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ASYMPTOTIC ANALYSIS OF THE LINEARIZED

NAVIER-STOKES EQUATION ON AN EXTERIOR

CIRCULAR DOMAIN: EXPLICIT SOLUTION AND
THE ZERO VISCOSITY LIMIT

Maria Carmels, Lombardo *  Russel E. Caflisch ¥ Marco Sammartino i

Abstract

In this paper we study and derive explicit formulas for the linearized Navier-Stokes
equations on an exterior circular domain in space dimension two. Through an ex-
plicit construction, the solution is decomposed in an inviscid solution, a boundary
layer solution and a corrector. Bounds on these solutions are given, in the appro-
priate Sobolev spaces, in terms of the norms of the initial and boundary data. The
correction term is shown to be of the same order of magnitude of the square root of
the viscosity.

1 Introduction

In this paper we shall investigate the time dependent incompressible Stokes equations
on an exterior circular domain in space dimension two, i.e.:

Btqu + T_1(9¢p = Vv (Au¢ —r~ 'u,¢ 4+ 2r” 23¢,u,.) y (1.1)
Otr + Gpp = (Aur — 2y, — 2~ 26¢,u¢) , (1.2)
V-u = (1.3)

YRU = ¢, (1.4)

u(r,d,t =0} = wup(r,¢), (1.5)

where u = (u-(r, ¢, 1), us(r, $,t)) is the velocity field which depends on the radial
variable r with » > R, on the angular variable ¢ with 0 < ¢ < 27 and on the
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time variable t > 0. In the Egs. (L.1)}-(1.5) A = r718,(r8,) + 72844, V- 11 =
7718, (rus) + 1" 84ugs, p = plr, ¢,t) is the pressure, v = &2 is the viscosity coefficient
and g is the trace operator defined by yr f(r, ¢,t) = f(R, ¢,t). Equations (1.1) and
(1.2) are the conservation of momentum for a viscous fluid obtained by linearizing the
Navier-Stokes equation, Eq. (1.3) is the incompressibility condition and Egs. (1.4)
and (1.5) are the boundary and the initial conditions respectively, We are interested
in the behavior of the solution in the limit of small viscosity. In fact the problem
of the convergence of the Navier-Stokes equations to the Euler equation in presence
of boundaries is a relevant problem in fluid dynamics and Stokes equations can
be considered a good simplified mathematical model that can be helpful in the
understanding of the more complicated nonlinear case. When the Reynolds number
is large the fluid shows two different regimes: far away from the boundary the viscous
forces are negligible with respect to the inertial forces and the behavior of the fluid is
believed to be well described by the Euler equations. They are obtained neglecting
the viscosity term. As a consequence of the change in the order of the equations,
only the no-flux boundary condition can be imposed. In the vicinity of the boundary,
on the other hand, the viscous forces are not negligible and a boundary layer whose
thickness is proportional to the square root of the viscosity appears. The no-slip
condition causes a rapid variation of the tangential component of the velocity to
adjust the flow to the value given by the inviscid outer theory. In the boundary
layer the fluid is ruled by the Prandtl equations which are obtained rescaling the
normal variable with the square root of the viscosity (¢ = 4/v) and imposing that
the derivative with respect to the rescaled variable of the tangential velocity is O(1).
Therefore, both Euler and Prandtl equations can be obtained from Navier-Stokes
through formal asymptotic expansions.

In (2] it was proved that, for analytic solutions of the Navier-Stokes equations on
the half space and for a short time, these approximations are indeed correct. The
solution of Navier-Stokes equations was constructed as the sum of the Euler solution,
the Prandtl solution and a correction which was proved to be vanishingly small with
the square root of the viscosity. The initial data were restricted to be analytic.
In this paper we shall be concerned with the incompressible Stokes equations on an
exterior circular domain. Following the technique used by Ukai { see [4] ) we will give
an explicit formula for the solution and then we will use it to perform the asymptotic
analysis in the limit of vanishing viscosity. We will show that the solution of the
Stokes equations can be written in the form :

uw’ = uf +u’ +ew (1.6)
where u? is the solution of the linearized Euler equations, 4! is the Prandt] solution
exponentially decaying outside the boundary layer, and w is the correction term.
The explicit expression of all the terms of this expansion is given. This result is
stated in the Theorem 4.1 below, which is the main result of this paper. The paper
is organized as follows: in Section 2 we shall introduce the spaces of functions we
shall be using through the rest of this paper. In Section 3 we shall give the explicit
formulas for the solution of the Stokes problem in the exterior circular domain. In
Section 4 we shall perform the asymptotic analysis of the Stokes equations and give



the appropriate estimates in terms of the initial and boundary data. In particular
the norm of the term w in the expansion (1.6) is shown to be O(1). In this paper
all the estimates are given in the usual Sobolev spaces. Moreover the asymptotic

expansion (1.6) is shown to be valid for an arbitrarily large time T

2  Function spaces

In this section we define some function spaces we shall be using through the rest of
this paper. All functions depending on the angular variable ¢ will be periodic in
this variable. We recall that the L? norm expressed in polar coordinates (r, ¢) is
weighted with r. We define the space L? as the space of those functions f{r,¢) such

that

Wll- = {/O% f: dé dr v | f(r, ¢)|2}1/2 < co.

We first introduce the ambient spaces for the inviscid equation.
Definition 2.1 H" is the set of all functions f(¢) such that

o 8)f € L*([0,2n]) with j < L.

We shall denote the usual norm in H' with |f|;.
Definition 2.2 HI is the set of all functions f(¢,t) such that

o & f(¢,t) € Lo([0,T), H'9) with j < L.

The norm of f € H&E is given by:

Iflir= > SHPT||3313§;2f(',t)||L2(§0,2w1)-

Frtie <t 0StS

(2.1)

Definition 2.3 H! is the set of all functions f(r, ¢} defined on § = [R,o0)x [0, 27]

such that
o r O f € L withm+j <.
The norm of f is given by:

flo=">_ lIr™™0F8Lf ()l

mj<l
Definition 2.4 HL. is the set of all functions f(r,¢,t) such that

o 8] f(r,¢,t) € L=([0, T, H9) with j <.

(2.2)



The norm of f € H%n is given by
Fhr= D> sup [l RaFoRoRf(,t)]lr. (2.3)
drtintia<t 0SEST ’

We now introduce the ambient spaces for Prandt] equations. All the functions
belonging to these spaces depend on the normal scaled variable Y = -’3-"—;5 and are
exponentially decaying with respect to Y. We require differentiability with respect
to this variable only up to the second order.

Definition 2.5 K% with p > 0 is the set of all functions f(Y,¢) such that

o 820PF(Y,¢) € L2(0,2n]), with j2 < 2 and j1 + 2 < I, with j1 < 1 — 2 if
ja > 0.

o supyso e |0LOZF(Y, )12 < oo with j2 < 2 and j1 -+ jo <1, with j; <1 —2
if jo > 0.

The norm is given by:

o = Zggrée“yllaéf(lﬁ-)lhz

st =

+ > > sup etV || 9B F(Y, )| pe. (2.4)

0< <2 j; <12 ¥ 20

We now introduce the dependence on time. We require differentiability with
respect to time only up to the first order. This is typical of parabolic type equations
in presence of a boundary. (see [5]).

Definition 2.6 K,f,’w”' with u > 0 is the set of all functions f(Y, ¢, 1) such that
o f€L([0,T), Kh+)
o 9,f € Lo([0,T], KO%), with j <1 —2

The norm is given by:

fliwr = Y. Y sup supeV (8208 F(Y, -, )2
0<7252 1 <i—2 OStET Y20 ?

i sup sup e [0,04f (Y, -, 1) | - 2.5
jﬁ;—ZUStSE)TYQ% 10:85 £ (Y, -, 1)l 2 (2.5)

We now introduce the ambient spaces for the error equation. The following space
is the natural ambient space for the first order correction term. All the functions be-
longing to N,} are L? with respect to both tangential and normal variable, moreover
only first order derivatives with respect to the time variable are allowed.

Definition 2.7 Nr} with is the set of all functions f(r,¢,t) such that
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o r13NAf € L0, T, L2) with j1 -+ j2 < |
o rIFB,f € L0, T, L2) with § S 1—2
The norm of f € quw s given by:

I = 30 3 sup [PTRORaR(, bk

0<2 <2 jy <i—2 05T

+ 3 sup [rIB8f(, b)) (2.6)

JEI R OSI<T

We now introduce the ambient spaces for the overall correction term. All func-
tions belonging to the following spaces are functions L? with respect to both tan-
gential and normal variables. Notice that, due to the presence in the error equation
of the rapidly varying terms arising from the Prandtl solution, the solution of the
error equation will have a fast dependence on r. Therefore, in the following spaces,
all the derivatives of order 7 with respect to r and of order m with respect to ¢ are
weighted with e7+tm1,

Definition 2.8 L' is the set of all functions f(r,$) such that
. sﬁ+i2—1r—ilagla,i2f € L2 with j; <2 and j1 +jp < 1, with j; <1 —24fjp > 0.
The norm of f € L! is given by
IFle =" 285 il + > D et hal e fl,.  (2.7)
A<t 0<j2<2 j1<1-2
Definition 2.9 LY. is the set of all functions f(¢,t) such that
o 8]f € L®([0,T], H®) with j < 1.
o 0:f € L([0,T], H) with j <1 - 2.
The norm of f € Lf"} is given by
1l = %ggﬁr 185, 8)ll 2 +j§202% 1850 £ (-, )| 2 - (2.8)
Definition 2.10 L% is the set of all functions f(r,,t) such that:
o fe L0, T], L)
o Ir~98]8,f € L>([0,T], L°) with j <1 —2



The norm of f € L% is given by:

”f“l,T = Z Z Sup “Ejl"'jz_lr—j}_ag;lang(" .,t)llr
0<jp<2 j1 <l—3 0=t=T

+ Y swp IS, Dl (2.9)

§<i-0 OSEST

3 The Stokes equations: explicit formulas.

In this section we will give an explicit formula for the solution of the Stokes equa-
tions. In Subsection 3.1 we shall introduce some notations and a pseudo-differential
operator that will be used in the last step of the solution of the Stokes systems. In
Subsection 3.2 we will introduce the Weber transform and some of its properties. In
Subsection 3.3 the Stokes equations are considered and the explicit solution is given
through the Weber transform. Estimates are also given. '

3.1  The Ukai operator

We will consider the Fourier expansion of f{¢) :

+oo N r
@ =3 ™) where  Fk)= [ e 1(g) ds.

In what follows we shall adopt the convention that k is the dual variable of the
variable ¢.
If T is an operator acting on a function f(¢) such that:

Tf(k) = o(T)(k)f (R),

then o(T') is called the symbol of the pseudo-differential operator 7. With an abuse
of notation we shall adopt the convention of omitting the distinction between a
function and its Fourier coefficient and between an operator and its symbol,

We introduce the operator U[-, -] which acts on functions f(r, k) with r € [R, c0)
and g(k): :

U[f,g] = Ub(g) -+ Us(f) ) (31)
where:
|k|-+1
we = (2) o). (32)
U(f) = Tfll,c% [ arMaw). (33)

The operator U[f, g] solves the following problem:



(rop + k] + DU[f,g] = [kIf, (3.4)
YeU[f, 9] = gl(k). (3.5)

We now give an estimate on the above operators that will be useful in the sequel.

Proposition 3.1 Let g € H" and let f € I!. Then Uy(g) € H' and U,(f) € I} and
the following estimates hold:

Ol <lgle,  NU(Hlle < 1l

Proof:

. . . . r\|EIHE
The proof of the first estimate is obvious since (7)
can be easily proved in the r-normm through Jensen’s inequality, following the same
line of [3]. An alternative way, as suggested by the Referee, is to multiply Eq. {3.4)
by rU, integrating and using a weighted Cauchy-Schwartz estimate. In order to get

the estimate in the l-norm one has to repeat the same steps as above for the function
gitm-1 IO f (7).

< 1. The second inequality

3.2 The Weber transform and the heat operators

This subsection deals with the definition and the properties of the Weber transform
which arises naturally in the discussion of axisymmetrical problems formulated in
cylindrical polar coordinates (see [6]). T'hrough the Weber transform we will solve
the heat equation and define the heat operator that will be useful for the solution
of the Stokes system.

Given f(r) defined on [R,o0), the Weber transform of order n is defined by the
formula:

WalsHe) = [  drr Zo(pr) £(r), (3.6)

where
Zn(pr) = Julpr) Ya(pR) — Ya(pr) Jun(pR).

In the above expression J,,(x) and Y,,(z) are the Bessel functions of order n of the
first and the second kind respectively, Z,(pr) are the cylinder functions satisfying
the boundary condition Z,(pR) = 0. The inverse Weber transform is defined by:

10)= [ dop g Es Wl 1)(0) (37)

The cylinder functions satisfy Bessel differential equation, namely:

L+ L zufor) |+ 10 = ) () =0 (35)

In what follows we shall need the following



Lemma 3.1 (Bessel operator)

If the Bessel operator of order n is defined as )

1
Bn(f) = (Opr + =0r — Eﬁ') 1
T T
then

2
WalBn(f)} = =f(R) = P*Wa{f}
provided that both v f'(r) and rf(r) decay as r — oo.

We are interested in solving the heat equation expressed in polar coordinates on
an exterior circular domain. It is known that the initial boundary value problem for
the heat equation is uniquely solvable in Sobolev spaces, provided that the initial
and the boundary data satisfy the compatibility conditions (see [5]). Since we are
interested in giving an explicit solution formula for the below heat systems, we will
make use of the Weber transform while we will refer to the cited bibliography for
the estimates in the functional spaces.

Let us solve the heat equation with source term, boundary data and initial data:

R A ) (39)
= o6, (3.10)
u(r it =0) = uofr,4). (311)

If we take the Fourier transform with respect to the ¢ variable, the Weber transform
with respect to the r variable and make use of the Lemma 3.1, we get the following
ODE for Wi{u}:

(S +e) Wil bt) = Zogtwids), (3.12)

di
Wilu}(p, kit =0) = Wi{uo}. (3.13)

If one solves the above system and takes the inverse Weber transform, then the
solution of the system (3.9)-(3.11) can be written in the form:

u(ry ¢, t) = EP F+ D g+ £ (3.14)

where the explicit expressions of the above operators are given by:
£
8[&2) f - Wéml {f ds e»—gzpz(tms) Wk{f}} , 8]50) ug = Wk—l {e——SZPZth{uU}} ,
0

i 2
N g=w;! { fg ds e~ (b) 2%9} :

In the above expressions £ ,52) f is the k-th Fourier coefficient of the operator which

inverts the heat equation with homogeneous boundary and initial data, S,El) ¢ is the
k-th Fourier coefficient of the operator which solves the homogeneous heat equation
with nonzero boundary data and zero initial data and S,EO) ug is the k-th Fourier
coefficient of the operator which solves the homogeneous heat equation with zero
boundary data and nonzero initial data.

We now give some estimates on the solution of the above heat equations.

8




Proposition 8.2 Let f(r,$,t) € Lh, ug{r,¢) € L' and g{¢,t) € L& Let the
compalibility condition yrup = g(¢,t = 0) be satisfied. Then the solution u of the
heat equations (3.9)-(3.11) is in LY and the following estimate holds:

e < e [ fller + ol + |glir) -

The proof of the above Proposition can be achieved following the same steps as
in [5] ( see, for example Chapter IV, Theorem 5.2 and Theorem 9.1). There are
two main differences to be considered. The first one regards the fact that, in [5],
the unique solvability of the linear parabolic Boundary-Value Problem is proved in
function spaces where the same norm is considered with respect to space and time
variable (either the sup-norm or the L%-norm}, while we consider the sup-norm for
the time variable and the L%-norm for the space variables. This is a merely formal
difference since the norms in space and in time are independent from each other.

The second difference concerns the &, which is absent in the equations of the cited
reference. To apply such theorems to the solutions of Eqs. (3.9)-(3.11), it is enough
to define the rescaled variable v’ = L. Therefore the coeflicients of the transformed
heat equation do not depend on € and the estimates of [5] are directly applicable to
Egs. (3.9)-(3.11) in the space L4 (where the normal derivatives are weighted with
€).

3.3 The Stokes equation

In this subsection we consider the following equations:

1 k? 2ik N
Byuy — 2[(Orr + ;6‘,. - ;‘2')“95 — 72y 4 —ﬁur] +r718p = fulr k1) (3.15)
1 k* 2ik
By = &{(Brr + ~0r — = Jur — 7 Pur — :—2%1 +8p = fo(rkt)(3.16)
V-ou = 0, (3.17)
yre = g{k,t), (3.18)
w(r,¢,t=0) = ug. (3.19)

Taking the divergence of Egs. (3.15)-(3.16) a straightforward calculation shows that
the pressure p is harmonic, i.e. using the Fourier {ransform:

Ap= (-0, - 151)(@ + [kh)p = 0. (3.20)
Imposing the pressure to be finite at infinity we get:
(ror + |k])p =10
which also implies:
(r8y + [k| +1) 8,p = 8, (r6, + [k]) p = 0. (3.21)

On the other hand, using the incompressibility condition, Eq. (3.16) becomes:

9



Beity — E2Aptuy + Brp = fr . (3.22)

where Ay = (Opr + %BT — %}l) It is easily seen that Ajs can be written in the
form:

|k|?; 1)(rar + ki 4 1).

Bar = (-0, -
Therefore, if we define |k|T as
|&|7 = (rOr + |k| + 1)uy (3.23)
and apply (r8, + [k| + 1) to Eq. (3.22), we get the following equation for |k|7:
k| —1

2

1
Alk|r — 2(rd, + || + 1)(—7:3,. - ) |klT = (r0, + k| + 1) fr.

Notice that the pressure does not appear because of Eq. (3.21). Moreover, since

[k — 1 1, (K -10
r2

1
(r@r + |k’| + 1)(;37- — ) = Opp + ";31- )

we get the following equation for |k|7:
2 1 (%] = 1)?
Bt — £ a,-,- + ;a,— e —TE—"— §k)|7' = (?"81, + ]kl + l)fr (324)
The boundary and initial condition read:
YNkl = y(r8: + k| + Dup = y(—ikug —ur + (k| + Lu,) = [|k|Vig, (3.25)
|klr (t=0) = |k[Viuo,(3.26)
where the operator V; is defined as:
Vig = gr ~ N'gy

and N’ is defined as: ”
N =22,
||

Notice that, using the incompressibility condition for f, the source term in (3.24)
can be expressed in terms of Vi as |k|Vi f. Since the spatial operator on the left hand
side of Eq. (3.24) is the Bessel operator of order |k| — 1, to solve Eqgs. (3.24)-(3.26)
we will make use of the Weber transform. Using the result given in Eq. (3.14), one
gets:

T(r, k1) = £ Vif +EQ) ) Vig+ £ 5 Vino . (3.27)
Solving equation (3.23) with the boundary condition (3.18) one gets for u,:
v =U[70], (3.28)

10



where I7 is the operator defined in the Subsection 3.1. Through the incompressibility
condition one gets ug:
up = N'[7(r,k, 1) — u(r,k, )] . (3.29)

Using the expressions (3.28) and (3.29) one can finally express the solution of the
Stokes equations in the following form:

where
uy = (Us(gr),—N'Us(gr)) (3.31)
u@ = (Us(r),N'(1 = U,(r))) . (3.32)

We now estimate the above solution. We first state the following Lemma:

Lemma 3.2 Let up € L', f € L, and g € L. Suppose the compatibility condition
between the boundary and initial data ygug = g(¢,t = 0) is satisfied. Then T € Lk,
and the following estimate holds:

{rller < clluoll + 1 ller + llgller) - (3.33)

The proof of the above Lemma is based on the fact that r satisfies Eqs. {3.24)-
(3.26) which are of the same form as (3.9)-(3.11), with the boundary and initial
data satisfying the compatibility conditions. Therefore Proposition 3.2 applies and
the statement of the Lemma follows. The main result of this Section is the following
Proposition:

Proposition 3.3 Let ug € L', f € L} and g € L%.. Suppose the compatibility
condition between the boundary and initial data yrug = gl{¢,t = 0) is satisfied.
Then the solution of Egs. (3.15)-(3.19) w can be decomposed in the form (3.30),
with wey € Nr}, Uy € LlT and the following estimates hold:

luwiiir < cllglir
lwller < elllwoll + | Flloz + llgller]

The proof is easily achieved using the explicit expressions for ug) and u(,) given
in Egs. (3.31) and (3.32), through the estimate on 7 given in Lemma 3.2, and
through the estimate on the operator U, given in Proposition 3.1. The estimate
on the operator U, in the function space Ni can be proved in the same way as
in Proposition 3.1, the difference between the two spaces being only the different
number of time derivatives allowed.

4 The Stokes equations: asymptotic analysis.

In this section we shall analyze Eqgs. (1.1)-(1.5) in the limit of small viscosity. We
impose an initial condition of the form:

wp = uf +ud +ewp (4.1)

11



r}i‘ h

viL

up € HY, uUP¢ e K%, wye L, (4.2)

and uf = (eu&,u(’;f)), where the radial component uf, is determined through the
incompressibility condition, see Eq. (4.7) below. The initial conditions satisfy the
following compatibility conditions:

YRuGy = gr(t=0) = 0, (4.3)
Yruby = —vrubs + gs(t =0), (44)
rwo = (—YyRuf,0) . (4.5)

Moreover the initial conditions satisfy the incompressibility conditions:
V-uf = 0, (4.6)

— " av'ogut

Ugr = R T Y /}; ¢,u0¢ y (47)
V- Wy = 0. (48)

We look for a solution of Egs. (1.1)-(1.5) of the form:

U mu§+suf+ew,~, U muf—l—ug—l—ewqf,, pﬂpE—kep“’,
where u¥, ut and w are the inviscid solution, the boundary layer solution and the
correction term respectively and satisfy the following systems:

E

duf + vpf = o, (4.9)
v-uf = 0, (4.10)
fYRuf = g’r(k:t)s (411)
uP(rkt=0) = uf. (4.12)
2k2
(@ —Oyy + =g Juy = 0, (4.13)
iy = —YRUE + g4 (4.14)
uh (Y — co,4,1) = 0, (4.15)
b (Y, ,t=0) = ufy. (4.16)
1 k2 1 2ik 1
atw(;, —£ [(81'7* + -3, — “7:-*) Wy — qu + ’ w{t + 3¢,p = qu, y (4.17)
1 k2 1 2ik
Syw, — €2 [(GM + =0, — 7 )wr Tzwr ’ w¢} +op* = fr, (4.18)
V-w = 0, - (4.19)
YTRW = (_'Yufso): (4'20)
wlr k,t=0) = wy, (4.21)

12



where the expressions of the source terms (fr(r, k,t); folr, k,t)) arc given by:

ik uf 2k o k% r? — R?
fr=¢ (m;iug + Auf — ?%- ~—7 OE¢) el -m-ﬁ-muf, (4.22)
P
fa=e [-arug’ - (1 )
g Uy , 2k ;) 2k p
+A'U;O¢, — "7':5“ o e 2 0.,. -+ —2- u,r . (423)

The Fuler equations (4.9)-(4.12) have been obtained from Egs. (1.1)-(1.5) neglecting
the viscosity term and imposing the boundary condition onty for the radial compo-
nent. Prandt] equations are obtained writing Eqs. (1.1)-(1.5) in terms of the rescaled
radial variable Y == (r — R)/e and imposing the usual boundary layer approxima-
tion. The boundary condition (4.14) ensures the right value at the boundary for .
The radial velocity £u,, which is O(g), can be computed from the incompressibility
condition. Notice that in writing the expressions (4.22) and (4.23) for the source
term we have used the fact that Auf = Auf: we shall prove this in the following
subsection, see Eq. (4.26) below.
We now solve the above equations.

4.1 Euler equations

The solution of Egs. (4.9)-(4.12) is given by:

u? =uf + VNg,, (4.24)
where the operator N, defined by: n "
N= ( ) , 4.95
T (4.25)
solves the Laplace equation with Neumann boundary condition, i.e.
ANg, = 0,

’YRBTN gr = 4Gr.

The expression of the pressure is given by:
E = Nog,.

JFrom Eq. (4.24) it is clear that
Auf = Auf. (4.26)
4.2 Prandtl equations

Let us first introduce the heat operators in the half plane. The heat kernel Ey(k, Y, t)
is defined by:

1 _ek2,  y?
Eo(k, Y, t) = @i e R e T,

13



The convolution between the heat kernel and the odd extension { to ¥ < 0} of the
function f is the operator Ep(t), namely:

Fo(t)f = /0 T Ay [Bo(k, Y —Y',t) — Bol(k,Y +Y',8)] F(¥").

It solves the heat equation on the half plane Y > 0 with initial data f and with zero
boundary data.

The operator F; solves the heat equation with boundary data g and zero initial
data and is given by: v e-Y/a(-s)

t _52.‘:2 s
Elg(t)=f0 ds R L = )

If one introduces the operator M, which acts on vector functions and is defined as :
Mg =gy + N'gr,

and using Eq. (4.24) one can write the boundary condition for uf; , BEq. (4.14), in the
form:

'yug = Mg — ’yRu0E¢ . {4.27)

Hence the solution of boundary layer equation (4.13) with the boundary conditions
Eq. (4.27) and Eq. (4.15), and the initial condition Eq. (4.16) is given by:

uf = Eo(t)uly + B [Mg — yruy) - (4.28)

The expression for the radial component uf is obtained from the incompressibility
condition:

00
ul = 5Y1+ i /Y dY'dyub . (4.29)

4.3 The correction term

The equations (4.17)-(4.21) for the correction w are of the same form as Eqgs. (3.15)-
{3.19). Therefore the solution is explicitly given by Eqgs. (3.28) and (3.29):

wr = Ul[r'{r,k,t),|k|N'G], (4.30)
wg = N [7'(r,k,t) —w(r, k)] , {4.31)

where we have defined 7/(r, k,t) as:
7' (r k1) = E2 Vif +ED KIN'B + E, Viwo . (4.32)
In the above expression f is given by (4.22) and (4.23), while 3 is defined as:
8= _L/F ul (Y k) dY’ . (4.33)
R Jo

To give a better estimate on the error it is useful to decompose Vi f(r, k,t) into the
sum of two terms:

Vif(r k,t) = F 7l k,t) + e FI2(n, k, 1)
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wherse
_ 1 ) N’ 1 2k
F l(r,k,t):s{ﬁ(—zkﬂwl\ﬂ)ug—Tarug—;g—(uoEr——N' 3) — 2 (uoqg—i-N’uO,. } ,

F z(r,kat)zN’(m——) kKb -+ Aufl — N'ufly) + eul ( |2|+—§2— .

r2  R2?

The reason of the above decomposition is that, as we shall see in the following
section, F'1 and F2 give rise to two different contribution to ew. The term
originating from F*! will be shown to belong to L;T b with norm O(g). The term
originating from F'~2 will have norm O(g?) in Lif 2,

The above decomposition for Vi f gives rise to an analogous decomposition for
7/ as given in (4.32). In fact one can write:

=7t et (4.34)

where
k) = EP FN gD kNG + £, Viwe (4.35)
P2 kt) = 5 F2 (4.36)

The decomposition {4.34) for 7/ allows one to see that the correction w, as given
by (4.30) and {4.31) has the following structure:

w=w" +w !y ew?, (4.37)
where
wl =Ty (kIN'B) ,  wf =—N'Uy ([kIN'B) ; (4.38)
wh = U, (’r’l—l) , ;5 =N’ (T'l_l - Us(’r"l_l)) ; (4.39)
'wf,"“z =U, ('r’l"z) , w¢ = N’ (T'l_z — US(Tl_2)> . {4.40)

We remind that the operators U and U, have been introduced in (3.2) and (3.3)
respectively.

4.4 Estimates

In this section we give the estimates on the inviscid term u®, on the boundary

layer term uf and on the correction term w. For sake of notational simplicity we
introduce the norm ||-|; 4. Suppose ug has the structure given in (4.1) with uf € H',
’”*0:;5 € Kb and wg € LI Then we define [Juglz,.

lletolle, = [efh + |”9¢|1,.u + |f’w0||z

We begin with the inviscid part uZ, solution of Eqs. (4.9)-(4.12). First we state
an estimate on the operator N as defined in (4.25).

Lemma 4.1 Let ¢ € Hf’[{ Then VN € H%, and the following estimate holds:
IVNY|ir < el -
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The proof is obvious and is based on the representation (4.25) for the operator N
and on the fact that (R/T)ikl <1

Proposition 4.1 Let g € H} and let ug satisfy (4.1)-(4.8). Then uF € HL and
the following estimate holds:

[l < e (fuolley + lglir)-

The proof is based on the explicit representation (4.24) for u”, and on Lemma 4.1.
We now pass to the boundary layer solution u”, solution of Egs. (4.13)-(4.16).

Proposition 4.2 Let g € HY} and let uo satisfy (4.1)-(4.8). Then ug € Ké’f’",
ul € Kéfl’” , and the following estimate holds:

fuglipr < c(fuoliu +lglir) |
i b < c(fuolli + lglr) -

The proof of the above proposition is based on the explicit representation of uq}?
given in {4.28) on the fact that 'yugd, = {M g— 'yRuOE(ﬁ] — {due to the compatibility
conditions), and on the usual estimates on the heat operators given e.g. in [1] and
[5]. Notice the loss of regularity (one derivative) in the radial component due to

the incompressibility condition. We now pass to the correction term, solution of
Egs. (4.17)-(4.21). We first state the following preliminary Lemmas.

Lemma 4.2 Let g € HY, uy satisfy ({.1)-(4.8), and let B be given by (4.33). Then
ge L{'{»- and the following estimate holds:

1Bz < e(lglyr + Hrollip) -

The above Lemma is obvious and is based on the fact that ufb) c Kéi“ and therefore
it is decaying {exponentially) in Y.

Lemma 4.3 Let g € HY, wq satisfy (4.1)-(4.8), and let 71 be given by (4.55).

Then 781 € L%T L and the following estimate holds:

-1
I o1z < e(lglr + Buolli) -

Lemma 4.4 Let g € HY, g satisfy (4.1)-(4.8), and let T2 be given by ({.36).
Then 72 ¢ Lfr_ 2 and the following estimate holds:

72—z < c(iglir + Buolliu) -

The proof of Lemma 4.3 is based on the fact that F*1 € Lé? 1 as can be seen
by a direct inspection of {4.34), on the fact that yrViwy == N'B|;—o (compatibility
conditions), and on Proposition 3.2, The proof of Lemma 4.4 is based on the fact
that F+2 ¢ LIIT 2| as can be seen by a direct inspection of (4.34).

With the above Lemmas the following estimate on the correction w is obvious.
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Proposition 4.3 Let g € HY and let wo satisfy (4.1)-{4.8). Then w can be decom-
posed as in (4.37), with w® € Néﬂ“l, wl e Lé? Lowh2 ¢ Léﬁ" 2 and the following
estimates hold:
lw? I < cllghr + lluollia)
I err < ellghe + luolie)
w22z < ellglr + luoliw) -

4.5 'The main result

We summarize our results in the following Theorem:

Theorem 4.1 Let g € HY% and let wy satisfy (4.1)-(4.8). Then the solution of
Eqs. (1.1)-(1.5) is of the form:

up = ubteul +ewPrewl et wl A, g = ul 4l rewd +ewfb""1—§~52wfﬁ_2, p = pPiep?,

where uf € H%, ug e Kbl uf € KLl wf e lefl, w1 e LIT_I, w2 e
Léf." 2. The following estimates hold:

[WPlir < cllghs + luolly)
|ug|I,M,T < C(|9|E,T+|!|U011|I,u)=
iy e < cllglr + luolliy)
lw?|lr < clglr + luoli) »
fw e < ellglyr + lluolli)
b 2l—ar < (gl + Nuolliy) -

5 Concluding remarks

In this paper we have considered the zero viscosity limit of the time-dependent
Stokes equations in the exterior of a disk. We proved that away from the bound-
ary the solution of the Stokes equations converges to the solution of the linearized
Euler equations. Close to the boundary instead, the solution has the structure of
a boundary layer whose size is the square root of the viscosity. Several related
problems suggest themselves. One could ask if the same results apply in the case
of the full Navier-Stokes equations. In this case we believe that the additional hy-
pothesis of analyticity of the initial data is necessary to prevent the appearance of
a singularity in the solution of PPrandtl equations. It would be also interesting the
analysis of the Navier-Stokes equations linearized around a background flow (Oseen
equations). In fact the presence of an inflection point in the background flow, with
the appearance of instability, could destroy the regular asymptotic structure of the
Stokes equations. These topics are under current investigations, and will be the
subject of a forthcoming paper.
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