian coordinate system of this embedding function. The equations are
intrinsic to the implicit surface, following the general formulations in harmonic map
theory. In addition to presenting the general approach, we have exemplified it with
equations arising in image processing and computer graphics.

We believe this new theory opens up a large number of theoretical and prac-
tical questions. In the theoretical arena, we need to extend the large amount of
results available for harmonic maps (see for example [49] for a review on this) to
the “implicit harmonic maps” framework here introduced. We would also like to
investigate the effect of perturbations on the surface (zero-level set) on the solutions
of the intrinsic PDE. This is crucial to understand the desired accuracy of surface
implicitation algorithms. We expect that as with the level set theory {e.g., [15, 25]),
these theoretical results will follow after the presentation of the framework in this
paper. On the practical side, we are currently addressing other related equations
that appear in the mathematical physics, image processing, and computer graphics
literature. For example, we are investigating how to extend the use of harmonic
maps for texture mapping (and not just texture synthesis). This was done for tri-
angulated surfaces in [3, 20, 28], and we plan to extend this to implicit surfaces
via the implicit framework here introduced. We are also interested in investigat-
ing threshold dynamics and convolution generated motions [32, 37, 44] for implicit
surfaces. Finally, the use of this framework for regularization in inverse problems
is of interest as well. These issues will be reported on elsewhere.
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FIG. 1. Intrinsic isotropic diffusion (from left to right, original followed by two diffusion
steps), Top: gray-scale image on a sphere. Middle: gray-scale image on the surface of a head.
Bottom: synthetic scalar data on a torus.
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FIG. 2. Intrinsic anisotropic diffusion (from left to right). Top: gray-scale image on a
sphere. Middle: gray-scale image on the surface of a head. Bottom: synthetic scalar data on a

torus.
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FIG.3.  Intrinsic Total Variation (TV) denoising (anisotropic diffusion with stopping term).
Scalar data shown in color for visualization purposes. Fop: TV at steps 0 {left), 20 (middle) and
80. Bottom: intrinsic anisotropic diffusion, with no stopping term, also at steps 0, 20 and 80.
Notice how TV does not smear the data.
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FIG. 4. Anisotropic diffusion of intrinsic data. Mean curvature scalar data (shown in
color for visualization purposes) on a MRI section of the visual cortex.
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FIG. 5. Diffusion of color images. Top: chroma vectors and brightness values are
regularized with isotropic diffusion. Boitom: chroma vectors and brightness values are regularized
with anisotropic diffusion.
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FIG. 6, Total Variation of chroma vectors, the brightness is left unchanged.
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FIG. 7. Intrinsic pattern formation. For each surface, three views are shown.
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FIG. 8. Intrinsic pattern formation
diffusion. Three views are shown.




