UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Optimal Constructions of Wavelet Coefficients Using
Total Variation Regularization in Image Compression

Tony K. Chan
H.M. Zhou

July 2000
CAM Report 00-27

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90095-1555

http://www.math.ucla.edv/applied/cam/index.html



OPTIMAL CONSTRUCTIONS OF WAVELET COEFFICIENTS USING
TOTAL VARIATION REGULARIZATION IN IMAGE COMPRESSION *

TONY F. CHAN ' aAnp H.M. ZHOU f

Abstract. In this paper, we propose using Partial Differential Equation (PDE) techniques in wavelet
based image processing to reduce edge artifacts generated by wavelet thresholding. We employ a variational
framework, in particular the minimization of total variation {TV), to select and modify the retained stan-
dard wavelet coefficients so that the reconstructed images have fewer oscillations near edges. Numerical
experiments show that this approach improves the reconstructed image quality in wavelet compression and
in denoiging.

1. Introduction. In this paper, we are concerned with the suppression of edge ar-
tifacts caused by wavelet thresholding in digital image denoising and compression. It is
well know that wavelet thresholding, including linear (i.e. truncating the high frequencies)
and nonlinear thresholding (i.e. retaining large coefficients,) may generate oscillations near
discontinuities, especially when the functions or the images contain high level noise. This
(Gibbs’ phenomenon is the primary reason for edge artifacts in digital image processing.

Many methods have been proposed to overcome this problem. Donoho’s soft threshold-
ing truncates wavelet coefficients on different scale levels subject to different thresholds [14].
Another type of approach also due to Donoho is to a construct special basis for discontinu-
ities; such as wedgelets [15], ridgelets [16], and curvelets [5]. A different approach is to modify
the wavelet transforms so that fewer large high frequency coeflicients are generated near dis-
continuities, resulting in fewer large coeflicients truncated in the thresholding process. Along
this direction, Claypoole, Davis, Sweldens and Baraniuk [13] proposed an adaptive lifting
scheme which lowers the order of approximation near jumps, thus minimizing the Gibbs’
effects. We have proposed ENO-wavelet transforms which apply the one-side approximation
idea of constructing Essentially Non-Oscillatory (ENO) schemes in numerical shock captur-
ing to design adaptive wavelet transforms such that no large high frequency coefficients are
generated through differencing across discontinuities [11}, essentially eliminating oscillations
in the reconstructed images.

In this paper, we propose an alternative method, which uses other Partial Differential
Equation (PDE) techniques, especially PDE’s from variational principles, to reduce the os-
cillations in wavelet thresholding approximations. In fact, variational PDE models have
been commonly used in image processing since the end of the 1980’s, for example, Mumford-
Shah’s functional [21] in segmentation, Rudin-Osher-Fatemi’s Total Variation in restoration
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[25], Alveraz-Morel’s formalization in image analysis (2], Perona-Malik’s diffusion model [24],
Sapiro-Tannenbaum’s affine scale space [26], Alveraz-Guichard-Lions-Morel’s fundamental
equations for image processing [1], Morel-Selimini’s bock on variational method for segmen-
tation [20], and some more recent works such as Chan-Vese’s active contour [9], Chambolle-
Lions’s total variation analysis [7], Bertalmio-Sapiro-Caselles-Ballester’s image inpainting [3]
and the papers collected in the IEEE special issue on PDE and geometry-driven diffusion
image processing [18]. The crucial observation which makes these methods successful is in
viewing images as piecewise smooth functions connected by large jumps (edges) and realizing
the similarity between images and piecewise smooth solutions of certain kinds of PDE’s, then
employing well-developed PDE’s techniques to handle the edges. Based on this observation,
one can also apply PDE techniques to wavelet image processing to reduce the edge oscilla-
tions. Our goal is to use a variational framework, in particular, the techniques for minimizing
total variation (TV), to select and modify the retained standard wavelet coefficients so that
the reconstructed images have fewer oscillations near the edges.

It has been shown through many simulations in the literature that the TV model can ef-
fectively suppress noise while retaining sharp edges in images ([25], [10], and [4]). Chambolle,
DeVore, Lee and Lucier [6] attempted to use wavelet based variational forms to accomplish
compression and denoising. Using wavelet coeflicients, they compute the best fitting of the
observed images subject to minimizing certain norms in Besov spaces, which are close to
the Bounded Variation (BV) space corresponding to the TV norm. An essential difference
between the Besov spaces and the BV space is that Besov spaces do not admit the discontin-
uous functions. Therefore, sharp edges are unaviodably smoothed out in the reconstructed
images. In [12], we demonstrated that compressing TV denocised images produces higher
ratio compression and better quality than denoising and compressing the images by directly
using wavelets. On the other hand, edge oscillations caused by standard wavelet threshold-
ing significantly increase the TV norm of the reconstructed images. All this motivates us to
select and modify the nonzero wavelet coefficients in the thresholding procedure subject to
minimizing the TV norm of the reconstructed images so that they can produce fewer edge
artifacts while retaining sharp edges.

In general, minimizers of such variational problems can be found by solving their associ-
ated Euler-Lagrangian equations, which are PDE’s. In particular, the PDE produced by the
TV minimization problem is highly nonlinear and usually degenerate at flat regions. Many
works have been advocated to speed up the solvers in physical space, for instance, see [28],
[8] and [23]. In the present work, we deduce the corresponding PDE’s in wavelet space and
solve them in analogous ways. We will discuss some aspects of the numerics in this paper as
well.

The above described method can be easily embedded into a image compression frame-
work by simply replacing the standard wavelet thresholding step by TV regularized wavelet
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thresholding . The produced non-zero wavelet coefficients can then be forwarded for quan-
tizing and coding in the standard ways. In this situation, at the reconstruction end, the
standard wavelet procedure will automatically restore the images with fewer edge artifacts
We will concentrate on selecting and modifying the non-zero wavelet coefficients subject to
minimizing the TV norm of the reconstructed images, and we will not consider the quan-
tization and coding steps. In addition, the ideas introduced here can also be used as a
post-processing technique for the reconstructed images so that it can suppress the edge
oscillations generated in the compression process.

This paper is arranged in the following way. In section 2, we give the TV regularized
wavelet compression model for wavelet thresholding. In section 3, we study some relaxations
of the introduced model and their associated PDE’s. In section 4, we discuss some numerical
aspects of solving these PDE’s. And in section 5, we show some examples to illustrate the
results of the models.

2. TV Regularized Wavelet Compression Model for Thresholding. In this sec-
tion, we give our TV regularized Wavelet Compression model for suppressing the oscillations
generated by wavelet thresholding.

Suppose we are given an observed image z(z) = up(z) +n(z), where uy(z) is the original
noise free image and n(x) the Gaussian white noise with ||n(z)||z = ¢. Let us denote the
standard orthonormal wavelet transform of z(z) by:

(1) 2(&,x) = Y ajpdin()
1k

where ¢;x(z) are wavelet basis functions and & = {a@;i} the corresponding coeflicients
defined by

@ o = [ 2(@)tsalz

One way to describe the wavelet thresholding technique is to prescribe a wavelet coeffi-
cient index set I, then retain all coefficients with indices belong to I and truncate the other
coefficients to zero:

ot e .
1.k 0 otherwise

* ,u._{ Gk (j,k)@[

For example, in linear thresholding, I is taken as the set of low frequencies; and in hard
thresholding, I is defined as the set of all coeflicients whose magnitudes are larger than a
given tolerance, otherwise, it is smaller than the tolerance. Since orthonormal wavelets form
an orthonormal basis of the L? space, it is obvious that the hard thresholding selection of T
minimizes the L? error between the compressed image u(x) and the observed image z(x).
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Fiq. 1. The observed function (dotted) has large jumps. The {-level DB6 wavelet hard thresholding approzi-
mation (dash-dotted) is reconstructed by retaining the largest 64 coefficients. It generates oscillations ot each
Jump.

The hard thresholding approximations introduce oscillations at the edges, although they
are optimal in the L? space. This is due to the fact that the L? norm minimization does not
penalize oscillations. In Fig 1, we show a 4-level Daubechies-6 (DB6) wavelet hard threshold-
ing approximation (dash-dotted) to a discontinuous function (dotted). The approximation
is reconstructed by retaining the largest 64 non-zero coefficients and truncating the other
coefficients to zero. It is obvious that it generates severe oscillations at each jump. Fig 2 is
a 2-D image containing four noisy squares with different sizes and intensities. We show its
4-level DB6 wavelet hard thresholding approximation in Fig 3. The approximation contains
edge artifacts along the boundaries of the objects, while in the observed image, these objects
have sharp edges.

Wavelet thresholding can cause oscillations near edges, consequently increasing the TV
norm of the reconstructed image. To suppress these oscillations, we propose the following
model to select the index set I, and modify the values of the retained wavelet coeflicients
B; such that the reconstructed image u(ﬁ, z) form a less severe oscillatory approximation:

, . 1 .
(3) ﬂj,:,l(ljljcl)eIF(u’ Z) - )\/ |Vmu(16? 3:)!(135‘ -+ EHU — z||2
subject to
“ 1 =m,

where u(g , ) has wavelet transform:

u(B,z) = Bidin(s).
ik
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F1G. 2. The observed image has features with sharp edges despite of the presence of noise.



Wavelet Hard Threshelding

50

100

150

200

250

50 100 150 200 250

F1G. 3. The 4-level DB6 wavelet hard thresholding reconstruction which retains the largest 16216 coefficients.
Edge artifacts are clearly seen along the boundories.



Here we have 8;; = 0 if (4,k) ¢ I, || represents the number of elements in I, m is a given
integer, and A the regularization parameter.

The first term in the objective functional reduces the oscillations of u{z) by diminishing
its TV norm. The second term is the standard L? fitting term which controls the difference
between u(z) and the observed image z(z). The regularization parameter A is used to
balance the trade-off between the suppression of oscillations and the fitting term. When A
tends to zero, u(z) goes to the standard hard thresholding approximation. On the other
hand, when A tends to infinity, the suppression term dominates the objective functional, and
therefore u(z) tends to a constant. As a TV regularization parameter, A also controls the
smallest scale of features which are preserved [27], i.e. for a given value of A, there exists a
size of feature such that the model treats all features smaller than this size as oscillations
and eliminates them, while preserving features which are bigger than this critical scale. In
practice, A can be determined in many ways, for instance, using the L-curve technique [19]
to select the best A, or determining it by using a set of training images. In this paper, we
do not discuss these approaches in detail, though we use the latter choice to select X in our
numerical experiments.

Compared to the approach proposed in [12], which uses the TV denoising method fol-
lowed by standard wavelet thresholding to obtain high ratio compression for noisy data, the
advantage of the proposed TV regularized wavelet compression model is that the TV reg-
ularized model can reduce the oscillations generated by wavelet thresholding as well as the
noise, while TV denoising followed by standard thresholding may generate new oscillations
after denoising. Also, the TV regularized wavelet compression model can directly work on
wavelet coefficients, making it easier to be fit into practical compression schemes, especially
for images given in a wavelet coefficient format (e.g. the upcoming wavelet based JPEG
2000 compression standard). In addition, the TV regularized model operates on a smaller
number of coefficients (in the hard thresholding case). Potentially, it could be faster than
TV denoising followed by standard thresholding.

Remark: The TV regularization term in the model can be replaced by the H; reg-
ularization term ||Vul|%, or other regularization terms. Compared to the TV term, these
other norms usually smooth out sharp edges in the reconstructed images. We will show a
comparison in our numerical experiments in section 5.

The TV regularized model for wavelet thresholding is a nonlinear integer optimization
problem which in general cannot be solved efficiently. There are two crucial tasks in finding
the global minimizer of (3): selecting the index set I; and modifying the retained coeflicients
Bik, (4, k) € 1. The major difficulty is in the selection of the index set I, because there are
too many combinations for possible I. In fact, for each selected I, which forms a subspace
of the L? space, there is a local minimizer in this subspace. And the global minimizer is
among these local minimizers. On the other hand, both the magnitude and the location of
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wavelet coefficients reflect the significance of corresponding features, although they may not
necessarily determine the index set J which contains the global solution. So, we can use them
to approximate the optimal set 1. We will consider several relaxations of such approximations
in the next section. After the set 7 has been determined, finding the minimizer in such a
subspace becomes a convex unconstrainted optimization problem. We will address some
numerical methods to solve these problems in section 4.

3. Relaxations of General TV Model. In this section, we consider several relax-
ations of the TV regularized wavelet compression model and give their Euler-Lagrangian
equations. The purpose is to reduce the difficulty in determining the index set in the integer
constraint (4).

3.1. The Standard Hard Thresholding. A simple way to select the index set I is
to choose it according to the magnitude of the coefficients. In other words, we can simply
use the standard hard thresholding nonzero coefficient index set Iy to approximate I. Then
the TV model is simplified as:

(5) min P(u,2) = A [ [V,u(f,2)ldo + [[u - 2|}
ﬁj,ks(ﬂsk)eIH
As we mentioned before, once we restrict the index set to Iy, the minimization problem
becomes convex and unconstrained, and has an unique solution u{x) in this subspace. The
solution u(z) satisfies the Euler-Lagrangian equation in wavelet space:

(6) -2 [ V. (IV ) bip(@)de +2(Bip — aje) =0, (5,k) € Iy.

3.2. Smooth Approximations of the Constraint. Another way to relax the integer
constraint |I| = m is to approximate |I| by smooth functions so that we can apply standard
techniques for continuous optimizations. Notice that we have the fact:

11 = 11Bllo,

where ||-||o is defined as the number of non-zero elements in the vector. Olshausen and Field
[22] proposed using ZJ xlog(1+ fB2,) to approximate the O-norm in controlling the number
of non-zero patches in sparse images. Donoho [17] showed that the p-norm function || - |3
forms a more accurate approximation to the integer constraint.

Using these smooth approximations, we can relax the integer constraint to continuous
constraints:

(7) (X log(1 + B5p) —m)* <77,
ik
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or

(8) QO 1BslP = m)* <o

gk

where « is a given small positive number used for controlling the number of non-zero com-
ponents in the coefficients.

Since both approximations are smooth, we can easily convert the constrained problems
to unconstrained problems by introducing the Lagrangian multiplier 7:

(9) gj,k,‘(“j,i‘}em Fu,z) = A/iV u(B, @)ldz + |Ju — 2|} + 7 §1og 14 42,) — m)?,
or
10, min F2) =) [ (Vaua)lde + fu 2|3+ (5 b~ m)”

Bi k(G R)EL

Jik

Then it is easy to obtain the corresponding Euler-Lagrangian equations in wavelet space as:

(11) A/V ( Vet ) Gip(m)dz + 2(B;x — i) + 27> log(1 + B2,) — m)wgi’—kg— == (),
Vol ok ’ L+ Bk

or

(12) -2V ( )¢ (@) 4+ 2(F — ) + 20 (5 Byl —m) L =
Vol ) P ik O, 215 T

Remark: In these two approximations, since the log-function 33, log(1l + 632%) and
p-norm function 33, , |B;x[? (p < 1) are not convex functions, there may exist many local
minimizers which are also solutions to the Euler-Lagrangian equations.

4. Numerics. To find the solutions for the relaxations of the TV regularized wavelet
compression model, we want to solve the associated Euler-Lagrangian equations (6), (11),
and (12). In fact, many numerical methods for similar equations in physical space have been
proposed in literature, such as Rudin, Osher and Fatemi’s time marching scheme [25], Vogel
and Omen’s fixed-point iterative method [28], and Chan, Golub and Mulet’s primal-dual
method [8]. All these methods can be adapted to the wavelet space. Here, we use the simple
fixed-point iterative method as an example to show some numerical aspects involved in the
computation.

The fixed-point iterative method linearizes the nonlinear terms in the Euler-Lagrangian
equations with approximations from the previous iteration. We denote D, ;. (D, ) as the
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forward (backward) finite differences in physical space. Then the fixed-point schemes to the
three relaxations are:

+un+1 1 :
(13)  -A[ D o ae ) o - MG e =0 () € I
o+ 1

(14)  —A f Da ( Dyt )qﬁj,k(az)daﬁ

\/|Dm’+u”|2 + €

n ) ﬁn+l
+2(B5 — agp) + 27 (3 log(1+ (B73)°) — M) ~ee iy
ik ’k
and
n-t1
(15) X[ D Jait $s(2)de
J|Dm,+un!2 !
gt

n 1___05‘ T no|p__ —
P ) ¥ (Zk B = m g e =

respectively, where «™ = u(z, E”), €, and e are small positive numbers which are used to
prevent blow-up in regions where Vu = 0, or 8, = 0. Equations (13), (14) and (15) are
linear equations in the unknowns §;x, which we solve by Conjugate Gradient (CG) without
preconditioning.

We note that the unknowns ﬁ;f;é’l are in wavelet space but the finite difference operators
D, and D, _ are defined in physical space. To compute them, we need to transform the
data from wavelet space back to physical space. Then after calculating the finite differences,
we transform the data back to wavelet space.

Remark: On the other hand, since wavelet transforms are local, we can in fact directly
compute the finite difference terms locally in wavelet space so that it is not necessary to
transform the data back and forth between the two spaces. In our numerical examples, we
do not use this method, so we will not discuss it in detail.

5. Examples. In this section, we will show some 1-D and 2-D examples to demonstrate
the improvement in images of the TV regularized wavelet compression models for wavelet
thresholding. In all computations, we use the fixed-point iterative schemes (13), (14) and
(15) introduced in section 4. We choose the parameters €; and €, as 107%, and 7 = 10" in
all situations.
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FiG. 4. Left: The observed function (dotted) and the original noise free function (solid). Right: A = 0.001,
As X becomes smaller, the TV norm approzimation (solid} tends to the hard threshold approzimation.

In the first 1-D example, we show a sequence of images (Fig 4 (right) to 6 (left) ) which are
computed by hard thresholding relaxation (13) of the observed function shown in Fig 4 (left).
We use the 4-level Daubechies-4 (DB4) wavelet transform, and take A = 0.001,0.01,0.1, and
1 respectively. In each picture, we show the standard wavelet hard thresholding approxi-
mations (dotted line) restored by retaining the largest m = 50 coefficients (with respect to
the original 519 coeflicients), and the TV regularized wavelet compression approximations
(solid) which are also reconstructed by these 50 non-zero coefficients with perturbed values.
We notice that when ) tends to 0, the TV regularized model results are getting closer to the
standard wavelet hard thresholding approximation which has more oscillations at the dis-
continuities. As A increases, the TV norm of the reconstructed images decrease, specifically
the oscillations at discontinuities are suppressed. When A = 1, the reconstructed images are
almost flat. All features of the observed image have been lost. This reflects the domination
of the TV norm regularization over the fitting term.

More importantly, from these figures, we notice that when A = 0.01, the TV regularized
approximation has fewer oscillations than that of standard hard thresholding but still retains
the silent features of the image and keep the sharp edges. For all images generated using
larger A, some features have been altered, while on the other end, for all images generated
using smaller A, the edge artifacts are still significant, although all features are preserved.

For the next 1-D example, we display in Fig 6 (right) the reconstructed image using
the H; regularization ||Vu|Z term instead of the TV term in (2) with A = 0.0002. The
approximation {solid) is also reconstructed by using m = 50 non-zero coefficients. Comparing
to the previous examples, it is obvious that H; regularization smears all sharp edges because
it doesn’t allow the existence of discontinuities.

The next 1-ID example shows another sequence of images (Fig 7 to 8 (left)) which cor-
respond to the TV regularized wavelet compression models with the hard thresholding (5),
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Fic. 5. Left: A = 0.01, The TV norm reconstructed approximation (solid) has fewer oscillations at the
discontinuities than thet of the wavelet hard thresholding approzimation (dotted). Right: A = 0.1, The TV
norm hard thresholding approzimation (solid) smooths the oscillations out but also alters the features.
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Fic. 6. Left: X =1, The TV reconstructed approzimation (solid) is almost a straight line which indicates

that the regularization term dominates the objective functionel. All features have been eliminated. Right:
A = 0.0002, the H-1 regularization approzimation (solid) smooths all sharp edges in the reconstrucied image.
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Fia. 7. Left: A = 0.02, TV norm hard thresholding approzimations (solid} have fewer oscillations at
discontinuities. It keeps oll features. Right: A = 0.02, The TV norm log function reconstructed epprozimation
(solid) has fewer oscillations at the discontinuities than that of the wavelet hard thresholding epprozimation
{dotted). It keeps all features as well.

the log function (9), and the p-norm (10) approximations of the noisy image in the previous
example with A = 0.02. They are computed by the fixed-point scheme with 10 iterations.
All of them are restored by keeping m = 50 non-zero wavelet coeflicients. The three approx-
imations retain the features of the observed function and have less severe edge oscillations at
the discontinuities. Among them, the p-norm approximation fits the original function better
than the two others in this example, although all are very similar.

We also compare the results of this TV regularized wavelet compression models with
that of the procedure we described in [12] which is to denoise the image by the TV denoising
model first, and followed by the standard hard thresholding compression (shown in Fig 8
(right)). The results are very similar to the approximations obtained in the previous example
" except that in the result of TV denoising followed by standard hard threshold, there exist
more edge oscillations (at the right jump of the first bump) than the results of the TV
regularized wavelet compression shown in the previous examples.

In the last 1-D example, we show another comparison of approximations obtained by
different numbers of fixed-point iterations. The pictures in Fig 9 are calculated using 5, 10,
and 20 fixed-point iterations of {13) with A = 0.01 respectively. The approximations are very
close. This illustrates that the fixed-point scheme converges fast in the first few iterations.

The next example is for a 2-D comparison of the standard hard thresholding and the
TV regularized wavelet compression model images. As shown in Fig 3), the standard 4-level
DB6 wavelet compression by retaining the largest m = 16 x 16 coeflicients (the ratio of
compression is 256:1) has obvious edge artifacts along the boundaries of the objects. In Fig
10, the image is obtained by solving the TV regularized hard thresholding approximation
(6) with A = 0.05. We perturb the values of the 16 x 16 non-zero coeflicients retained in the
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Fic. 8. Left: A = 0.02, the p-norm approzimation (solid) keeps oll features as well as eliminating most
of the edge oscillations. Right: The approzimation obluined by TV denoising followed by standard hard
thresholding. .
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Fic. 9. A = 0.01, TV hard thresholding reconstruction after 5 (left), 10 (middle), 20 (right) fized-point
iterations. The difference between them are invisilbe.
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Fi1G. 10. The TV regulerized Compression with hard thresholding. It keeps the largest 16 x 16 coefficients.
Compared to the images shown in Fig 2 and 3, less severe edge artifocts present in this image.

standard hard thresholding. It is obvious that in this picture, the edge artifacts are less severe
than in the standard case. Meanwhile, since the regularization parameter A also controls the
smallest size of features to preserve, in the TV regularized restored image, smaller features
{such as the smallest square) are altered more than the large features, i.e. the intensities
are lower than the standard approximation. In Fig 11, we show the cameraman image with
(Gaussian white noise. We display the 64 x 64 non-zero coefficient reconstruction calculated
by standard hard thresholding in Fig 12, and the TV regularized wavelet compression model
with hard thresholding in Fig 13. Compared to the standard hard thresholding image, the
edge artifacts in the TV model approximations are much less severe.

6. Conclusion. , We have used the TV regularized model to select and modify the
non-zero wavelet coefficients in the thresholding procedure. The resulting compressed images
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Fic. 11. The noisy cameraman image.
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Wavelet Hard Thresholding
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Fic. 12. The standard hard thresholding approxzimation It keeps the largest 64 x 64 coefficients. Severe edge
artifacts present in . ;
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TV Wavelet Compression
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T'1G. 13. The TV norm herd thresholding. It keeps 64 x 64 nonzero coefficients. There are much fewer edge
artifacts in the compressed images. ;
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contain less severe edge artifacts than those in the standard thresholding images, especially
when large noise is present in the image. The model can directly operate on the wavelet
coefficients, and therefore, can easily be embedded into practical compression schemes. More
work needs to be done to improve the speed of convergence and to make the method more
practical.

1 L.
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