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Abstract

Prandtl’s boundary layer equations, first formulated in 1904, resolve the
differences between the viscous and inviscid description of fluid Hows.
This paper presents a review of mathematical results, both analytic and
computational, on the mmsteady boundary layer equations. This includes
a review of the derivation and basic properties of the equations, singularity
formation, well-posedness results, and infinite Reynolds number limits.

1 Introduction

One of the fundamental problems of fluid mechanics is to resolve the differences
between inviscid flow and viscous flow with small viscosity., The issues include
drag, vorticity production and boundary conditions:

e Inviscid flow does not correctly describe drag on an object. In irrotational
flow (V x u = 0}, there is no drag resisting the motion of an object
(d’Alembert’s paradox) in the flow. For rotational flow, the pressure dis-
tribution produces form drag, but that does not account for the total
drag.

e An inviscid flow does not produce vorticity (i.e. swirl}.

*Research supported in part by the Army Research Office under grant #DAAG-98-1-0323.
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¢ Along a boundary, an inviscid flow allows only vanishing normal velneity
(i.e. flow cannot cross the boundary); whereas viscous flow requires van-
ishing velocity on the surface of a stationary object (i.e. fluid sticks to
boundary).

Consider the initial value problem for incompressible flow over a plane y =0
in 2D. The Euler equations for inviscid flow are

e + uf - VuE + V¥ = 0
V.ouf = 0 (1.1)
vEy=0) = 0
uPE=0) = uf.

In these equations @ = (z,%) is the space variable, u = (u,v) is velocity, and
p is pressure.
Navier-Stokes equations for viscous flow

6tuNS+uNS-VuNS—§—VpNS — I/A’U.NS
v.ul¥S = 0 (1.2)
w¥y=0) = 0
uS(E=0) = uf®

In these equations, the Reynolds number Re = UL/v is the relevant nondimen-
sional parameter, in which U and L are characteristic values for the velocity and
length scale. For typical flows, the viscosity » = is small, so that He is large,
and the flow should be nearly inviscid.

Ludwig Prandtl resolved the difference between viscous and inviscid flow,
starting in 1904 [12). This work contained the first development of boundary
layer theory, which is now a standard part of singular perturbation theory.
Prandtl found that the Euler equations are valid outside a thin “boundary layer”
(BL) region. The BL thickness is & = /. Viscous drag, vorticity production
and relaxation of no-slip boundary conditions all oceur inside the BL.

Prandtl’s boundary layer equations for flow inside the BL are

gt +uf o’ +oloput = (& + uF8,)uP (y = 0) + dyyu’
oypt = 0
ouP +0vvP = 0 (1.3)
wf (Y =0} = 0
WP (¥ r00) o (y=0)
W t=0) = uf

in which Y is a scaled variable normal to the boundary, as discussed in the next
section.

The focus of this paper is on mathematical results, both numerical and ana-
Iytic, for time-dependent Prandt] equations. These include derivation of Prandtl’s
equations in Section 2, separation and singularities in Section 3, and existence
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Theory in Section 4. Validity of boundary layer theory, including convergence of
the Navier-Stokes solution to an Euler solution outside boundary layer and to a
Prandtl’s solution inside boundary layer, is discussed in Section 5. A summary
is given in Section 6.

2 Derivation and Basic Properties of Prandtl’s
Equations

Within the flow, the only parameter is the Reynolds number Re = LU/v. Near a
boundary, however, the relative distance to the boundary is a second parameter.
This suggests that away from boundary, only simple scaling is correct, yielding
the Euler equations, but that near a boundary, a different scaling may apply.
Prandtl’s boundary layer scaling (in dimensional form) is the following:

Y = yfe
v = {(u,eV) (2.1)
so that 8, = ¢ !8y. This allows rapid variation normal to boundary and

requires the normal velocity to be small near the boundary.
Under this scaling, Navier-Stokes equations become

Bou+ubpu+ VOyu+8ep = vdlu+ (v/e?)0%u
BV +udV +VoyV +e 28yp = vdV 4+ (v/e))eV
Ou+8yV = 0 (2.2)

u=V = 0 onY =0
Set £ = /v and take £ — 0 to obtain Prandtl’s equations

Su+ubu+Viyu+dp = a%u

oyp = 0
Ou-+dyV = 0 {2.3)
y=V = 0 onY =>0

Since p = p© is independent of Y, set it to limiting Euler value pf'(x,t) =
pP(x,0,1t) so that

8,p (1) = 0.9%(z,0,1)
= - (Ou® +u¥8,4") (2,0,1) (2.4)
which implies
lim % (z,y,t) = 5 (2,0,%). (2.5)
Yoo

This results in the Prandtl equations 1.3, after a change in notation.
Here is a summary of the properties of a Prandtl solution, showing that it ac-
counts for the differences between inviscid and viscous flow that were mentioned
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in the Introduction. The vorticity for Navier-Stokes, written in the Prandtl scal-
ing, is

w = Byv — dyu = €0,V — £ By (2.6)
1t follows that the vorticity in Prandtl is
wf = —8yu. 2.7
Sinece the flow is incompressible, the normal velocity is
Y
o (Y, 8) = — f Byu” (5, Y, £)dY". (2.8)
0
The drag is
fleu Pde — s/ |8y V|2 dzdY. (2.9)

Boundary conditions for the Prandtl equations are
s no slip at ¥ = 0, as in Navier-Stokes

e zero normal velocity to leading order {i.e. v = O{g)) at ¥ = oo, corre-
sponding to y = 0, as required in FEuler

An important complication in this picture is the occurrence of boundary layer
separation. Prandt] equations deseribe vorticity as produced and confined to
the BL. In flow past objects, however, vorticity is observed out in flow; e.g.
lift on an airfoil is proportional to the circulation, which is equal to the total
vorticity in the flow. Transport of vorticity by the Navier-Stokes equations is
described by

Sw+u - Vw = vAw. (2.10)

For small viscosity v, the diffusion of vorticity is too small to effectively get
vorticity into flow. So convection of vorticity must be mechanism for vorticity
shedding. :

For an object with a corner, vorticity shedding occurs smoothly at the corner
(Kutta condition). Shedding of vorticity for smooth objects, on the other hand,
occurs through boundary layer separation. Can PrandtPs equations describe
separation? For steady separation, Goldstein {6] found that the Prandtl flow
becomes singular. For unsteady flow, singularity at separation was conjectured
by Sears & Telionis [16], but the nature of separation was unclear until Van
Dommelen & Shen [20] numerically showed singularity formation at separation.
This is described in detail in the next section.

3 Singularities

Van Dommelen and Shen [20] considered an impulsively started circular cylin-
der, for which the equations are

Bu+udyu+ Voyr = UU(z)+%u
Bt ByV = 0 (3.1)
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with boundary and initial conditions

u(z,00,t) = U(z)=sinz
u(z,0,1) V{z,0,t) = u{0,Y,t) = u(n,Y,t) = 0. (3.2)

il

The domain is 0 < Y < 00, 0 < # < 7, in which ¥ = r is the variable normal
to cylinder and = = @ is the tangential variable along cylinder.
They applied a transformation to Lagrangian variables (£,7), with (§,n) =
(z,Y) at t =0, to obtain
4y = .Dsinlz+ xgum? — 2xpEquen + mgu‘gg
—ZgUg By + (Betn + Tylig)Ten — TnlinTge (3.3)
Ty = U
The variable Y is found from

- théYn e :r;,?Y.;- =1. (34)

A singularity occurs when = has a stationary point, at which

Vz| = 0
VY| = oo (3.5)
lus| = [Youg — Yeuy| = oo

At this singularity, which we call the “Van Dommelen singularity”, the normal
velocity blows up, sending flow out of the BL to ¥ = co. The singularity location
is off of the boundary and away from the trailing edge (z = ). This implies
the surprising result that the initial separation is away from trailing edge. This
singularity formation and its properties were confirmed by Cowley [3] , using
a Pade expansion in ¢ with numerical computation of the coefficients. Shen
[17] conjectured that singularity generation is due to “wave steepening” as in
compressible flow, which will be confirmed in the analytic result described next.

T and Engquist [4] performed a construction of singular solutions for unsteady
Prandtl. Their method is analogous to Lax’s proof of shock formation from
smooth data. They simplified the flow by assuming that pyz = 1 = 0 on
x = 0. The solution then has form u(z,y,t) = zb{z,y,t), and the equation for

a(y,t) = b(0,y,t) is
Y
o = ayy —a® +ay f oY, H)dY". (3.6)
0

They showed the following result:
Theorem 3.1 Assume that [, (2a3y -+ af) dY < 0, in which ao(Y) = a(¥,0).
Then a(Y,t} becomes singular at finite time T’ i.e.

tlgx;m}g,xw =00 or th_’n% lay (0,t)| = oco. (3.7)
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4 Well-posedness results

Singularity occurrence in the numerical results of Van Dommelen & Shen [20]
and analytic results of E & Engquist [4] is at a finite time 7. An important
mathematical question is whether T’ is bounded away from 0, and whether
Prandtl’s equations are a well-posed system. For example, inviscid Burgers
equation uy + un, = 0O is a well-posed equations, since singularity formation
oceurs at a finite time that is controlled by total variation of the initial data.
On the other hand, the Canchy-Riemann equations in space-time

w+v, = 0
v —uy = 0 (4.1)

are an ill-posed system; singularities can occur in arbitrarily short time for initial
data is that is bounded in any Sobolev norm. Well-posedness for Prandtl is still
an open problem.

In this Section we shall review some of the most relevant results about well
posedness of Prandtl equations. First we give a brief review of the work of
Oleinik and her coworkers. In a series of papers, most of which date back
to the sixties, she gave a complete theory of the Prandtl equations, the main
limitation being an assumption of some kind of menotonicity. We shall make
no attempt to provide a complete account of her work, and refer to the recent
book of Oleinik and Samokhin {11] for an exhaustive review and for a complete
list of references. Next we describe an existence theorem recently proven by
Caflisch and Sammartino in [14]. Tn their theorem no assumption is made on
the monotonicity of the initial data or of the Euler flow, but they had to restrict
the initial data to be analytic.

4.1 The QOleinik results

Consider a domain Q = {(z,7,8): 0 <z <M, 0 <y <oo, 0 <t <T} Write
Prandt] equations in the following form:

B+ udyu +udyu = GU +UU + dyyu (4.2)
O+ Oyv = 0 (4.3)

= = o {4.4)

uiygg = G {45)

Upmo = O (4.6)

v — U  when Y —oo. (4.7)

4.1.1 The hypotheses
We now introduce the hypotheses that will be necessary to prove the main
Theorem:

U, 8;U, 8,U/U, bounded with bounded derivatives. (h.1)
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ugly=0 =0
to(z, Y — o0) — Ulx,t =10) .

up/U, Syug/U, contimious.
vug > 0.

Ky (U{z,t = 0) — ug(z, 1)) < dyuo(z,y) < Kz (Ulz,t = 0) —uo{z,y))
with K1, K> > 0.

By ug, Byyto, Oyyyio, bounded .

Byyuo Oyyyuedyuo — (Fyyuo)

Do’ By \ bounded .

vo(z, t = 0)dyup(x, Y = 0) + dup(z,t = 0) = Byyuo(x,t=0) .

gy ug — Gpuplyy Uo

~ 2
+ amUuoayyuo (Byuo) < K3 (U —up) .
By uo

UGYUQ

4,1,2 The main result

(h.5)
(h.6)

(h.7)

(h.8)

(h.9)

Theorem 4.1 Suppose the hypotheses (h.1)-(h.9) are verified. Then Eqgs. (4.2)-
(4.7) admit a unique solution (u,v). Moreover (u,v) have the following proper-

ties:
ufU, dyu/U continuous and bounded
v, &, Gy, dyu, Gy, Oyvv, bounded measurable and
continuous in y
exp (—~C1Y) <1 —u/U < exp (—ChY) 1,0, >0
Sy u/U >0, for Y >0
Oyu/U — 0 when Y — oc

4.1.3 Sketch of the proof: the Crocco variables
We introduce the Crocco variables (7,£,7). They are defined as:

u(z, ¥, t)

_ aYu("L.’: Yy t)
Uz, t) ’ '

T =t E:x’ 7= w(”',fyﬂ) - U(ﬂ; t)

(4.7)
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Then in the domain ¥ = {(&,7,7): 0<£ <M, D, 0<r<ThHw
satisfies the following equation:

8w + qUBw — Adyw — Bw = w*dy,w (4.8)

with the following initial and boundary conditions:

w|,,:0 = Wp = ay'u.g/U s (49)
s = 0, (410)
(wOw —vw+C) [p0 = 0, (4.11)

where A, B, C in {4.8) and (4.11) are defined by :

A = (B =1)3U+(n- 1)%[-{ (4.12)
B = -ndU- %’Y- (4.13)

4.1.3 Sketch of the proof: the discretization procedure
We now construct the solution of Eqs. (4.8)-(4.11). Discretize the variables ¢
and 7, and get an ODE in the variable . For a function f(&,7,7) on (¥, define

o) = flkh,p,mh), k=0,1,...,[M/h], m=1,...,[T/h}, h>0.

Consider the following discretized (in the variables ¢ and 7) version of Eq. (4.8):

— 2
(wk,m 1 + h) anﬂ,wk,m + Ak,maﬂwk,m
,wk,m . wk,m—l ,wk,m _ ,wic—l,m

oy Uk,m
1 h

- + BEmykm = 0. (4.15)

"The boundary conditions for Eq. (4.15) are:

wh™ =1 =0, (4.16)

(,wk,m—-lanwk,m _ vg,mwk,m——l + Ck,m)|n=0 =0. (4.17)

Therefore, keeping the step size h fixed, for each m and k one has a linear
second order ordinary differential equation. Initialize the system using the initial
condition (4.9), i.e.

wh? = wo(€ = kh,m) = wg . (4.18)

Then pass to the time steps m = 1, and solve (4.15)-(4.17} for each £ =1,2....
One can therefore proceed to the other time steps m = 2, k = 1,2..., and s0
on. The following Proposition ensures the existence of a unique solution of
(4.15)-{4.17) up to the time Ty independent of h.
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Proposition 4.1 Suppose A, B, C, vy wg are bounded with their derivatives,
and K1(1 — 1) < wo < Ko(l — ), |Oewo| < Ks(1 —n). Then (4.15)-(4.17)
admit o unique solution w™™ for mh < Ty, where Ty depends only on the data.
Moreover the solution w*™ is such that:

,wk,m — wk,m-—l

B, i , (1 =7+ h) Bppu®™ , (4.19)
are uniformly bounded with respect to h, and satisfies the following estimate:
Vi{mh,n) < w™ < Va(mh, 7). (4.20)

In these inequalities Vi and Vy are two positive continuous functions, satisfying
V; ~ (1 —n} in o neighborhood of n = 1.

The next issue is to analyze the limit & — 0.

4.1.4 Sketch of the proof: compactness

So far we have constructed a family of functions w®™(n) defined on the grid
k=0,1,...,[M/hl, m=1,...,[T/h]. Next extend them to the whole ()’ by
linear interpolation between the points of the grid. Denote by wp{€,n,7) these
linear interpolations.

Due to the Proposition 4.1, these functions on ' are uniformly bounded (see
(4.20)) and equicontinuous (see (4.19)). By the Ascoli-Arzela Theorem, there is
a subsequence converging, when h — 0, to a function w(£,n,7). This leads to
the following Proposition:

Proposition 4.2 Suppose the hypotheses of Proposition 4.1 are verified. Then
Egs. (4.8)-(4.11) admit, up to a time T} that is dependent on the data, e unigue
continuous solution w(€,n,T) with bounded weak derivatives Ogw, Gyw, Orw.
Moreover, w has the following properties:

Di(1—n) <w < Da(l —n) (4.21)

and
Bew| < Ds(l—-m) (4.22)
|0-w| £ Da(l—m) (4.23)

in which [; > 0 are constant.

4.1.5 Sketch of the proof: conclusion

Under the assumptions (h.1)-(h.9) and using the transformation (4.7}, the Prandtl
equations are solved by finding w satisfying (4.8)-{4.11). In addition, the as-
sumptions (h.1)-(h.9) imply validity of the hypotheses of Proposition 4.2. This
establishes existence of a solution for (4.8)-(4.11). Inverting the Crocco trans-
formation, one obtains the solution u of (4.2)-(4.7) with the properties claimed
in Theorem 4.1
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4.2 'The analyticity result

Next is a brief account of the results of Sammartino and Caflisch,[14]. Their
work, inspired by an unpublished analysis of Asano, (1], is based on the hypoth-
esis of analytic initial data; this hypothesis allowed them to analyze Prandtl
equations in the framework of the Abstract Cauchy-Kowalewski Theorem.

Introduce the variable & = u — {J. Equations (4.2)-(4.7) therefore can be
written as:

Y
Oyl + U@ — a0, U + 40,0 — (f 8,udY’ + YBmU) Oy = Byyi,
0

(4.24)
Y
v=— f 8,adY’ — YO,U (4.25)
0
g0 = 1o — Uls=0 = @0 , (4.26)
ly=o = ~U, (4.27)
4—-—0 when Y —oo. (4.28)

If p>0and 0 < 8 < «/4, define

Dipy = {zeC:[92]<p}
(0) {yeC: |3y <tanfRy Ry >0}.

Then define the following function spaces:

Kpeo = {f:D(p)x[0,T] »R |8,f 808] is analytic wrt. o in
D(p — Bt) and bounded w.r.t. t, where i <[, j <1 -2}

Kbeow = [f:D(p)x5(0) »R | V&S f isanalytic wrt. zand Y
L2 wr.t. z, bounded w.r.t. Y, where i + j <land j <2}
Kfﬁs‘%ﬂ;# == {f' f e K!,p—ﬁt,ﬂ—ﬁt.,uﬂﬁt ata;'f e KO,,a—,@t,BﬁBt.#—-,Gt

where 1 <1— 2}

4,2.1 The hypotheses
In the rest of this Section we suppose that the following hypotheses hold true:

iip € Khets (H.1)

A analytic w.r.t. z in D(p), and (H.2)
bounded w.r.t. t, with ¢ + 7 <1 ’

figly—o = ~U. (H.3)

4.2.2 The main result
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Theorem 4.2 Suppose the hypotheses (H.1)-{H.3) are verified. Then there ex-
ist T > 0 and 8 > 0, depending on the date U and g, such that the Prandtl
equations admit a unique solution of the formu =4+ U withu € KEE&G’” .

The rest of this Section is devoted to a brief account of the proof of the above
result. Its proof is based on the abstract Cauchy-Kowalewski Theorem, which
is stated in the next paragraph.

4.2.3 Sketch of the proof: The ACK Theorem

Suppose that in a scale of Banach spaces {X,}o<p<p, the following equation is
given:

O+ Flu,t) =0

'U'Et:() = Up.

(ACK.1)

Assume that for some fFo > 0 and R > 0, the operator F' satisfies the following
three conditions V0 < p/ < p < po:

Flu,t): X, x [0,p0/B0) — X is continuous . (ACK.2)
F(u,t) — Flv,t ISCM, Yu,v with ||u), < R, ||v|l, < B
I P _p! P P
(ACK.3)

where C' does not depend on u, v, p, p', t.
F(0,t):]0,p0/80) — X,  is continuous with [F(0,t)], < K (ACK.4)

with K fixed constant.

Theorem ACK Suppose the assumptions (ACK.2)-(ACK . 4) are satisfied. Then
there exists 3 > 0 such that the problem (ACK.1) admits a unique solution
u(t) : [0, (po — p)/B) — X, continuous and differentiable Vo < po.

4.2.4 Sketch of the proof: The heat operator
Consider the following heat equation in the half space with source, boundary
data and initial data:

Gi—dyy)u = f for Y >0 (4.25)
uly=o = ¢ (4.26)
teo = o (4.27)

Denote the operator F which solves the above problem, as

It is possible to give an explicit representation of E in terms of the heat kernel
(see [14]). Here we give the following estimate on E in an enalytic function
space.
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tes . !
Proposition 4.2 Supposc f € Kf;’;he’“ with fly—o =0, g € K:a:l’i and ng &

Kbodb aith gli—o = uoly—o. Then E(f,g,u0) € KE’,‘;EB’“ and the following
estimate holds:

|E(f, 9, wo)lt,p0.87 < €1 lto0,ma1 + glltpor + luolieo.m) -

4.2.5 Sketch of the proof: The convection operator
Define the following operator:

Y
Klul = Udyu — ud,U + ubu ~ (/ FudY’ -+ YB,GU) vu. (4.29)
0

The following Proposition is a consequence of the Cauchy estimate for analytic
functions:

Proposition 4.4 Suppose u,v € K494, Then V0 < p' < p, VO < & < 8, and
VO < pf < g,

o —vllpornw , = vleew | le—vlue
K — far o [T ik 107,01 sl .
IR Kl < o[22 thorar o el B —ls

4.2.5 Sketch of the proof: conclusion
With the help of the operators defined above, the Prandtl equations (4.24)-(4.28)
can be put in the following form:

i+ F(a,t) =0, (4.30)
in which
F(@,t) = B(K[a], U, —ip) . (4.31)

BEquation {4.30) is suitable for the application of the ACK Theorem {in the
integrated form).

Using the estimates on the operators E and K, given in Propositions 4.3
and 4.4 one can prove that the operator F, as defined by (4.31), satisfies the
hypotheses of the ACK Theorem. The proof of Theorem 4.2 is thus achieved.

5 Validity of Boundary Layer Theory: Infinite
Reynolds Number Limit for the Navier-Stokes
Equations

This section describes the behavior of solutions of the Navier-Stokes equations
in the limit of infinite Reynolds nimber, which we refer to as the zero viscosity
limit.
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The behavior of & dissipative fluid in the zerc viscosity limit is one of the
most difficult and interesting problems of the mathematical theory of fluid dy-
namics. It is noteworthy that the problem is not merely mathematical. In
fact, since the experiments of Prandtl and Reynolds, it is well known that for
increasing Reynolds number the fluid can experience dramatic changes in its
behavior. Many possible mechanisms have been proposed for the explanation of
the phenomenon of transition to turbulence. It is widely believed though that a
comprehensive theory is still lacking. On the mathematical side a major short-
coming is the fact that no uniqueness theorem for the 3D Navier-Stokes (as well
for Euler) equations is available. This problem is related to the fact that at this
stage of the mathematical theory it is impossible to say if the solutions of the
Navier-Stokes equations stay regular or develop a singularity. The estimated
time for the existence of a regular solution is in fact dependent on the data and
on the viscosity.

In this section we address the question of existence of a regular solution of
the Navier-Stokes equations in the presence of boundaries for a time which is
independent of the viscosity, In [18] Swann proved that a unique solution to the
Navier-Stokes equation in R? exists for a time that is small but independent of
the viscosity. Moreover Swann proved that the Navier-Stokes solutions in R3
converge to Euler solutions. See also the related results of Xato in {7] and [8].

When boundaries are present the problem is harder because of the formation of
the boundary layer which can lead to the formation of singularities, as discussed
in Section 3. Significant levels of vorticity are ejected from within the boundary
layer into the external inviscid flow.

Here we want discuss some situstions for which it is possible to control the
phenomenon of separation and establish both existence of the Navier-Stokes
solution for a time independent of the viscosity and convergence, away from
boundaries, of that solution to the Euler solution.

5.1 Kato’s criterion

In [9] Kato gave a criterion to establish when, in the zero viscosity limit, a weak
solution of the Navier-Stokes equations converges to a solution of the Euler
equations.

Let u™¥5 and uf denote the solutions of the Navier-Stokes and Euler equations
in a bounded domain 2 C R™. Suppose that

ul'® s ul when v — 0 (5.1)
T
f WFNS — £2|dt — 0 when v — 0, (5.2)
]

where uY and £V denote the initial condition and the forcing term of the

Navier-Stokes equations; similarly for u® and %, The time T in (5.2) is the
time up to which there exists a regular solution for the Euler equations.
The main result of [9] is the following.
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Theorem 5.1 Suppose (5.1) and (5.2) are verified. Then the following condi-
tion are equivalent:

[uNS — uB||z2 — 0 uniformly int € [0,T] (K.1)
T
v [ IV, e —o. (1K€.2)
0]

In (K.2), || - |lr, denotes the L?-norm restricted to a strip of width O(v) close
to the boundary.

It is usually hard to verify that condition (K.2) holds. Therefore this criterion
is not easily applicable to concrete situations. The merit of Theorem 5.1 is
that it sheds some light on the situations in which convergence does not occur.
In fact (K.2) is a condition on the energy dissipation in a strip whose size is
smaller than the boundary layer. If this energy dissipation does not go to zero,
this means the occurrence of some kind of singularity in the lower part of the
boundary layer.

‘We now briefly give the main step of the proof of the Theorem. We shall focus
on proving that (K.2) implies (K.1), the converse being a straightforward appli-
cation of the energy estimate. In giving the sketch of the proof, for simplicity,
we shall suppose that the forcing terms in Navier-Stokes and Euler equations
are the same, i.e. FV° = f¥.

5.1.1 Sketch of the proof

The main idea of the proof of the Theorem is to construct a smooth divergence
free boundary layer corrector v so that u” — v satisfies the no slip boundary
condition. Moreover, through the use of a cut-off function, Kato managed to
construct the boundary layer corrector so that its support is contained in a strip
of size O(v) close to the boundary. This allows approximation {in the L? sense)
of the Euler solution ©#® by u¥ — v. Therefore, with the use of basic energy
estimates, one gets

[ —uflls < 2 [ [ @uS, V(wE — ) + (P Tul)t
0
(Vuls, V(u? —v))] dt+o(1} . (5.3)

in the above inequality, (-, -} denotes the scalar product in L?. The symbol o(1)
denotes terms that goes to zero with v. Some simple manipulations of (5.3) lead
to the following:

u® —uflf, < 2 f U (@ - uB) @ (u ), V) +
0

(u™S @ ulS, Vo) + v (Vu®, V(u —v))] dt +0(1).
(5.4)

Given that u¥ is a regular solution of the Kuler equations, one has the control
on the L® norm of Vuf, The first term of the r.h.s. of (5.4) is easily estimated.
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The third term is estimated using the fact that v is supported in a strip of width

O(v). To estimate the second term one has to use also the Hardy inequality.
Therefore

T
e P e
T
¢ fo [PIvas |2, 2V, Jdt . (5.5)

Combined with the Gronwall inequality, this shows that (K.2) implies (K.1).

5.1.1 Temam and Wang’s criterion

In the same spirit of Kato, in [19] Temam and Wang proved that if the gradient
of the pressure at the wall I' of a channel, does not behave too badly (see
condition (TW.1) below), than convergence of the Navier-Stokes solution to the
Euler solution follows:

Theorem 5.2 Lel 0 < § < 1/2. Suppose thot:

T T
either Vdfo ||pNS||H1/z(F)dt <e or V6+1/4/0 Vo8| Larydt < c.

- (TW.1)
en:
uM® — |2 < (1205 (TW.2)

5.2 Geophysical fluids

In [10] Masmoudi analyzed the case, relevant in geophysical applications, in
which the viscosity in the vertical (in the sense of being perpendicular to the
boundary) direction is much smaller than the viscosity in the horizontal direc-
tions. The viscous force F ;s considered in [10] is in fact of the form:

Fise = v0,,u’ + nA;guNS , (5.6)

where z is the vertical direction and @ are the horizontal directions. The main
hypothesis in [10] is that:

Y0  when 7—0. (5.7)

n

Theorem 5.3 Suppose (5.1) and (5.2) are verified, and that the viscous force
in the Navier-Stokes equations has the form (5.6) where the viscosity coefficients
satisfy (5.7). Then:

||uNS — UEHLQO([O’T],Lﬁ) —3 0 when -0,
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The time T is again the time up to which one has the existence of a regular
solution of the Euler equations.

5.2.1 Sketch of the proof

Masmoudi constructs a smooth divergence-free boundary layer corrector u
whose support is contained in a strip of width O(,/7n). He then writes the
Navier-Stokes solution as

BL

u¥ = uf L uPl (5.8)

where w is an error to be estimated, Notice that the error satisfies the no-slip
boundary condition. Given that the size of the boundary layer has been chosen
to be very small, then the L? norm of 4P’ goes to zero in the zero viscosity
limit. Therefore the Theorern will be proved if one can prove that ||w|zz — 0
when 7 — 0.

Inserting the ansatz (5.8) into the Navier-Stokes equations, and using the
Euler equations, one gets the equations for the error w. The structure of this
error equations is very similar to the error equations found by Sammartino and
Caflisch in [15]. More difficult are the terms involving generation of verticity
at the boundary, i.e. terms involving the derivative with respect to the vertical
direction of the boundary layer corrector u®L.

Masmoudi performs an energy estimate on the equations for the error Here
we just show how he deals with the most difficult term, i.e. [(w.8,ufl)-we, n
which w, and w4 denote respectively the vertical and hormontal components of
the error w, and uB” denotes the horizontal components of uPl, His estimate
is

/ (w,0uEL) wg < / %(zzﬁzugl’}-%@ <

o= 22| . (659)

Given that u?% is different from zero only in the strip of width /77 leads to

1(z*0,ul™)|ze = O/
Moreover, using the fact that w|,;=o = 0 and the the Hardy ineguality, one can
write the estimates:
Wy
} L2 2T

Given that w satisfies the incompressibility condition, one can substitute 1w,
with Vg - wy. Therefore one can continue the estimate (5.9) and get that:

w
<dowl |5

o < ClgazmeLz.

[0 wa < il Vowals + cvidwsls

both terms in the right hand side can be finally dominated by the usual dissi-
pative terms of the energy estimate.

Notice that in the above estimate we have not used the hypothesis (5.7). This
hypothesis is necessary only to estimate the terms coming from the Laplacian
acting on uB’.
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5.3 The analyticity result

Both Kato and Masmondi in their analyses used an artificial boundary layer
corrector with no attempt of reproducing the behavior of the Navier-Stokes
solution close to the boundary. In [15] the authors instead used the Prandtl
solution u” from [14] to analyze the zero viscosity limit of the Navier-Stokes
equations in the half space. Supposing the data to be analytic, they made the

ansatz (& = /v ):
uS = uF 4 af +eulf +eul 4w . (5.10)

In (5.10) u% and uf = @ + w®|,_o are the analytic solutions of the Euler
and Prandtl equations from [14] (the existence of analytic solutions of the Euler
equations with analytic data was known since the paper of Bardos and Bena-
chour [2]). The terms u¥ and ul are the solutions of the first order Euler and
Prandt} equations. These equations are linear and are easily shown to admit
analytic solutions. The problem is therefore reduced to proving that the error
w exists and stays bounded.

5.3.1 The main result
Here we give an informal statement of the main result of [15].

Theorem 5.4 (Informal Statement} Suppose that wf(z,y,t) and uf(z,Y,?)
are the solulions of the Euler and Prandtl equations, respectively, which are
analytic in the spatial variables x,y,Y. Then for a short time T, independent
of € = /T, there is a solution w™%{z,y,t) of the Navier-Stokes equations with

WS { u®P + O(g) outside the boundary layer

u?f 4+ O(¢) inside the boundary layer. (5.11)

In the above statement ¥ denotes the rescaled normal variable as in subsection
2.2. For simplicity the above Theorem is stated in the half space with x denoting
the tangential variable.

The proof of the above Theorem is achieved if one proves that u¥¥ admits
the representation (5.10) where w stays bounded for a time independent of the
viscosity.

5.3.2 Sketch of the proof; The error equation
Denote
wdtr EuE+ﬁP+euf+Eu{° )

and insert the representation (5.10) into the Navier-Stokes equations, to get the
following equation for w:

(8¢—EzA)w—i—'w-VuAPP+uAPP-Vw+Ew-Vw+pr=F, (5.12)

where F is a bounded forcing term. Equation (5.12) must be supplemented
with the appropriate boundary and initial conditions. Notice that w satisfies
the incompressibility condition.
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The difficulty in solving (5.12) is mostly the term w,duf, since du” =

O(c™!) inside the boundary layer. The analyticity hypothesis and the ACK
Theorem allow use of the boundary condition wyly—o = 0 so that wy = O(¢)
inside the boundary layer.

5.3.2 Sketch of the proof: The Navier-Stokes operator
The idea to solve the above equation is to recast it in a form snitable for appli-
cation of the ACK Theorem. This is accomplished in three steps:

1. invert the heat operator (8; —&*A) through the inverse heat operator &;

9. take into account the incompressibility conditions through the Leray'’s
projection operator P;

3. take into account the no-slip boundary conditions through the Stokes op-
erator S, which solves Stokes equations with boundary conditions.

Combine these three operators to define the following operator A, which we call
the Navier-Stokes operator:

N = PE -- 84PE , (5.13}

where « is the trace operator at the boundary y = 0. The above operator
solves the Stokes equations with prescribed source term and with zero initial
and boundary data, Also define the convective operator

Kw] =w - Vurf? 4 u*P . Vw t ew - Vw - F,
in terms of which the equation for the error becomes
w+ NKjw]=0. (5.14)

Equation (5.14) is of the form (ACK.1) (integrated in time). The rest of this
Section is devoted to describing how to prove that the operator N satisfies
the hypotheses of the ACK Theorem.

5.3.3 Sketch of the proof: Functional setting

The functional setting for the error equation differs from the functional setting
for the Prandtl equations in that it involves functions that are L? with respect
to the normal variable. This is necessary because the projection operator is
more naturally estimated in the space of L? functions. First define the domain
of analyticity in the normal variable:

B(0,a) = {yeC:|Sy<tandRy for Ry<a,
|Sy| < tanfa for Ry >a}
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H5® = {f:D(p)x B(B,a/e) =R |8.0Lf is analytic wrt. zandY
L2 wrt. z, L? wrt. Y, where i + 7 <[ and j <2}
Hé’;’g o {fl f c HI,p—-ﬁt,B—ﬁt.uw,ﬁt ata;f e HO,p—*ﬂt,Q—,Bt.,u,——,Bt

where 4 <1]-2}.

5.3.4 Sketch of the proof: The estimates
The operators A and K satisfy the following estimates:

Proposition 5.1 Suppose w € H, é’fﬁg. Then Nw € HE’T"JB satisfies following
estimate:
Wwl,po81 < clwl,pepT

Proposition 5.2 Suppose w ,v € Hv"? with wyly=o = 0. Then V0 < p' < p,
0 < @ < @ the following estimate holds:

|w —v|ipe | (W=l
p—v g—o

Kw] — Kol < c

The estimate given in Proposition 5.1 is a consequence of the boundedness of
the operators P, £, and S in the space Hé’%’g.

The estimate given in Proposition 5.2 is crucial in the analysis and is a con-
sequence of the Cauchy estimate for an analytic function. In fact by analyticity
one can control the generation of vorticity in the boundary layer.

5.3.5 Sketch of the proof: Conclusion

The above Propositions show that the operator NK satisfies the hypotheses
of the ACK Theorem. It follows that (5.14) has a bounded solution w, and
that the solution of the Navier-Stokes equation can be represented, for a time
independent of the viscosity, in the form (5.10). The proof of the Theorem 5.4
is thus achieved.

6 Summary

Prandtl boundary layer theory is the canonical example of singular perturbation
theory for PDEs. The results described above show that there has been a recent
renewal of mathematical interest in Prandtl’s equations, but that many open
problems still remain. These include the following:

e Are the Prandt] equations well posed in & Sobolev norm?

e How well can the Prandtl singularities be characterized?
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e Can the resilt on analvtic sohitions be extended to curved boundaries and

AA T TE Adlnd Y

to vortex sheets?

e Can these Prandtl results be extended to other singular perturbation prob-
lems?

These and other open problems should keep the Prandtl equations a subject of
active regsearch for some time.

References

[1] Asano K., Zero Viscosity Limit of Incompressible Navier-Stokes Equations:I and
II, unpublished, 1988.

[2] Bardos C. and Benachour S., Domaine d'analycite des solutions de Pequation
d'Faler dans un ouvert de R™, Annali delle Scuola Normale Superiore di Pisa IV,
Vol.4, pp.647-687, 1977.

[3] Cowley S., Computer extension and analytic continuation of Blasius’ expansion
for impulsive flow past a circular cylinder. J. Fluid Mech., Vol. 135, pp. 389, 1983.

[4] E W. and Engquist B., Blowup of solutions to the unsteady Prandtl’s equation.
Comm. Pure Appl. Math., Vol. 50, pp. 1287-1293, 1997.

[5] E W. , Boundary layer theory and the zero-viscosity limit of the Navier-Stokes
equation. Acte Math. Sinica, 2000, to appear.

[6] Goldstein, On laminar boundary layer flow near a point of separation. Quat. J.
Mech. Appl. Math., Vol. 1, pp. 43-69, 1948,

[7] Kato T., Non-stationary flows of viscous and ideal fluids in R3. J.Functional
Anal., Vol.9, pp.296-305, 1972 .

[8] Kato T., Quasi Linear Equations of Evolution with Applications to Partial Dif-
ferential Equations. Lectures Notes in Mathematics, Vol.448, pp.25-70, Springer,
1975.

[9] Kato T. Remarks on Zero Viscosity Limit for Nonstationary Navier-Stokes Flows
with Boundary. Seminar on Nonlinear PDE, ed. 8.8.Chern, MSRI, 1984.

[10] Masmoudi N., The Euler limit of the Navier-Stokes Equations, and Rotating
Fluids with Boundary, Arch. Rational Mech. Anal., Vol.142, pp.375-394, 1998.

[11] Oleinik O.A. and Samokhin V.N., Mathematical Models in Boundary Layer
Theory, Chapman & Hall/CRC, New York, 1999.

{12] Prandtl L., Uber Fliissigkeitsbewegung mit kleiner Reibung. in Verhandlung des
TIT Internationalen Mathematiker Kongresses. 484-491, 1904,

[13] Safonov M.V., The Abstract Cauchy-Kovalevskaya Theorem in a Weighted
Banach Space, Comm. Pure Appl. Math., Vol.48, pp.629-637, 1995,



Existence and Singularities for the Prandtl Boundary Layer Equations 21

[14}
L £

[15]

(16}

7]
[18]

[19]

[20]

Sammartinoe M. and Caflisch R.E., Zero Viscosity Limit for Analytic Solu-
tions of the Navier-Stokes Equation on a Half-Space 1. Existence for Euler and
Prandtl equations, Comm. Math. Phys., Vol. 192, pp. 433-461, 1998,

Sammartino M. and Caflisch R.E., Zero Viscosity Limit for Analytic So-
lutions of the Navier-Stokes Equation on a Half-Space II. Construction of the
Navier-Stokes Solution, Comm.Math. Phys., Vol. 192, pp. 463-491, 1998,

W.R. Sears and D.P. Telionis, in Recent Research on Unsteady Boundary
Layers, Proc. IUTAM, E. Eichelbrenner, ed. ,Vol. 1, pp. 404, 1971

S.F.Shen, in Adv. in Appl. Mech., Vol. 18, pp. 117, 1978,

Swann H.8.G., The Convergence with Vanishing Viscosity of Nonstationary
Navier-Stokes Flow to Ideal Flow in R®, Trens.AMS, Vol.157, pp.373-397, 1971,

Temam R. and Wang X., The convergence of the Solutions of the Navier-
Stokes Equations to that of the Euler Equations. Appl. Math. Lett., Vol. 10, No.
5, pp. 29-33, 1997.

Van Dommelen L.L. and Shen S.F., The spontaneous generation of the
singularity in a separating laminar boundary layer. J. Comp. Phys., Vol. 38, pp.
125-140, 1980.



