UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Total Variation Denoising and Enhancement of Color
Images Based on the CB and HSV Color Models

Tony F. Chan
Sung Ha Kang
Jianhong Shen

June 2000
CAM Report 00-25

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90095-1555

http://www.math.ucla.edu/applied/cam/index.htmi



Total Variation Denoising and Enhancement of
Color Images Based on the CB and HSV Color
Models

Tony F. Chan, Sung Ha Kang and Jianhong Shen *

Abstract

Most denoising and enhancement methods for color images have been
formulated on linear color models, namely, the channel-by-channel model
and vectorial model. In this paper, we study the total variation (TV)
restoration based on the two nonlinear (or non-flat) color models: the
Chromaticity-Brightness (OB) model and Hue-Saturation-Value (HSV)
model. These models are known to be closer to human perception. Recent
works on the variational/PDE method for non-flat features by several an-
thors enable us to denoise the chromaticity and hue components directly.
We present both the mathematical theory and digital implementations for
the TV method. Comparison to the traditional TV restorations based on
linear color models is made through various experiments.

1 Introduction

Any tool that attempts to denoise and enhance digital color images must rely on
two dependent ingredients — the representation of colors (i.e. the color model)
and the restoration model formulated on that representation. Therefore, we first
discuss briefly the color models, followed by an introduction to the variational
restoration method.

1.1 RGB, CB, and HSV color models

In image processing, color has been represented or modeled in various ways [8].
In this paper we shall focus on the RGB model and HSV model.

In the RGB representation of color images, at each pixel p = (z,y), the
vectorial value I(p) = (u1(p), us(p), us(p)) represents the intensity of the three
primary colors separately. Each monochromatic component wu; is called one
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channel. The RGB model has inspired the so-called CB model, which decom-
poses an RGB pixel value I(p) into two components — the brightness compo-
nent u(p) = ||I(p)||, or the Euclidean length of the vector, and the chromaticity
component f(p) = I{p)/u(p). The chromatcity component lives on the unit
sphere $2. Features like this that live on non-linear manifolds are said to be
non-flat [7, 16]. It has been shown by several authors lately that the CB model
is well suited for denoising, edge detection and enhancement, and segmenta-
tion [7, 15, 16, 17, 18].

HSV is another color system that is believed to be more natural than the
RGB systerm for human perception. The three variables are: hue #, saturation
S, and value V. The S and V are linear features and take values in the interval
[0,1}. S encodes the “purity” of color: larger § corresponds to purer color. The
value V stores the intensity information, so that larger V' value means brighter
color. The hue variable H, though also takes values in [0, 1], is nevertheless
a circular or periodic feature: as H increases from 0 to 1, the color spectrum
revolves from red, yellow, green, cyan, blue, to magenta, and eventually back
to red. Therefore, the hue lives on the unit circle S' in some sense, and is
another example of non-flat features [9]. The circularization is easily made by
the exponential mapping H — exp(i2nH).
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An iso-V surface in the RGB space An iso-S line on the iso-V surface.
consists of three 2-D squares. From a, d, ..., to f. a, H increases from 0 to 1.

Figure 1: An iso-V surface and an iso-S line on it in the RGB space. See
Eq. (1,2) for the definition. Notice that an iso-V & § line is a 3-D “hexagon,” as
shown separately on the right. from a,d,--- to f,a, the hue value H increases
from 0 to 1.

The precise transition from the [r, g, b] variables to [H, S, V] is realized by:

V=rvgvbd (1)
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where for a pair of real mmbers a and b: a V b := max{a,b), a A b :=min(a,b).
The formmla for H appears o be more complicated, but essentially is a simple
piecewise linear function along any iso-S & V line (See Fig. 1). In the figure, one
observes a typical iso-S & V line, which is a 3-D “hexagon” shown separately on
the right side. As one goes from o, d,--- to f,a, the H value is defined so that
its vahie increases linearly from 0 to 1. Thus on each one of the six segments,
the net increment is 1/6. With this in mind, The formula H can be expressed
easily. For examples, along the segment [a, d] (along which 7 and g are fixed)

reno-3 i3]

and along [b, €] {along which r and b are fixed)

2 1|g-r
HMH(Q)_E-FE [b——r] ’
Readers can easily figure out the formulas for the rest.

Currently, many color image processing tools are based on the RGB modet,
mostly because linear spaces are easy to work with. As a result, despite their
similarity to human color perception, the CB and HSV color models have been
less favored due to their non-flatness. In this paper, our main interest is to
construct restoration models based on these two non-flat color representations.

1.2 Statistics, least squares, and the variational method

For denoising and enhancement of color images, the two classical mathematical
tools are statistics and the least square estimation.

Order statistics plays a crucial role in the denoising and enhancement of
both gray and color images, and its most successful application is the median
filter [8, 17, 18]. Median filters perform especially well for eliminating outliers
and enhancing edges. Recently median filters have been generalized to the
chromaticity feature f on the unit sphere [17, 18]. From the numerical point of
view, as in Monte Carlo simulations, the implementation of statistical algorithms
is often comparatively inefficient.

The least square estimation is another popular tool throughout image and
signal processings. While benefiting from its simplicity in digital implementation
and advantages in numerical linear algebra, we suffer seriously from its linear
nature. The square norm is notoriously unsuited for jumps in 1-D signals and
edges in 2.1 images. Denoising models based on the least square estimation
inevitably blur sharp edges, which exist universally in gray or color images, and
are crucial for the human perception of image structures.

In the past decade, the variational and PDE method has attracted much
attention in image processing because of its flexibility in modeling and vari-
ous advantages in numerical PDEs. Applications can be widely found in image
segmentation, denoising, deblurring, enhancement, inpainting, and motion esti-
mation (see the two monographs [10, 19|, for examples).



Tt has heen known that by proporly choosing the right cost or energy func-
tionals in the variational formulation or the right diffusion patterns in the PDE
formulation, edges in noisy images can be well restored and enhanced. Among
the many possible choices, the Total Variation (TV) is the simplest but suffi-
ciently efficient measurement for enhancement or denoising. Its PDE form (via
the Euler-Lagrange equation) is interestingly connected to anisotropic diffusions
and the mean curvature motion {10]. Ever since the first explicit demonstration
of its successful performance in image restoration was made by Rudin, Osher
and Fatemi [12, 13], the TV model has been studied by many authors (see the
References section for examples).

Let us first explain the general framework of the variational approach for
denoising and enhancing color images based on the linear RGB color models.
The traditional methods can be classified into two categories — the channel-by-
channel approach and the vectorial approach.

In the channel-by-channel approach, each channel ; is assumed to be con-
taminated by noise 7; so that the observation becomes ul(z,y) = wi(z,y) +
ni{z,y). A typical channel-by-channel denocising model carries the form of

1
min R;(u;) subject to ] f |u; —ud|? = o7, (3)

where (2 is the image domain, || its area, R; the regularity functional, and o;
the noise level. For example, in the total variational approach, we take

Ri(us) = f |Veusldzdy.
¢

Such regularity functional has been proven both mathermatically and computa-
tionally to be capable of extracting edges snowed by noise [2, 13].

In the vectorial denocising approach, the cost functional is on the vectorial
function I = (w1, usz, ua):

min Rsp(I) subject to —1—/ i — I°|? = &2, {4)
1 1 Ja

where Rzp is a regularity functional for vector-valued functions. Typically in
applications, suppose R; is a suitable 1-dimensional regularity functional for the
i-th channel, then one simply takes Ryp = 1/R? + RZ + RZ. In the case when
Rsp is connected to the total variation functional and anisotropic diffusions, we
observe the work of Sapiro and Ringach [14] and Blomgren and Chan [1, 3].
In practice, both of the constrained optimization problems (3) and (4) are
replaced by their unconstrained forms. For example, for the vectorial case, we

solve instead
A
min (RaD(I) + —f I — 1°|§2) .
I 2 Jo

Here ) is an appropriate Lagrangian multiplier, which depends on the noise
level, In practice, it is often estimated or chosen a priori [3, 4, 5, 13].



1.3 Variational restoration for non-flat features

Recently, the variational and PDE method has been generalized to non-flat
features by Perona [11], Tang, Sapiro and Casselles [15, 16], Chan and Shen [7],
and most recently by Kimmel and Sochen [9]. Tang et al. and Chan et al.
generalize the total varitional model, while Kimmel et al.’s model profits from
the general framework of Polykov action and Beltrami operators for Riemannian
manifolds. All these works attempt to successfully restore edges in non-flat
features. Chan and Shen [6] also proved that near edges, the models in {7] and [9]
are equivalent. But the differential equations based on the total varitation norm
are much simpler and thus easier for computation [7, 15, 16].

The current paper can be seen as the extension and completion of the works
of [7, 15, 16} on the total variation approach for enhancing and dencising non-flat
image features. We study in details the TV model and its numerical implemen-
tation for restoring color images based on the CB representation and HSV color
model. Previous works on general non-flat features enable us to work with the
chromaticity feature f (on the sphere S%) and hue feature H (along the cir-
cle S1) directly. Detailed comparison to the channel-by-channel and vectorial
approaches are illustrated through numerical examples. Our results show con-
vincingly the advantages of the CB and HSV color models over those linear ones
for the construction of restoration models.

The paper is organized as follows. Section 2 introduces the mathematical
models, and Section 3 details their numerical implementations, Numerical ex-
periments and comparison are explained in Section 4.

2 The TV Formulation on CB and HSV Models

In this section, we explain the total variation formulation for the two nonlinear
color models.

2.1 TV for the CB model

In the RGB representation, a color image is a mapping
I:0— RS ={(r,g,b):7,9,b>0}.

I can be separated to the brighiness component u = ||I||, and the chromaticity
component f = I/iI}| = I/u. Mathematically speaking, this is the implicit
spherical coordinates for the Euclidean space. We shall not introduce the two
Fulerian angles (i.e., the latitude and longitude) for f, thanking to our previous
work on non-flat features [7].

The brightness « can be treated as a gray image, and thus any scalar denois-
ing model! to can be applied. The chromaticity component f stores the major
color information, and is “non-flat” since it takes values on the unit sphere S52.
We thereby apply the general framework of non-flat total variational denoising
model as studied in details by Chan and Shen [7]. In this chromaticity-brightness



approach, the final restored color image I is assembled from the two restored

et

components:

I{p) = u(p) x f(p)-

We now detail the mathematics.
Given a noisy image I°, let u® : @ - R be its brightness component. Then
the (linear)} scalar TV restoration model applied to u° is

min f]V'uldmdy + éh/.(u,——u,o)2 dz dy,
u o 2 Jq

where X is the Lagrange relaxation parameter. The associated Euler-Lagrange
equation (in a formal level} of this cost functional is
Vu

-V (lv—ul) + A(u - ue)

0. (5)

To avoid possible singularity for |Vu| in the denominator, we condition it to

[Vl = 1/|Vu|® + o2 for some small o in implementation. This is equivalent to
minimizing directly

[[Vu|a dzdy -+ if(u—uo)2 dz dy.
o 2 Ja

The total variation as a cost functional legalizes the existence of edges or sharp
jumps in the brightness component, which is very important since the sharp
boundaries of objects in images can be well restored {13].

Now we discuss how to restore the noisy chromaticity component f°. Let
f: 9 = S? be a general chromaticity feature. Assume that f is smooth. Then
8:F(p) and 8, f(p) are two tangent vectors in the tangent space Ty, S*. Let
||| be the induced Riemannian norm of Ty(S? in R3. Then the total variation
for chromaticity is defined to be [7]

TV _ el f: — 2 =dxdy.
e () = [ elin) dp= [ IO + 10,50y, dp = dady

Here since the unit sphere S? is embedded in R® and f = (fi, f2, f3) € B3, we
have

e(fip) = IVSl = \/Hfm(p)lP + I F @2 = VIVAIR + IV £I2 + IV 152

Let d be any reasonable distance between two chromaticity points on $? [7].
For example, one can choose the embedded distance or the cord distance

d(f,9) = |f —gllm = V(f —9)%, f, g€ S™ (6}

Another natural choice would be the geodesic distance or arc distance on S%:

d(f, g} = arccos (f,9),




where (f,g) denotes the inner product in R®. Then the TV restoration model
becormes

1
min ETY(f) subject to f &(f°, Ndp = o*.
f 12 Jo

The Euler-Lagrange equation for its unconstrained variational formulation is

given by:
(L) -y () + Bara 1) -
% (o) ~ % (o) + 3 €000 =0

where grad ;d*(f°, f) denotes the gradient vector of the scalar function d*(f°, f)

on 5% and 8* and J; the covariant derivatives acting on vector fields on the

sphere. Accmdmg to [7],

% (1) + 5 (refy) =¥ (o) 10

Furthermore, if we choose the embedded distance (6}, then

Searad, (10, 1) =TLp(f - £2) = <L 5%

Here II; is the orthogonal projection from T7R® onto the tangent plane TS5
Oig=g— (g, f)f, foranyvector g€ Te R
Eventually, the restoration equation for the TV model is

Vi
VA

We shall explain in Section 3 the numerical implementation or the digital
version of the non-linear restoration equations (5) and (7).

folor 0) =V (ii )+||Vf|if+)\ﬂff° @

2.2 TV for the HSV model

In the HSV color model, the hue feature A is non-flat and lives on the unit circle
§*, while the other two are both linear or flat ones. Therefore, for the saturation
S and value V, we simply apply the scalar (flat) TV denoising model (5). For
the circular feature H, one copies the equation for chromaticity (7) based on
the straightforward modification from $? to S':

H=(H,H,) €8 CR and |VH| = /IIH |2 + || H,|2

Our experiment (Fig. 7} shows that denoising separately the hue component
H and the saturation component S does not produce satisfactory visual results.
Qur explanation for this deficiency is that to human vision, the two components



are highly correlated. Therefore, a better approach is to restore the combina-
tion of H and S, which in the classical literature of color image processing, is
also called chromaticity. In this paper, to distinguish it from the chromaticity
appearing in the CB representation, we name it the “HS-chromaticity.”

As we see from Fig. 1, in the RGB color space, for a fixed value V, the
other two variables H and S span the iso-V surface which consists of three 2-D
squares. The surface is not smooth since there are a corner and three folding
lines. Working with such irregular surfaces is inconvenient. Thus, we invent the
so-called disk transform to “straighten” this folded surface as follows. For each
point on the iso-V surface with the hue and saturation (H, S), define a complex
number

Z =5 x exp(i2r H). (8)

Since both H and S take all values in [0,1], the image of each iso-V surface is
the unit disk in the complex plane {see Fig. 2). Under the disk transform, each
iso-S line on an iso-V surface (i.e., the 3-D hexagon on the right side of Fig. 1)
is mapped onto a circle centered at the origin (see Fig. 2).

X
Z=X+iY
Y

A =1

E (z=-1)

An iso-V surface in the RGB space. Thte iso-V surface is mapped onto the unit disk.
Figure 2: The disk transform of an iso-V surface: Z = Sexp(i2rH).

The unit disk is a smooth and convex domain and thus much easier to work
with. To restore the combination of H° and S° in the HSV color model, is now
equivalent to restoring a complex-valued scalar feature Z°. More precisely, for
any given noisy image under the HSV model

(Ho(m,y),So(m,y),Vo(a:,y)), (ﬂ:,y) €q,

it is sufficient to denoise two scaler components — the real-valued signal V°(z,y),
and the complex-valued signal Z°%(z,y). Since both are scalar functions instead
of vectorial or non-flat ones, we can apply the same scalar TV model (5). The



rumerical results shall convince us the advantage of working with the combina-
tion of H and S, or their disk transform.

3 Numerical Implementation

To digitally implement the above non-linear differential equations, we have ap-
plied the approach of digital TV filtering as proposed in [5]. The digital TV filter
can been seen as the finite difference realization of the differential equations, but
is simpler and more self-contained [5].

Let Q be a discrete digital domain or a graph. Pixels in Q are denoted by
a, (3, . In the conventional rectangular setting, it is also denoted by a = (ij).
Denote N, the neighbors of the pixel a. For instance, in the rectangular setting,

No=Nujpy={(G+1,5), (i~14), (G,j—1), G,j+1)}.

Of course, there is much freedom in defining the neighbors. For example, one
may include (i 1,7 £1) in Ni;). If § € Ny, we also write § ~ a.

Let v : @ — R be the brightness component. We define its local varia-
tion to be |Vau| = \/Eﬁwo,(ﬁﬁ — u,)?, and its conditioned form is |Vauls =
VIVauli? + a? for some small a.

By introducing the weights wep(u) = Tv‘;liﬁ + Wi—iﬁ’ Chan, Osher, and
Shen [5] showed that the Euler-Lagrange equation (5) is replaced by a system
of nonlinear algebraic equations:

Z waptg —ta) + AMu—u?) =0, ae.
Brow

The techniques of linearization and iteration scheme lead to the so-called digital
TV filter [5]. The digital TV filter F is nonlinear data dependent filter 7 : u —» v
once the noisy image u® is given. At any pixel a € 2,

Vo = Falu) = Z hop(w)tig + hao(u)uy, (9)
Breo

where the low-pass filter coeflicients are

_ wep(w) _ A
hag (u) = Yt E,TNQCUQ»T(U) » hao(u) = py ZTN& Wary {u) .

The digital TV filter is applied in an iterative fashion. To restore and de-
noise the brightness component u°, one starts with a random guess u® (for
example, u(® = 4% conveniently though unnecessarily), and then generate
w™ = Fur 1) for n = 1,2,---. ul® converges to the optimal restoration
.,

We now discuss how to apply the digital TV filter to the chromaticity com-
ponent. Let fO : @ — S? be the noisy chromaticity. Taking the embedded



digtance d{f, g) = /{f — )% for any f,g € 8%, we define the local variation af
a pixel a of a chromaticity feature f : & = S? to be:

e(fia) = [}: dz(fﬁ,fa)} :

Y

The digitized total variation plus the fitting constraint becomes [5]

STV(f,/\) — Z e(f;a)-l—A Z %dz(faaf)a

a€§tn a€ln
which provides the target cost function for optimization. The digital Euler-
Lagrange equation is shown to be [7]:

1 1
0= > Ty (fs) — 4+ —— + A, (fY, aef. (10)
Z;: fe 8 (e(f,a) e(f,ﬁ)) ’

Here 115 is the orthogonal projection defined in the previous section. By setting

1 1
werlh) = Sy B

we rewrite the restoration equation (10) as

Or (> wesfp+AfN) =0, ael

Brec

Chan and Shen [7] showed that this equation on the unknown optimal restora-
tion f: Q — S? can be similarly solved by the digital TV filter . Unlike the
brightness component, since the feature lives on the unit sphere, g = F( F) now
needs an extra step of projection:

Ga = zﬁmcr huﬁfﬁ + hoa .2;
Ga = g’a/”ga”-

One starts the iterative filtering process with an initial guess f {9), then generate
F®) = F(f»=1). Chan and Shen [7] showed that the limit of f (") indeed solves
the restoration equation (10).

For the TV restoration model based on the HSV color system, we apply the
scalar TV filter (9) to both the real scalar function V°, and the disk transform
Z% of H? and S°, which is a complex scalar function. Since both the unit
interval and unit disk are convex domains, the mazimum principle of the TV
filter {5] guarantees that the restored V takes values in [0, 1], and Z on the unit
disk. Thus, the restored I and S can be well recovered from Z.

4 Numerical Experiments and Comparison

This section summarizes the performance of the TV models based on the CB
and HSV nonlinear color models.

10



4,1 TV regtoration based on the CB model

In Fig. 3, we demonstrate the result of TV restoration applied to the chromaticity-
brightness representation. In the middle, we have plotted the image with chro-
maticity restored only, and at the bottom, the image with both chromaticity
and brightness restored. The result is quite successful. The visible noisy red and
green dots have been swept out. The eyes and dark lines resume their original
black color, and the nose and lips become smoothly red as they should be.

4.2 Comparison of TV restorations based on the CB and
linear color models

In Fig. 4, we compare the restortation results by the CB based TV and lin-
ear TV’s. The two columns on the right show the details of the first column.
Corpared to the channel-by-channel TV and vectorial TV, the chromaticity-
brightness TV restoration seems to give better color control. This example
convinces us the advantage of working with the chromaticity and brightness
components, and also the fact that the CB representation is closer to human
color perception.

Fig. 5 and 6 show another example for the comparison between the linear
TV’s and the CB based TV. The column on the right in Fig. 5 zooms into
that on the left. We see that the author’s stamp has been best restored by
the CB TV. The linear TV’s have somehow blurred the stamp, mostly due to
their inefficiency in dealing with the chromaticity component. Fig, 6 shows a
1-dimensional slice of the stamp, from which we clearly see that the CB based
TV restoration leads to the best coordination among the three channels: the
original stamp is purely gray (i.e. having the idential channels), and thus any
ideal restoration should restore such purity.

4.3 TV restoration directly based on the HSV model

In Fig. 7, we show the restoration result from the direct application of the TV
models on the three components in the HSV color representation. The zoom-
in image clearly shows the unsatisfactory behavior of such an approach. The
underlying reason, we believe, is the high correlation between the hue component
H and the saturation § for human perception.

4.4 TV restoration based on the HSV model and its disk
transform

As discussed in the preceding sections and seen from the previous numerical
example, we are led to considering the combination Z of H and § via the disk
transform (8). In Fig. 8, we display the restoration result from the scalar TV on
both the real function V and the complex function Z. From the zoom-in image,
it is clear that such combination is much closer to human perception and thus
yields better color restoration.

11




4.5 TV an CB and HSV under the digk transform: gimilar
performance

The disk transform Z in the HSV representation encodes both of the two types
of color information—hue and saturation, and thus is similar to the chromaticity
information in the OB representation. Meanwhile, the “value” component V in
the HSV system apparently plays the same role as the brightness component in
the CB model. As a result, to no one’s surprise, the performance of these two
approaches should be also very close. Such understanding is better fleshed in
Fig. 9, where the restoration results of both methods are tested on the standard
“Peppers” image.
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Figure 3: Spherical TV on the chromaticity component and scalar TV on the
brightness component. In (b), only the chromaticity is restored, while in (c},
both the chromaticity and brightness components are restored.
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Figure 4: Comparison of the CB based TV and linear TV’s (I}: CB leads to
better color control.
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Figure 5: Comparison between the CB based TV and linear TV’s (IT): CB does
not mix colors.
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{a) Vectorial TV
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Figure 6: Comparison between the CB based TV and linear TV’s (I11): the
1-dimensional slice show. The identity of the pure gray color is best restored by
the CB based TV.
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Noisy Image

Gircular TV on H, plus scalar TV on S and V.

A zoom-in

Figure 7: Circular TV on H, and scalar TV’s on S and V. The unsatisfactory
performance shows the inappropriateness of treating the H and S components
separately.
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Noisy lmage

Scalar TV on both V & Z (the disk transform of H & 5)

A zoom-in

Figure 8: Scalar TV’s on both the real function V and the complex function Z,
i.e., the disk transform of H and S. '
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Scalar TVonbothV & Z

Figure 9: TV’s based on the CB and HSV (under the disk transform) color
models have the similar performance.
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