UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Two-Stage Preconditioners Using Wavelet Band
Splitting and Sparse Approximation

Tony F. Chan
Ke Chen

July 2000
CAM Report 00-26

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA: 90095-1555

http://www.math.ucla.edu/applied/cam/index.html]



Two-Stage Preconditioners Using Wavelet Band
Splitting and Sparse Approximation®

Tony F. Chan'
Department of Mathematics,
University of California, Los Angeles,
405 Hilgard Ave, Los Angeles,
CA 90095-1555, USA.

and

Ke Chen?
Department of Mathematical Sciences,
University of Liverpool,

Peach St, Liverpool,
L69 7ZL, UK.

AMS subject class: 65Y05, 65F35, 65Y20.

Keywords: Preconditioning, band splitting and approximation, sparse mastrices,
wavelets, minimization.

*This research work is partially supported by grants NSF ACR 97-20257, NASA Ames NAG2-1238,
Sandia Lab LG-4440.

tEmail: chan@math.ucla.edu. Web: http://www.math.ucla.edu/~chan

tEmail: k.chen@liverpool.ac.uk. Web: http://www.liv.ac.uk/~cmchenke

-1



Abstract

The wavelet sparse approximate inverse preconditioners previously studied in
[5, 18] are re-examined and improved for iterative solution of sparse linear systems
arising from PDE’s. Our new idea is to improve the approximation of a wavelet
transformed matrix by banded matrices based on treating smooth and non-smooth
splittings differently in a two-stage preconditioning setting. We introduce the con-
cept of a wavelet band splitting and use it to derive a theoretical result on our
two-stage preconditioners. Our preconditioner combines simple sparse scaling pre-
conditioning with wavelet sparse approximate inversion. We propose an iterative
method for finding the optimal splitting that minimises the wavelet band approxi-
mation errors for the diagonal case. Preliminary numerical experiments have been

successful.




1 Introduction

The numerical solution of partial differential equations (PDE’s) usually generates large
systems of linear equations. Such linear systems can be too large to be solved by direct
methods so iterative methods have to be developed and applied. An efficient approach
is the combination of Krylov subspace methods and suitable preconditioning. Denote a

linear system by
Az = b, (1)

where A is an n X n sparse and unsymmetric matrix. We consider a suitable choice of
preconditioner M ! for (1) so that the following preconditioned system

MAz =M% (2)

can be more efficiently solved by Krylov subspace methods.

To this end, there exist many types of sparse preconditioners [1], [11] [15] and [17];
see the references therein for details. Of particular interest is the so-called sparse approx-
imate inverse (SPAI) preconditioner; see [2], [9] and [18]. One difficulty associated with
SPAI is the determination of a suitable sparse pattern for the preconditioner M~ that
approximates the unknown matrix A=1. In [5], a wavelet sparse approximate inverse pre-
conditioner (WSPAT) was proposed using the wavelet transform to tackle this difficulty
and extending the applicability of SPAIL; see also [4] and [8]. Let W denote an orthogonal
discrete wavelet transform (DWT) matrix and A = WAW the representation of A in
the wavelet basis; throughout this paper a tilde will denote wavelet transformed quantities.
The idea is to look for SPAI in a wavelet basis rather than the original space for A. As
WSPAI makes use of wavelet compression as well as SPAI it is more efficient. However,
it has been found that WSPAI can run into difficulties if in the wavelet space A cannot be
accurately approximated by block or banded matrices. This is the case when the inverse
of A has large entries away from a band part (including the main diagonal); e.g. in case
of PDE’s with discontinuous coefficients [5].

To improve WSPALI, following [5], we introduce for a matrix A new and fundamental
concepts of wavelet band splitting A = WB,(A) + WO, (A) and the related wavelet band
space WB(u, €) for a bandwidth p (where WB,(A) becomes a band-p matrix under a
wavelet transform and WB(u, €) measures the dominance of WB,(A) in A; see Definitions
1-2 in §2). In this new setting, whenever A € WB(pu,¢), WO,(A) is relatively small
(precisely |[WO,(A)|I2 < ¢|WB,(4)|1%) and the wavelet transformed matrix A can be
approximated accurately by a banded matrix to produce an eflective preconditioner. If
A & WB(u, €) for some tolerance €, we look for a splitting of A:

A=X+C and Al=XT4A=T+X1C, (3)

such that the so-called stage 1 preconditioner, X ~!, smooths A so that 4; € WB(u,¢€)
or X 'C € WB(u,¢€) (since I € WB(u,0) for any bandwidth u > 0). All we require of
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X is that X is invertible (and easy to invert) and WO, (A,) is relatively smaller than
WB,(4,) in some norm. Then a WSPAT type preconditioner is sought for matrix 4.
This will give rise to our two stage preconditioning strategy. In the applications that we
are primarily interested in, vectors and matrices come from discretization of functions and
operators, the concepts of smoothuess and singularities carry over from the continuous
case. In the context of wavelets, smoothness (of derivative functions) is directly connected
to compression; see [3, 16]. Therefore, throughout the paper, we shall use the terms
‘smoothness’ and ‘singularity’ for vectors and matrices.
To motivate and illustrate our proposed methodology, consider firstly a smooth matrix
A as characterised and tested in [3]
L/(i—j), ifi#7,
Ay :{ 2,/( 7 ifiifi. 4)
Then A € WB(u, €) because in the unique splitting A = WB,(A) + WO,(A), even with
a small bandwidth p, WO, (A) is small and dominated by WB,(4) so A, a finger-like
matrix, can be approximated by a banded matrix accurately. With n = 1024, bandwidth
p=16, [WO1(A)|3 < [WB1s(A)||% i.e. A€ WB(16,1). This is the case when WSPAT
works well. Now consider secondly a simple diagonal modification of A from {4}

A*=D+ A, (5)

with D a diagonal matrix with D;; = 10 (odd ¢), ~10 (even ). Then although A* and
A, after a DWT, yield an almost identical sparse pattern (finger-like), the wavelet band
splitting of A* differs from that of A. Namely WO,(A*) dominates WB,(A*) while
WB,,(A) dominates WO, (A). With n = 1024, u = 16, we found that ||[WOs(A*)|% <
2.34||WBig(A")i|3 1.e. A* € WB(16,2.34). However we hope to construct X such that
X~1A is smoother in the sense of wavelet band splitting. For the simple choice X =
diag(A*), with n = 1024, 4 = 16, we can observe an improvement: |[WOQO;5(X1A*)||% <
0.03|WBs(X~14%)|[%. Then X1A4* € WB(16,0.03); see Figure 1 for A* and Figure 2
for X-TA*. A further example comes from a discretization of the elliptic PDE

»»é% (a(m)g—z) + b(z)u = f(x). (6)
If both coefficients ¢ and b are smooth, the resulting matrix A is relatively smooth and
in WB(u, €¢) with a small 4 and ¢ < 1. However if either a or b is discontinuous and
oscillatory, matrix A is non-smooth, not in WB(yu, €} for such y,e. and WO,(A) will
be more dominant than WB,(A) in a wavelet band splitting. Then WSPAI will not
provide a good preconditioner. A stage 1 preconditioning is needed before using a DWT
to construct a stage 2 preconditioner.

In summary, this paper will address a class of matrix problems in the matrix space
of WB(p, €) where both p and e are relatively large i.e. WO, (A) is not small compared
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Figure 1: Finger-like sparse pattern of A*. Note A* € WB(16, 2.34) meaning that A* is
not a smooth matrix as far as banded matrix approximations are concerned.

Figure 2: Finger-like sparse pattern of X-TA*. Note that after a stage 1 preconditioning,
X~1A* € WB(16,0.03) meaning that the preconditioned matrix is smoother.




to WB,(A) for reasonably small 4. The proposed strategy of combining a precondition-
ing pre-processing (stage 1) and a wavelet band approximation (stage 2) gives a more
robust preconditioner than WSPAI and SPAIL Our analysis will assume a diagonal non-
smoothness but the method itself is more generally applicable.

The plan of the paper is as follows. In Section 2, we analyse the preconditioner
WSPALI proposed in [5] using the new concept of wavelet band splittings and show that
a simple way to improve the preconditioner is to allow the inclusion of off band matrix
elements (the exact inclusion algorithm). But this will make the new preconditioner
too expensive. In Section 3, a 2-stage preconditioner is proposed. We analyse the use of
diagonal scaling as a stage 1 preconditioner and propose a minimization approach to select
the best diagonal scaling preconditioner. We also consider other scaling preconditioners
that are not diagonal matrices, In Section 4, we consider the complexity issue of this
type of preconditioners. In Section 5, we use several numerical examples to compare the
new preconditioner with WSPAI and the simple diagonal preconditioner. We present
discussions of further work in Section 6. |

2 A new WSPALI type algorithm

The wavelet sparse approximate inverse preconditioner (WSPAI) of [5] proposes to select
the preconditioner M~ in (2) by solving the following problem:

min[AM™' = I|lp = min||WAWTWMWT — 1|5
= min |AM ™" - I{|p. (M)
M

The use of Frobenius norm decouples the above problem into n least squares problems
for column of M~1;

min || A77; — e;1s, i=1,2-- n. (8)
m;
These problems are solved by specifying a block diagonal sparse pattern for the m;’s; see

5, 18].

To analyse the preconditioner, we consider a relationship between operator splitting
with norm invariance and approximation by band structures. Thus this work is based
on a slightly different philosophy from that of [5, 18] — we are trying to approximate
better the transform matrix, not directly pursuing the smoothness of the inverse of the
transform matrix.

We first illustrate how the present WSPAI method works in the new setting and demon-
strate what happens with a strong singularity. Then we present an improved method and
discuss its implementation. Recall the usual 2-norm for vectors x € R™® = R™* and the
Forbenius norm for matrices A = [4;,..., 4,] € R™™

"\ .
nwnz:(;m?) , 1!A||F=(g:1i|Aju§)

1/2
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‘These norms are invariant under orthogonal transforms.

2.1 The vector case

For easy presentation, we first discuss an one-dimensional version of problem (7). Given
x € R", we wish to find a sparse vector y € R" such that

min [z — ylls = min [Wz —~ Wyll, = min 17— glla- (9)

To mimic problem (7), we specify that § will be consisted of a dense vector of size u and
a zero vector of size (n — u). Then an approximate solution will be

g'___ Ej:jglu‘:
7 0, j>p

We can see that this approximate solution will be fairly accurate if x represents a smooth
function with weak or no singularities at x; because for large j, the wavelet coefficients
will be small.

For example, consider z == [8 76 54 3 2 1]T and use the Haar wavelet transform (with
3 levels and bandwidth p = 3). We have

.
F=[12.7279 —56569 —2 -2 —0.7071 —0.7071 —0.7071 —0.7071 | ,
j=[127279 56569 —2 0 0 0 0 O]T,

G=Z-7=[0 0 0 —2 —0.7071 —0.7071 —0.7071 -~0.7071]T

In the wavelet basis, 7 is an approximation to Z and the total energy is ||z||% = ||Z||% =
5l|% + l|€|i% = 204. The relative error is ||€]|%/||Z||% = 0.0294, which may be acceptable.
However, the approximation scheme is not so good if there is a strong singularity. For
example, consider the same method for a new vector z =[30 76 5 4 3 2 1]T, that will be
taken as our main example in the remainder of this section. We get

F=[205061 —13.4350 —13 -2 —16.2635 —0.7071 —0.7071 —0.7071]T,
§=|205061 —13.4350 —13 0 0 0 0 O]T,
&

2[0 0 0 -2 -16.2635 —0.7071 —-0.7071 —-0.7071 ]T.

Now the relative approximation error is not very small, ||¢/|%/]|Z|% = 270/1040 = 0.26!
We wish to reduce this error by modifying the scheme. To do an analysis first, we need
the following definitions (that are applicable for both vectors and matrices), where we
need the notation W, =W =W, ., ifm=nand Wy, =1ifm=1.

Definition 1 (wavelet band splitting) For a general matriz B € R™™ (n > m} and
a gwen bandwidth u, if there exists a splitting

B =B+ By
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such that under a wavelet transform By becomes a banded matriz By of semi-bandwidth I
and By becomes an off-banded matriz B, complementing B, in sparsity, i.e.

WB,W, = “banded matriz”,
then the splitting B = By + By is called a wavelet band splitting.

Theorem 1 (uniqueness) For orthogonal wavelet transforms, a wavelet band splitting
as defined in Definition 1 is unique and F-norm invariant.

Proof. For any given splitting B = By + B,, we always have B = B, + B, with
B = WBWbT. As the banded madtrix E’E and f?; complement each other, E is clearly
unique. Further by orthogonality and By = WTE W;, we have the norm invariance. Wl
For clarity, following the uniqueness result, we write such a wavelet band splitting in

a functional notation
B =WB,(B)+ WOM(B), (10)

where matrices on the right hand side may be calculated by

B =WB,(B)=W'(B) W,=W'(WBW,) W,

ban ba
By = WO, (B) =WT" (B)off =wT (WBW,) o W

Generally speaking, in the wavelet space, banded matrix approximations can only pro-
vide effective preconditioners if WB,(B) in the wavelet band splitting is dominant. To
characterise this dominance more precisely, we give the following definition.

Definition 2 (wavelet band space) For a general malrizc B € R™™™ (n > m) and a
given bandwidth p, we say B belongs to o wavelet band space WB(y, €), B € WB{u, ¢),
if WB,(B) dominates the wavelet band splitting of B in the sense |[WO,(B)||7 <
e[ WB,(B)|%-

Note that with the notation W}, the above definitions apply to both a vector z (m =
1) and a squares matrix A (m = n). We now illustrate close relationships of wavelet
band splittings, wavelet band space, smoothness and accuracy of banded approximations.
Consider the above vector example with m = 1 and p = 3:

T=1[307654321]". (11)
By inverse transforms, we find that

WBs(z) =WTj=[185 185 55 55 2.5 25 25 2.5}T,
WOy() = WTe=[ 115 ~115 05 0.5 15 05 0.5 ~15] .

Clearly we can verify that z = WB3(z) + WO;3(z) and [|[WB;3(z)(|% + |[WOs(x)||% =
|lz||% = 2040 due to norm invariance. Note that z € WB(3,0.59). We now use wavelet
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band splitting to explain which entries of  are more responsible for this approximation
CITOT.

Consider a non-band and linear splitting as follows z = d+c (representing respectively
smooth and nonsmooth parts of z) with

.
d:[zzooooooo ,

Cm[87654321] 12

To see how much each part (vector) contributes to the approximation g, one can carry
out separate transforms and inverse transforms to find that d = WBs(d) + WO3(d),
d = WB;{c) + WO3;(c) represent two wavelet band splittings with

- T
WBs(d)=[11 11 0 0 0 0 0 0],

WBa(c)= [ 7.5 7.5 55 55 25 25 25 25]

‘
WOs(d)=[11 -11 0 0 0 0 0 0],
WOy(e) =[ 05 —0.5 05 —0.5 15 05 —0.5 —15]

I

Notice the linear relations
WB;(d) + WB;3(c) = WB;(z) and WO;(d) + WO3{c) = WO3(x)

hold but only WB;(xz) generates the approximation §. The fact that the large vector
WO3(d) is not contributing to the approximation is a main source of error. Here ¢ €
WB(3,0.17) and d € WB(3,1) ¢ WB(3,0.59) ¢ WB(3,0.17).

Therefore, intuitively, we hope more information should be included in WB;3(z) in
order for  to be a good approximation to Z; however by Theorem 1 wavelet band splitting
is unique so we may have to go beyond band approximation. We suggest two related
methods for improving such an approximation: exact inclusion and preconditioning —
both will be generalised to the matrix case.

2.2 Exact inclusion

Here we propose an approximation based on wavelet band splitting plus exact represen-
tation of the transformed singular information. This requires a knowledge of the exact
locations of transformed singular entries. An easier way to proceed with this is to do a
symbolic transformation of the singular vector (such as d in {12)) and record the loca-
tions; this is especially necessary for matrix problems where an analytical trace is difficult.
However for vectors, an analytical trace can be done.

Theorem 2 (trace of singularity) Let z; # 0, z = [21,0,...,0]T € R* and the stan-
dard Daubechies’ order ng,; wavelets be used with L levels. Then the nonzero positions in

the transformed vector z = Wz are located in this set of indexes:




1. for ngys = 2, Ky = Ut_o pr with pg = {1} and p, = {n/2% + 1}.
2. for naws = 4, Ku = Upzo s with po = {1, n} and pp = {n/2F — 1, n/2%, n/2" +1}.

Proof. By induction. We only need to illustrate the second case. Note that the overall
transform {16] is W = W, Wr_ --- W) with

X
X
Xy X,
Y
Wy = H
Y
Y, Ya
L
= S nxn

where X = [X, X] =lco ¢1 ¢ ¢3] and X = [X, X,] = [do d1 d» d3] are 1 X 4 blocks, I, is
an identity matrix. Then at step 1 with W), we get the index set {1, n/2, n/2+1, n} =
po U{n/2, n/2 + 1} from

A=Wz =["0 ... 020, 2%, 0 ... 00

and at step 2 the set {1, n/22~1, n/2% n/2°+1, n/2-1, n/2, n/2+1, n} =peUp1Up2
from |

D =W, Wiz = [0 ... 0 zr(zzf)zﬂ—l zr(f/)zz zv(zz/)zzﬂ 0...0 37(12/)2—1 31(12/)2 zv(zz/)2+1 0...027]".

Proceeding this way will complete the proof. W
Consider the above example again with

z=[307654321]".

With ngy = 2 and L = 3, Theorem 2 gives the index set K = {1, n/2+ 1, n/2% +
1, n/28+1} = {12 3 5}. As {1 2 3} are already within bandwidth 3, we have

.
#=[205061 —134350 —13 —2 —16.2635 —0.707L —0.7071 —0.7071] ,
§=[205061 —13.4350 —13 0 —16.2635 0 0 o}T,

c=[0 0 0 -2 0 -07071 —0.7071 —0.7071]T.

The new approximation error is much smaller: |i¢||%/||Z||% = 5.5/1040 = 0.0053.



2.3 Preconditioning the problem

Assume that there is a strong singularity and the idea is, by preconditioning, to split the
given vector into a unit vector plus a smooth vector before applying the wavelet transform.
This preconditioning will ensure that the smooth vector is well compressed by a wavelet
transform while the transformed unit vector, that is really a column of the orthogonal
wavelet matrix, is included exactly. Let o be a suitable scalar and e; be the usual unit
vector. Then

alr=e +1,=¢€ + WB,.(z.) + WO, (z.), Walz = We, + i,. (13)

For vectors, including We, in a banded approximation in the wavelet space is equiv-
alent to the exact inclusion approach of the previous subsection. However for matrices,
a transformed identity matrix is still an identity and thus the exact inclusion is fulfilled
implicitly without extra work. This preconditioning step corresponds to the stage 1 pre-
conditioning discussed later.

For our main vector example, we may consider these two splittings ¢ = a1e; +z,, and
T = ge1 + T, With oy = 22, ay = 24, and

.
Ty =[8 7 65 4321],
e =[67654321],

o'z, = [ 0.3636 0.3182 0.2727 0.2273 0.1818 0.1364 0.0909 0.0455]T,
.
07 %0, = [ 0.2500 02917 0.2500 0.2083 0.1667 0.1250 0.0833 0.0417 |

Clearly the scaled vectors, apart from adding a unit vector, are smooth and can be com-
pressed well. Further as expected, the resulting approximation errors for the two precon-
ditioned cases are both small, respectively, 0.005 and 0.03; in particular a7 'z,,, @5 " Za, €
WHB(3,0.073). This idea is explored below for matrix problems.

2.4 'The matrix case

Based on previous observations of the vector case, we now apply the same ideas to matri-
ces, leading to our new preconditioning algorithms. Firstly we illustrate existing problems
with the present WSPAI algorithm [5].

For the discrete operator A € R™", consider the splitting

A=D+C, (14)

where D is a diagonal matrix (not necessarily the diagonal of A) selected so that C is
smooth and we assume the singularity of A is along D (refer to (12) and the example
below). If such a singularity is strong and D is not a constant diagonal matrix, then
D & WB(u, ) and C € WB(u, €) (for some interested p and €) and we claim that WSPAI
will produce a poor preconditioner.



To explain in details, for a given bandwidth p, we shall use Definition 1 and consider

the wavelet band splitting
A=WB,(A4) + WO,(A).

The wavelet transformed matrix is
A=WDWT + WCWT = WWB, (AW + WWO, (AW,
and the WSPALI selects the block diagonal part of ﬁ, or equivalently to:
M=WWB,(AWT = (WAW Nsana,

for the WSPAI preconditioner M. To see a relationship between M and D and C,

consider
D= WB“(D) + WO”(D) and C=WB,()+ WO#(C).

Then one can verify that

WB,(4) = WB,(D) + WB,(C), WO,(4) = WO,(D) + WO,(C).

That is,
A= }?VB#(D)JwF\‘NB”(C)J+\VVO#(D)J+:WOH(CL (15)
. larvge la;ge o la,;ge small )
precondi];ioner M off~bandvdropped

where the first part is used to construct a preconditioner and WO, (D) is usually large
but is zero when D is a constant diagonal matrix.

Such a WSPAI preconditioner M}, generated from WB,(A), contains all the dom-
inating information WB,(C) from the smooth part of A and one non-smooth part
WB,, (D) of D but not the other non-smooth part WO,(D). Because

M7IA = WWB,(A) AW = WWB,(D) + WB,(C)] 1AW ™

and W is orthogonal, the preconditioned matrix M ~! A has the same spectra as [WB,,(D)+
WB,(C)]71A. This implies that this WSPAI preconditioner of [5]

e is very effective whenever WO, (D) is small; e.g. for Laplace’ equation where A is

relatively smooth along the diagonal.

¢ may not be effective whenever WO, (D) is not small or dominates WB,(D). In
such cases, for the same reason, WSPAI may not be better than the simple diagonal
preconditioner — this depends on a balance of dominance between WB,(C') and
WO,(D).

In the next subsection we show one example of wavelet band splittings for a 2 x 2 matrix.
To verify our observations on WSPAI, we solve the following two linear systems: Az =
b with
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Example 1

201 -1 -1
-1 201 -1
-1 201 -1
A= ) (16)

-1 201 -1

-1 -1 2.01 |

Example II
[ (n+ 4)? 81 81

81 (n+3)2 81
81 n-+2)2 81
ey s (a7
81 42 81
81 81 5% |

We use the iterative solver GMRES(10) [15] and compare the WSPAI preconditioner
with the simple diagonal preconditioner. Here we take n = 256, ngyy = L =4, p =35
(bandwidth). The convergence results are shown in Figures 3-4 respectively for the two
examples, where WSPALI is shown as ‘x’ and the diagonal preconditioner as ‘0’. We can see
that for the smooth Example I, a diagonal preconditioner alone is not as good as WSPAI
but for the nonsmooth (near the diagonal) Example II the reverse is true — confirming
our claim. We now seck improvements to WSPALI

Remark. For sparse matrices, wavelet band splittings can be dense. Thus wavelet band
splitting provides a tool to study preconditioners in the original matrix space instead of
the wavelet space. This brings out an interesting fact about wavelet transforms. They
could help to design a dense preconditioner to approximate the original sparse matrix more
closely but can be implemented in a cheap way. This fact seems trivial for dense matrices
but is an interesting way to justify the use of sparse preconditioners (associated with
wavelet band splittings) [8]. However the wavelet band space determines the effectiveness
of such preconditioners — a stage 1 preconditioner enables a matrix to change its wavelet
band space (Section 3).

2.5 Algorithm 1 — exact inclusion

The previous two examples have demonstrated that the strength of diagonal singularity is
directly related to wavelet compression of matrices into sparse band forms. Following the
idea of exact inclusion in §2.2, we propose a method that combines wavelet compression
and sparse approximation.

Consider the matrix splittings in (14) and (15). The new idea is simply to include

11



Figure 3: Convergence history for Example I: GMRES(10) with the diagonal precondi-
tioner (‘0’), the present WSPAI (’x’} and the new Algorithm 1 (“*’). This example shows
that when WSALI works it out performs the simple diagonal preconditioner but Algorithm
1 is the best.

residual
=
=
T
4
L

0 1 20 a0 40 50 60 70 80 90 100

Figure 4: Convergence history for Example II: GMRES(10) with the diagonal precondi-
tioner (‘0’), the present WSPAI (’x’} and the new Algorithm 1 (“*’). This example shows
that when WSAT does not work it is worse than the simple diagonal preconditioner but
Algorithm 1 is again the best.

residual
“
T
.0

L
o

$
j|




WO, (D) in the preconditioner:

A=WB,(D) + WB,(C) + WO,(D) + WO,(C) = D + WB,(C) + WO,(C). (18)

~

la,;ge la;ge la,;ge small M droﬁped
That is,

A = WDWT +WCOwW?'
= [WDWT + WWBL(C)WT]| + WWO,(C)WT, (19)

and we select the new preconditioner as
M =WDW'T + WWB,(C)W '

for A. This can be illustrated in Figure 5, where A1 = A4 is the wavelet transform matrix,
D1 =WDWT and M1 = D1 + WWB,(C)WT = M. To relate the new wavelet SPAI
preconditioner to the preconditioning of the original problem, consider

M4 = [WDWT+WWB,(C)W'| 4
= WD+ WB,(C)] AW,

As C'is a smooth matrix, we expect that in the wavelet band splitting WB,(C) dominates.
So [D + WB,(C)] can approximate A well and thus M ! is a good preconditioner.

Although [D + WB,(C)] and M are equivalent in the spectral sense and both can be
computed efficiently, however, the former matrix in the original matrix space is not easy
to invert so preconditioning using M will be done in the wavelet space. The procedure
can be summarised as follows:

Algorithm 1
1. Perform o DWT to Az = b to get: Azy = by;

2. Perform a symbolic DWT to a diagonal matriz D to get a boolean matriz D1,

3. Select the sparse preconditioner M1 from A such that it has the sparse pattern as
D1 plus a banded matriz of width p;

4. Solve the preconditioned system: M~tA;z, = M~1b;.

The effectiveness of this algorithm is illustrated by solving Examples I and II again;
in Figures 3-4 we plot the results of Algorithm 1 using the symbol “¥. We can see
that Algorithm 1 is robust and effective. The only problem with this algorithm is that
the preconditioner can be expensive to invert because it has the same unpleasant sparse
pattern as matrix A. A solution to alleviate this problem is to find a suitable thresholding
€ to drop small elements of D = WDWT in the symbolic transform stage; this idea is
pursued in [10]. Instead we consider the alternative method of preconditioning as in §2.3.
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Figure 5: New exact inclusion preconditioner M = M1. Observe that the preconditioner
M1 follows the sparsity pattern of the transformed matrix Al.
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3 Two stage sparse preconditioners

Following §2.3, for a given matrix A € WB(pu, €), we wish to construct a preconditioner
Mt
M'A=1+35, (20)

such that § € WB(u, €) (and we know that T € WB(p,0)). Matrix M; ' is called a stage
1 preconditioner. Then it is not difficult to see that a wavelet transform can compress the
preconditioned matrix M; 1A well and lead to an efficient preconditioner My with

My=TI+WWB,(S)W'.

3.1 Algorithm 2

One way to choose M; is to use D in the simpler splitting (14) and do the stage 1
preconditioning as follows

A =D'A=I+D"'C (21)

where we may identify D with M and D~'C with S in (20). The wavelet transformed
matrix is

A =T+WDICW' =T+ WWB,(S)W' + WWO,(S)WT, (22)

14



giving rise to the stage 2 preconditioning

-1

M, =1+ WWBLSWT]
Thus our new algorithm can be stated as follows
Algorithm 2 (2-stages)
Stage 1:

1. Find on a suitable operator splitting A = D + C such that C is smooth and D can
be easily inverted;

2. Select the first preconditioner as M7 = D™1;
3. Precondition the original problem: M; Az = M;'b;
Stage 2:
4. Perform a DWT to the scaled system and get Az = 51;
5. Select the WSPAIT preconditioner E_l from a band part of matriz Ay;
6. Solve the preconditioned system: E—lglml = E—lgl.

Here we assumed A is unsymmetric because we are primarily interested in unsymmet-
ric linear systems; it is possible to develop a symmetric version where both stages of
preconditioning must be done symmetrically.

It is of interest to combine both preconditioning steps and show how preconditioning
is precisely done.

Theorem 3 (equivalence of 2-stage preconditioning) Cast both preconditioning stages
(21) and (22) into one step, the proposed 2-stage preconditioning is equivalent Lo precon-
ditioning the original matriz A = D + DWB,(D'C) + DWO,(D™'C} by

-1

[D + DWB,(D™'C)]

Proof. Since S = D71, a simple substitution shows that

M, A, = [T+WWBLSWT| WD awT (23)
= WI[D+DWB,(S)] AW,

Note that A = D4+DWB,(5)+DWO,(5) = D+D[WB,(S) + WO,(S)] = D+D=S =
D+DxD~1C = D+C. Tt is evident that the proposed 2-stage preconditioning is equivalent
to using M~! = [D + DWB,(S)] ! to precondition the original matrix A. W

Therefore the two stage preconditioner will be effective provided that WO, (S) as well
as WO, (C) are small i.e. S € WB(u,¢) if C € WB{u,¢€), as expected. This will be
established next after showing a simple example.
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3.2 Summary and example

To demonstrate the differences between Algorithms 1, 2 and WSPAI of {5] in terms of
spectral analysis and wavelet band splittings, we may use the following table (note D =

WB,.(D) + WO, (D)):

Method Equivalent splitting of A (induced by wavelet band splittings)
preconditioner M A—M

WPSAI WBL(D)+ WB,(C) | WO,L(D)+WO,(C)

Algorithm 1 | D + WB,,(C) WO,(C)

Algorithm 2 | D+ DWB,(D7!C) | DWO,(D'C)

Now consider a simple 2 x 2 matrix A to illustrate;

17 2 16 0] 1 2
A:[ . 3]=D+cz[ 0 2}+[1 1].

Using Ngy: = 2, L =1, p = 0, we find

9 0] (1 15
WBB(D):[O o ,WBy(C) = L5 1 }

7 0] 0 05
WOD(D)z[O _ , WO, (C) = o5 0].

Because C' € WB(0,0.28), D € WB(0,0.78), we may say C is smoother than D.
The WSPALI algorithm [5] gives the following splitting

10 15 7 05
A_[1.5 10]+[—0.5 —7]’

115 0}‘1[ 115 m6.5}_[ 1 —0.5652}

—
M—A= [ 0 8.5 -7.5 85 —0.8824 1

with eigenvalues A(M~1A) = [0.2938 1.7062], singular values o(M ' A) = [0.2887 1.7363]
and [|A — M||%/|| M|% = 0.69 because A € WB(0,0.69). In comparison, Algorithm 1

gives
17.0 1.5 0 05
A‘{ 15 3.0]+[—0.5 0]’

-1
Mmlg:[ 11.5 —7.0] { 11.5 —6.5}:[ 0.9282 0.0872}

—-70 8.5 —-7.5 85 —0.1179 1.0718

with better distributed eigenvalues A(M~1A) = [1 — 0.0716: 1+ 0.07164], singular values
o(M~A) =[0.9318 1.0787] and |4 — M||%/||M||% = 0.04. Finally Algorithm 2 gives

A-] 208 51, [-35 -3
T 106250 2.5625 0.375 0.4375 |°
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S _ [ 15938 0] [ 1.5938 0.0313

2 0 0.9688 0.4063 0.9688
_ g-if | 143438 —6.7812 s 65 1 0.0196
- T | —11.1563  8.7188 —75 85| | 04194 1

with these eigenvalues A(M L A) = [0.5093 1.0907], singular values o (M~ 4) = [0.8003 1.2393)
and || A — M||%/|IM|% = 0.22 while D~'C € WB(0,0.22). Both the eigenvalues and sin-
gular values suggest that Algorithms 1 and 2 will yield more effective preconditioners than
WSPALI [5]. The singular values in particular imply that the conjugate gradients normal
equation method (CGN) may be used for the preconditioned systems [14].

The assumption of a smooth C' means that in a wavelet band splitting of C, WO,(C)
is small in F-norm i.e. C € WB(u,€). In the spectral analysis of (23), we assume that
WO,(5) = WO,(D™IC) is small if WO,(C) is small i.e. D7IC € WB(u,e) if C €
WB(p, €). Below we shall make this statement more precise by considering several simple
cases.

3.3 The diagonal scaling

A diagonal stage 1 preconditioner is the easiest matrix to invert. We study its effec-
tiveness. As before assume that 4 = D + C and C € WB(u, €) is a smooth matrix
such that WO ,(C) is small. We hope to establish that WO,(S) = WO,(D~1C) is also
small. Inevitably we need to compare the elements of C = WCOWT with § = WSWT =
WCD-W'T. This requires the following elementary lemma.

Lemma 1 Given an integer ngy, real numbers wy, wa, ..., Wp,,, ond positive real
numbers Dy, Do, ..., Dy, ., we have
Ngwt Ndwt

Wy 1
T=3% Y_ LN,
j=1 D; D, j=1 ’
where D, lies in the interval [min D;, max D,].

Proof. The case where all w; are of one sign is trivial. We assume the first n; numbers
of w; are positive and the rest negative. Let o = 32721, w; > 0 and b = 374 . w; < 0.
Then because each partial sum contains terms of a single sign, there exist two harmonic
means Dy, Dy € [min Dy, max Dy] such that a/D, = X732, %i} and b/Dy = 334 %i
Now consider T = a/D, + b/ D, and two separate cases: D, > Dy or D, < D,. It follows
that there exists D, € [minD;, max D,] such that T = (a + b)/D.. W

Remark. The above quantity D, computed by

TMdwt Nt

D= w />
=1 = Di

is a weighted harmonic mean of D;’s and it is the exact harmonic mean of D;’s if w; =1
for all 7.
Our main result can be stated as follows.

17



Theorem 4 (diagonal scaling) Let D,C € R™™ with D = dz’ag(Dj). a diagonael matriz
and ng,; be the order of Daubechies’ orthogonal wavelets. Assume we have the wavelet
band splittings: C = WBL(C) + WO,(C) and D7IC = WB,(D~'C) + WO,(D71C).
Then the following results hold
1. WDT'CW' = H-WCW ", where -’ means a pointwise product and element ﬁ,;j =
1/H;; with Hy; a weighted harmonic mean of D; lying inside [min D;, max D;l;

min D,

p ma,xJDJ
' max

||WO O)lr < IDWOLDTO)r < ||WO (S]1}:X

Proof. (1). Let S =D 10,8 =WSW",U=C = WGWT. To compare S with C,
define B = CW. For simplicity, consider ng,; = 4 and L = 1 first (using the notation
of Theorem 2). Then a direct calculation shows that

4
ch—EBik,j/Dik if 4 S n/2
gij - kjl
Z dk—lBik,j/D'ik if2 > TL/2
k=1
where the index i = (21 — 1)+ (k — 1) for ¢ < n/2 and % = 2[(i — n/2) ~ 1] + (k — 1) for
i > n/2. Using Lemma 1, there exists a weighted harmonic mean H;; such that

Sij = H{;IU;J'.

For L > 1, the wavelet transform operates with dimension n/2¢ with £ > 1 and Lemma 1
can be applied repeatedly. This completes the proof of this part.
(2). Define Y = DV with V = WO,(S) = W " (WSW ),;;W. Because

V==Y (DQZ )

jm=] j=1 i=1
and

; SVE=IIWIWSW ) W% = [(WSW T)ogs I3,

therefore
min DY[[(WSW oz ll7 = [DWOL(S)[|7 < max DI|(WSW  )ors I3

We now try to bound the last term on the right hand side. We find:

_ U2
NWSWhopsllz= > S5 = >

fi—7l>u |1““J§>M if

< > U

i HJ [i—gi>pe
— T 2
= ——=[[WO,L(O)}

min D;‘-’
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Similarly,

1 2
m”wou(c)ﬂp-

I(WSW Yol =

Combining with above norm bounds gives

min D? max D?
LIWOL(O)E < IDWOL(DTO)F < 3

e D < WO,

min DJQ-

Taking the squares root yields the required result. M

Remark. When one of the diagonal entry Dy is negative, the results of Lemma 1 and
Theorem 3 are not true. However, this case can be fixed because we may multiply —1 to
rows that have a negative diagonal first before applying a scaling preconditioner.

Corollary 1

1. If D is a constant diagonal matriz, then
IDWO,(D™'C)|[5 = IWOL(C)|I5
and Algorithm 2 is identical to Algorithm 1.

2. If C is a matriz of identical rows, following on Lemma 1 and Theorem 3, a stmpler
result holds
WD ICWT =H-WCwW"'
where Hy; = 1/Hy; is a diagonal matriz with Hy o weighted harmonic mean of
D;’s and inside [min D;, max D;]. Then we have WB,(D™1C) = W (HC)ponaW
and WO,(D™'C) = WT(HC),;sW. That is, approzimately, D™*C € WB(u, €) if
C € WB(u, €).

8. More generally, Algorithm 2 is efficient whenever C is a smooth matriz and the

condition number of D is not large.

3.4 Selection of the best diagonal scaling preconditioner

We now discuss how to partition the matrix A = D + C so that the error term or
the upper error bound in Theorem 4 is minimised, hence elaborating on Corollary 1(3).
Clearly the minimization of the single term ||[WO,(C)||%, not including the other term
max D;/ min D;, is easy to do. We shall investigate the general problem of minimising
the whole terms and propose a solution method for simple cases.

To motivate the ideas, consider the following problem for z = [z, -++, z,]" € R"
(similar to (11) and (13)):

min [WO,(a?) 3,
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where 2 = 2% + 2#, z; = o+ § and

7% = {O!, 0:"': O]Ta
'Tﬁ = [6: T, + vy mn]T'

Asin §2.1, we take bandwidth 2 = 3 and consider, for simplicity, the Haar wavelets ng,; —
2. Let n = 2% and a full wavelet transform of k levels for z# is ## = W,W,_1 ... WyzP.
Then a direct calculation shows that:

1 1 1
ler:ﬁ = [E($2+ﬁ), 5(3344‘333), ey, E($n+$n_1),

1 1 L !
ﬁ(m—ﬁ): E(aﬁi_a@)ﬂ B E(xn_x"-l)

The off-band squared error at level v = 1 induced by 8 is (2 — 8)*. Similar calculations
for WoW12# gives the extra error at level v = 2 is i—(mzl + 23— 29 — ﬁ)z. Thus the overall
error induced by 8 component is:

1 1
Eg = (332 8+ ($4+$3—$2 —B)%+-- +2k(:cn+:cn_1+---+:cn/2+1—rcn/z—---—xz—ﬁ)?'

with 9E .
8 n—
e — ﬁ — — Xi.
BIB 2k 1 21{: Ij;‘z 3

Clearly
rr%in Eg = mgn ”WO# (xﬁ)”%‘,

whose solution is

Zxa‘

For the example (11) with z; = 30, in §2.3, we have intuitively tried oy = 22, 8; = 8,
and an = 24, B3 = 6. From the above analysis, ; = 8 is a reasonable choice because the
level pp = 2 error is zero but § = 6 is not a good choice. We could try § = o = 7 which
makes the level p = 1 error zero. However the best choice is 8, = E?:z z; /T =28/7 = 4.

Now consider the matrix case. Let A = D + (' with D a diagonal matrix and C have
n unknown parameters: Ci3, -+, Cp,. Then following Theorem 4, our problem is to

n—l

solve either

max(A4;; — Cj;)

o, i, IWOLIO)F min(Ad;, —Cp)  °F Cig < Ay, (24)
or .
o min  [[DWOLDTC)r st Gy < Ay, (25)
1,1, — La,n

Here our assumption is that A has positive diagonal entries (see the previous Remark)
and the constraint is to ensure I is positive. The general optimal solution for either
problem is hard to find. We shall consider an iterative solution for minimising the object
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functional in a subspace of 4 parameters for simplicity; it is analogous to minimize a
different number of parameters (say 1 or 8).

To demonstrate how to decouple the problem and reduce it into a local minimization,
we consider ng,: = 2 with only 2 levels of wavelet transform. As with vectors, we perform
direct transforms and compute the squared errors WO, {C) and WO, (D71C) of off-band
elements involving C; ;. We consider the 2 cases of (24) and (25) separately.

Problem (24). For level v = 1, we have (showing elements involving C; ;):

_ Ci?s Gf d -
cy et
iy Oy
WI CWIT = C{i’s 2 C{M /2 )
cge o
L Cn/2 O”/2 dnxn

where ‘s’ stands for sum (average) and ‘d’ for difference, and

1
CF = 5(Cajaj + Caja,2 + Crjzj1 + Cojma i),

1
Gyt = 5 (Caizj + Cajm125 = Cajj — Cajm1,2j-1),

1
Cfs = i(czjgj — Coj125 + Cajoi—1 — Cojo12i-1),

1
Cit = §(Ozg',2j = Cyj-1,95 = Caj2j-1 + Caj—1,25-1)-

The quantity of interest is the level ¥ = 1 squares error:

nf2 n/2 .
2
Z [O;d + O;?S ] Z 023,23 OQjm1,2j~1)2J+£02j—1,2j - C’zj,Zj—1)2J
g=1 =1 unk;Lrown kn;wn
We may use the notation:
n/2
WO (O) |17 = —2(023,23 Coj-1,2i-1)°

3“*1

to represent the level v = 1 error.
To work out level ¥ = 2 error, note that due to orthogonality, the level v == 1 error
of off-band elements remains unchanged at fine levels. Thus we are only required to look
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into a smaller diagonal block for each new level with:

3 Clssss Ciedsd T
dsd
0'2”33 CS s
slsf.%s Cac;'%d
n n
(WoWLCW W njasensz = Csds Cdad :
dsds dddd
C3 C3
dsds dddd
i Cale Cat

where similarly
1
Ojsss = "2“(0 + 023 1,27+ 02323 1t 023 1)
and so on. The extra level v = 2 error is:

1 nf4
16 Z [(O 27— P+ 5i-12; — Cataj—1) }

1 n/4
=3 > [(Crim145-1+ Cajor,45 + Cajaj + Cajag)—
=1

(Caj-3.4j—3 + Caj—345—2 + Caj_2.4j-3 + 04;.‘—2,4;;-2)]2 + (‘)2,

where (-)}? denotes a second term not involving the unknown diagonal entries. Thaf is,

1 nj4
IWOE(C)|% = 3 Y [(Cujrgjr + Cojer gy + Cajaga + Clajag)—
j=1

(Cyj—spj-s + Cajozaj-2 + Coj945-3 + 04;;'—2,43'—2)]2

is the level ¥ = 2 error. Here the pattern to observe is that each level error involves a
difference of large diagonal blocks: 1 x 1forv=1,2x2for v =2 and 4 x 4 for v = 3
and so on.

Therefore to construct a smooth C' matrix, we need to select C;; in such a way that
the difference of (at least fixed) diagonal blocks is minimal. To illustrate this idea, we
have tried several simple matrices and found that the following C' matrices are desirable
in terms of good smoothness:

1. A constant diagonal matrix — the off-band errors are zero because the difference of
any sized diagonal blocks is zero.

2. A block diagonal matrix of constant and symmetric 2 x 2 blocks — level 1 errors
are zero.

3. A block tri-diagonal matrix of constant and symmetric 2 x 2 blocks (not necessarily
with global symmetry).
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4. A block matrix of 4 x 4 blocks which are symmetric (and especially have constant
diagonals) — the difference of blocks are predictable.

The first and simplest choice of C;; = 0 and D;; = A;; for all j is a reasonable one
because level 1 error “WOL}) (C)||% is zero — this is the well known case of a diagonal
preconditioner: D = diag(A). In this case, term 1 in (24) gains a minimised solution
while term 2 inherits the condition of the diagonal entries of A.

The other extreme choice D = const I is absolutely not useful because ' has the
smoothness of A as the off-band errors remain the same. In this case, term 1 in (24)
inherits the smoothness/non-smoothness of A while term 2 gains the optimal condition
of 1! Thus a good strategy would be to minimise the first term in (24) after specifying a
bound for the second term as our aim is to produce a smooth C.

From the off-band error formulae, we can see that the minimization of term 1 in (24)
can be easily decoupled while term 2 may be localised to sub-problems. Thus we consider
a simple iterative method for solving (24) in an alternating minimization:
for j=1,5,---,n—3:

2
o min [IWOD(O)+ WORO)E] Fot et (2)
§t. Dpyjers >0, with£=0,1,2,3.
For more clarity, define dy = A p—14%-1 — Cjrh—1,4+k-1 and rewrite (26) as
min  f(dy, ds,ds,dy), st di >0, (27)

dy ,da,dz,ds
where the objective function f is defined as

maxy D?
[IWOP(A - D)|2 + WOP (A — D)|3] -
nj4
= > [(Ai+1,i+1 — Ai; — Dip1+ D) + (Aiysirs — Aipzige ~ Digs + Diso)’

(=31
i 48— 1) 1

+{d + Diys + Diya — D1 — Di)2]

miny, D}

maxy, D ,

ming D} ,
max(d?, ]

=[S+ (o +do = )" + (asa + do = d)* o+ 5+ do + da — dh — )] T,
ko Yh

where a1s = Ajp1 501 — Ajj, Gae = Ajisivs — Ajpojv2, § = §; is the difference between
off-diagonal elements of the 2 consecutive blocks, d,, dp denote, respectively, the maximum
and the minimum of |D;;| for ¢ # 7,7+ 1,7+ 2,7+ 3 and S; is the known sum of all
terms in WOS)(C) + WOf)(C) except when 7 = j. An initial guess for the solution of
(27) may be taken as d,(f) = Ajyp-1j46—1 — the diagonal elements of A.

The above nonlinear problem (outer iterations for the whole matrix) is still hard to
solve and a further simplification is the following. We propose the iterative method (inner
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iterations within each block) for i =1,2,---

min fi2(dt?, d{) = mln FdD, 9, aiY gy,
FopE) B

min f34(d(2) (1)) = mln f(d(l) (*),dg‘),dﬁf)),
(') d(‘) nv d(‘

(28)

in a Gauss-Seidel fashion. Al solutions will be subject to the constraint: dp > 0 for
k =1,2,3,4. In solving equation (28), one must convert the term T2 (inside f) into
simple and elementary functions. This can be done by considering for each sub-problem
of (28) seven possible cases; for example the first sub-problem for dy, d; considers:

. max;[d;,d2]  max[dj,di, d2] o ]
' mlnk[ ]  min[dj, dj, df] 7
) maxk[dk}d d2
" ming[dZ, d2] ]J
5 maxk[dk d
mmk[d2 d dz’ )
maxk[d ,d dj 2
4. = edi; 2
mink[{ = i, 7 4 cdi; ¢ (29)
5 max dk,d _ dz = cd;
ming[d ’§’ 5 mm d d
6 DA% ldz, da _ max[d 5 d4: da] /d2;
. mn}k d2, % d2 = Cfay;
maxy|ds, d2 max[dg,d d2]
7. . 7 = o/d;,
ming[d, df] d3 ’

where ¢ is a generic constant independent of the solution of minimization problem (28).
All solutions to individual cases will be compared by using the objective function f =
fldy,ds, ds, dys) to select the minimum for that iteration. Although (28) is an iterative
scheme, in practice, we only iterate a few steps to get an improved solution. Similarly
the outer iterations (27) will be compared to the initial guess by using the same objective
function for problem (24). In practice, we found that it is more effective to monitor the
objective function formulated for problem (25), i.e. (31), which is discussed next.

In summary, we have obtained a simple optimization algorithm in system (28) for
j = 1,5,9,...,n — 3, that solves problem (24), and gives a minimal solution to the
complicated problem (24). The method can be stated as follows:

Algorithm 3 (selection of D)
1. Compute the objective function f = fo on setting Dy = Ap -
Start of Outer iterations: Repeatedly for j =1,5,9,---,n—3
2. Set an initial guess for di, from diag(A) or the previous outer iteration;
3. Compute 6 = d;, S, a1z and azs.
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Start of Inner iterations: Repeatedly

4. Solve equation 1 of (28) for new dy, da;

5. Solve equation 2 of (28) for new ds, dy;
End of Inner iterations

6. Set D;; =di, Djy1 541 = do, Djyojun = ds, Djysjvs = da.

7. Each time after j = n — 3, monitor the reduction of the same function f over fy.
End of Outer iterations

Here it should be understood that as soon as a value is obtained for Dy ;, the corresponding
Ch is also set. If the solution has to be reset to the initial guess for a certain j in this
Algorithm (due to negative d;), then this particular 4 by 4 block uses the simple diagonal
preconditioner. In any case, the matrix C obtained should be smooth.

Problem (25). As we are interested in reducing the off-band error of a scaled matrix,

it is more natural to seek a solution of problem (25) than (24). However, it turns out
that both the formulation and the solution are more difficult to proceed. As we work
with 724, = 2 and 2 levels of transform, we now formulate this problem by assuming A is
a block diagonal matrix of blocks sized 4 x 4. For the first diagonal block, the off-band
wavelet error can be found to be:

fi = ”DWOM(D-IO)”F = fl(dla dy, da, dy)
= d2 [(H1+ Rh1)2 4+ (G1 ~ g1)2 + (al - b1)% + (a2 — b2)*] +
[(Hl ~ h1)% + (G1 + 91) + (al — b1)* + (a2 — b2)*] + (30)
d2[(H1 — h2)? + (G1 — g2)® + (al + b1)? + (a2 + b2)?] +
d3 [(H1+ h2)2 + (G1 + g2)% + (el + b1)? + (a2 + 42)?],
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where

H1=(—CS8S — F'SS + BSS + CT5)/2;
Gl = (—CSS + FSS — BSS + CTS)/2;

hl = (C1D + F1D)/,/(2); gl = (—C1D+ F1D /\[ 2);
h2 = (B1D + C2D)//(2); g2 = (—B1D + C2D)/] (2),
al = (C1S + B15)/4/(2); bl = (—C1S + B1S)/

a2 = (F18 + C29)/,/(2); b2 = (—F15 + €28 /\[ 2),
C88 = (Aazdl 4 Aus “{;21 Aa2d2y 1o,

C1D = (—2bpth — G2 o S50 o Sty /2,

€18 = (- Alé—dl_i__,___‘é_l__*_Azg d2)/2
BSS = (§§§l+%§§3~+‘4—u+—wﬂ)/2
B1D = (-2 _ Asa +A;41+—4£)/2
BLS = (A 4 A2 A3y Ay
FSS = (4 4 Aus +%;+—L)/2
F1D = (=44 = St + 280+ 530/
L Adz Laty /o,

TS = (Aaa—d3+A;34+é££+A44——d4)/2
2D = (-~ 3§§d3 R o “_‘“)/2:
028 = (- A33md3+_Ai§L4_w:z_iml_+A“ @y /9.

Unfortunately, both ming g, 4, ¢, f1 and ming_ f; for any particular & are diflicult to solve
as it is not possible to find an analytical formula.

However, once a new set of dy, ds, d3, dy values are known, we may use f; to check
whether they produce a smaller value than a previous iterate. Furthermore, the overall
error for the whole matrix is:

nf4d

f*(D) = [[DWOL(D™C)|lf = ; fe. (31)

This new objective function is a better quantity to minimise and monitor than f in (27)
and can be used in step 7 of Algorithm 3.

To summarise, we have proposed an iterative method for solving the minimization
problem (25), with a highly nonlinear (difficult) objective function f*, by minimising its
(easier) upper bound function f in (24) while using f* to monitor the solution process.

For example, taking £ = diag(A) for the following matrix:

22 11

-1 2 11

~11 3 1
~1 4 50
A= 50 88 —1 ’
-3 99 -1

-3 05 0.2
0.01 0.02 |
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we find that f = 5.4 x 107 and f* = 3.5 x 102 with 2% = 9900 and [WO,(C)[f} =
5498. Now using Algorithm 3 with 1 outer iteration and 10 inner iterations, we get a

much better partition A = D + C with

D=~[63 63 54 53 98 87 90 90]"

because f = 1.8 x 10* and f* = 2.7 x 10° with %‘f{%@ = 1.8 and ||WO,(C)||% = 9904.
[
To make C even smoother, it may be necessary to vary more than just a diagonal

matrix. We could consider more general scaling preconditioners.

3.5 Other scaling preconditioners

To construct suitable scaling preconditioners, consider equations (14) and (22) again. We
wish to find different scaling matrices D so that S = D 1( is smoother than C and the
transformed matrix WWB,(S)W ' = (WS WT)bmd
remaining off-diagonal matrix WWO,(uS)W T = (WD“‘OWT)OH. That is, as before,
D7IC € WB(u,€) if C € WB(u, €). Because D is no longer a diagonal matrix, we expect
WO,(C) to be much smaller (that is, C' much smoother) and a similar form of Theorem

4 to hold.
However, as we work with sparse matrices A, the practical issue is not only that D is

for the preconditioner dominates the

(of course) easily and cheaply invertible but also the resulting scaled matrix DA must
be sparse. Therefore the suitable scaling preconditioners D~! must be a sparse matrix.
So the requirement becomes this: find a sparse splitting D that contains the singularity
of matrix A and whose inverse D! is sparse.

Below we consider one simple construction of such a matrix D of near tridiagonal

blocks m x m:
T

F
D=
F

where T' is an m X m block matrix of a band form (e.g. tridiagonal) and F' is a (usually
full) matrix of m x m. Although we may allow this block size m to vary in an adaptive
fashion, we shall take m = 2 in our experiments later.

Determining which scaling preconditioner should be used depends on the nature of the
given problem. Intuitively, one should study the underlying matrix A first and ensure that
C is very smooth and D will contain the most important features (discontinuous elements)
of A while possessing one of these sparse patterns. One should in theory compute a norm
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of the off-diagonal elements of each case before selecting or specifying the pattern of a
suitable scaling preconditioner and for each type of preconditioners try a minimization
approach to optimise the construction. More research is still needed to work out efficient
ways of implementing these ideas.

4 Complexity of the new WSPAI preconditioner

We now consider the complexity of cur main Algorithm 2 and this can be analysed in
the two separate stages. In Stage 1, if an m x m block diagonal preconditioner of size
n =m x r is used (§3.5), the cost of working out D74 is O(m?) *r = O(m?}n = O(n)
—- increasing as m does although this stage is only performed once. The optimization
Algorithm 3 costs O(n) operations for ng,; = 2 and 2 levels of wavelet transform in
selecting a diagonal matrix D (with m = 1). The complexity of Stage 2 is O(nL) with
L the number of wavelet levels used. This has been discussed in [5]. Overall the new
preconditioning algorithm has a similar operation count to WSPAT of [5].

5 Numerical results

We shall apply the new WSPAI preconditioner with GMRES(20) for solving the following
matrix and PDE problems:

P1. A is the perturbed 1024 x 1024 matrix from the smooth matrix of (4) adding a
non-smooth diagonal matrix D with with Dj; = -3 (i < n/2), 3 (i > n/2).

P2. A is the 2D Laplacian operator. This is the second example tested in [5] and we
choose this simple test to demonstrate the behaviour of Algorithm 3 for a smooth
case.

P3. The oscillatory example from Harwell-Boeing collection [12]: Watt (case 1) with
7 = 1856.

P4. An anisotropic problem in both z and y directions:
a(z, Y)tgs + bz, Yluy, = 1,

where the coefficients are defined as ([18, Ch.5])

a(z, ) = 100 (z,y) € [0,0.5] x [0,0.5] or [0.5,1] x [0.5,1]
=91 otherwise;

bay) = { 100 (5,1) € 0,0.5] x [0.5,1] or [0.5,1] x [0,0.5
Y= otherwise.
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P5. A discontinuous coefficient problem:
(a(z, y)us)e -+ (b(z, y)uy)y + ve + uy = sin(way),
where the coefficients are defined as ({18, Ch.3])
1072 (z,y) € [0,0.5] x [0.5,1]

a(z,y) =b(z,y) =< 103 (z,y) € [0.5,1] x [0,0.5]
1 otherwise.

Each PDE problem will be discretised by the finite difference method giving rise to
a linear system of size n x n with n = 1024. As in [5], we shall mainly use L = 6
levels of Daubechies’ order ng,, = 4 wavelets; however when testing Algorithm 3 we
shall use ngy = 2 and L = 2 to verify the effectiveness of optimization (see method S5
below). Recall that WSPAI, when it works, can be compared favorably with other SPAT
preconditioners and ILU(0) and the conclusion in [5] was that WSPAI will out perform
other preconditioners if it does not fail all together. Here in this section we present results
using Algorithm 2 to solve the above examples and compare them with WSPAI [5] only.

For easy presentation, we shall use these abbreviation codes to denote different pre-
conditioning methods (with GMRES(20)):

S1 — WSPAI method of [5] with no scaling;

S2 — Simple diagonal preconditioner;

S3 — Algorithm 2 with a simple stage 1 preconditioner D = diag{A);

S4 — Algorithm 2 with a block 2 X 2 stage 1 preconditioner;

S5 — Algorithm 2 with an optimal stage 1 preconditioner from Algorithm 3.
Then in Table 1, we show the number of accumulated GMRES steps required to reduce
the relative residual error to below 107%. That is to say, 20 steps mean ‘one GMRES(20)’
step and 40 steps mean ‘2 GMRES(20) steps’.

Clearly the simple diagonal preconditioner {case S2) does not work well in general (nor
does the unpreconditioned case which is not listed here). The method of [5] (case S1)
can perform well but appears to be problem dependent. However all cases (S3-55) of two
level preconditioning Algorithm 2 show much better and consistent performance. Note
that the stage 1 preconditioner for both S3 and S4 are cheap and trivial to implement.
The optimization case S5 uses only L = 2 levels but gives the best results. This suggests
that it may be worthwhile to develop an algorithm for L > 2 and ng, > 4 wavelets.
For example P5, we display in Figure 6 the convergence behaviour of all five cases of
preconditioned GMRES. Again one may conclude that for this discontinuous problem, S1
and S2 will not converge.

6 Conclusions

We have presented a robust two level sparse preconditioner for Krylov subspace methods,
improving our previous work on the subject. The novel idea was to introduce a smoothing
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Table 1: Number of GMRES iterations for all test examples

| Example/Method S1 S2 [ S3|S4]8S5 |
P1 68 58 | 51| 25 | 45
P2 22 >100 1) 22| 21|19
P3 50 | > 100 | 34| 32 | 29
P4 62 | > 100 || 63 | b5 | 22
P5 > 100 | > 100 || 54 | 46 | 38

Figure 6: Convergence behaviour of GMRES(20) for problem P5. Symbol O: method S1,
V: 82, {: 83, x: S4, +: S5. Observe that all variants {$3-S5) of Algorithm 2 perform
better than S1-82 although the optimized version (S5) is the best.
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step for the original matrix prior to applying wavelet transforms — combining the wavelet
sparse approximate inverse preconditioner with an exftra (scaling) preconditioning stage.
We have introduced and used a wavelet band splitting idea to characterise singularities
and smoothness in the context of wavelet compression. Simple scaling preconditioners are
proposed and analysed. We have developed a minimization approach to select the best
diagonal scaling preconditioner for simple cases. The successful experiments suggest that
the new two level sparse preconditioner is robust as well as efficient. More general opti-
mization procedures should be investigated in future study for the case of discontinuities
not along the main diagonal. A combination with other ideas such as [13] and [10] may

also be considered.
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