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Abstract

This short note is about the singular value distribution of Gausstan ran-
dom matrices (i.e. Gaussian Ensemble or GE) of size N. We present a new
approach for deriving the p.d.f. of the singular values directly from the SVD
form (singular value decomposition), which also takes advantage of the ro-
tational invariance of GE and the Lie algebra of the orthogonal group. Our
method is more direct and general than the conventional approach that relies
on the Wishart Ensemble and the combination of QR and Cholesky decompo-
sition, Directly based on this p.d.f,, and its interpretation by statistical me-
chanics, we give the physics proof that in the thermodynamic limit (¥ — oc),
the singular value distribution satisfies the quadrant lew, similar to the cele-
brated semi-circle law established by Wigner more than forty years ago for the
spectral distribution of Gaussian Orthogonal {or Unitary) Ensembles. This
quadrant law was also proved earlier and mathematically more rigorously by
some authors based on the probabilistic estimations and the moment method,
but not directly from the p.d.f. formula.
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1 Introduction

Scientists in several different fields all study the subject of random matrices. There-
fore, it is worthwhile to point cut to our readers in the very beginuning that the
standpoint of this note is numerical linear algebra.

Random matrix theory is currently an attractive area because of its rich content
of physics, statistics, and mathematics. Its motivations and applications can be
found in several important areas: condensed matter physics, statistical mechanics
and chaotic systems [14, 26, 27], multivariate statistics [8, 10, 13, 15, 19, 28|, the
Riemann hypothesis [16, 17], 2-D potential theory and orthogonal polynomials [1, 2,
18], and numerical linear algebra [3, 4, 5, 6, 23]). From the physics point of view, the
dominance of spectral analysis for random matrices is mostly due to the significant
physics meaning of eigenvalues, i.e., the correspondence between eigenvalues and
nuclear energy levels, and between eigenvalues and Coulomb particles [14, 18].

To numerical analysts, on the other hand, eigenvalue study is often restricted
to the symmetric or Hermitian systems of linear algebraic equations (which can
be further traced back to symmetric or Hermitian differential systems in the con-
tinuzous world such as the Sturm-Liouville problems, the Laplacian operator, and
Schrédinger equations. See Strang [21] and Golub and Ortega {9], for examples).
For general systems of linear equations or the carrently highly active effort in digital
databank analysis (like eigen-face analysis from human face databank and internet
text search engines), singular values become more crucial. It is also a household ad-
vice among numerical analysts that on facing a new general linear system, the first
right question to ask is “What is the condition number x7” The condition number
essentially charactizes the relative dynamic range of the singular value spectrum
since (in the Euclidean world)

R(4) = 4] A7) = 222,
Omin

where omay and omin are the two ends. It was mostly such awareness of the im-
portance of singular values in analyzing linear systems (also see Smale [20] and
Deminel [3]) that had motivated the remarkable thesis of the contemporary numer-
ical analyst Alan Edelman [5]. To the best knowledge of the author, about ten
vears later, this thesis still remains the only work in the theory of Gaussian random
matrices that has been solely and deeply devoted to the understanding of numerical
linear algebra. In the same spirit, the current paper tries to improve or complement
some aspects of Edelman {5] in the study of singular values of random matrices.

Perhaps spoiled by the spectral analysis in the random matrix theory, most of
the existing works (including Edelman’s thesis) transformed singular value analysis
to eigenvalue analysis through the Wishart Ensemble W(NN) (and more generally,
W (N, M) from Gaussian Ensemble G(N, M), see Edelman [5] and Muirhead {15}),
namely the ensemble of N by N random positive matrices M = AAT, with 4 ¢
G(N) = G(N,N). The major advantage of such a approach is that one can imme-
diately benefit from many works on Wishart Ensembles (see [8, 10, 13, 12, 15, 19],
for examples) in the literature of multivariate statistics. The pities are, if singular
values (o’s) could indeed speak for themselves, the merciless defiance of their in-



dependent “civil rights” in the kingdom of linear algebra and linear transforms. In
the singular value decomposition {SVD),

N
A=USVT = Zak uy -v{,
k=1

all the three ingredients — the left singular vectors uy, their conjugate vectors vy,
and the singular values o3 — have their own intrinsic meaning in the geometric
picture of linear transforms in Euclidean spaces (see for example, Strang [22] and
Trefethen and Bau [23]). The popular transition from a singular value problem to an
eigenvalue problem (as in most numerical algorithms) only explains the deficiency
of human beings, not the singular values or vectors.

To taste the pity, let us first check out two examples, through which we intend
to argue that the singular value variable o of A is more natural and pleasing to
work with than its square A = o2, or the eigenvalue of AAT. The first example is
the eigenvalue density for Wishart Ensemble [5, 15]:

P@) = - esp(—5 3 T [T = Ml 1)
k

i<g

where Zp is a normalization constant or the pertition function in the context of
statistical mechanics. Throughout the paper, we shall not elaborate on the exact forms
of the Z s, since they can be found in the standard literature [5, 14, 15, for ezamples].
The first exponential term and the third term of differences are familiar objects in
the well studied Gaussian Orthogonal Ensembles (GOE). Is there any significant
statistical meaning of the term with a —1/2 power? The answer is no. Its existence
is purely caused by the squares:

do = I;Idak = z—NI;[,\ﬁdAk = 2—N];[A;'~l’dx.

The other example is one of the major contributions of Edelman’s thesis [5, Theo-
rem 5.1), which states that the p.d.f of N Ay, of Wishart Ensemble W (N) converges
to

1) = L e,

This “ugly” formula, though representing a critical asymptotic result for numeri-
cal linear algebra, looks much simpler and more pleasing under the singular value
variable:

zZ
Prob(min = y) = e_(‘yﬁ“"y), (2)

where Gy, is the (weak) limit of the normalized smallest singular value v Nonin-
Though simplicity and convenience are often quite psychological, these two examples
do at least show that looking at singular values directly is not a bad idea.



Therefore, in this paper, our first main result is to derive the distribution den-
sity Eq. (1} without turning to eigenvalues or Wishart Ensembles (Theorem 1 in
Section 2). This approach starts right from the SVD form, and is made simpler by
utilizing the geometric and algebraic properties of GE and the orthogonal groups. In
our opinion, it is more intrinsic and direct than the approach in Edelman’s thesis [5,
Chapter 3] and those in multivariate statistics [15]. The latter were based on the
combination of LQ factorization and Cholesky factorization LT L, and Wishart En-
sembles, which we shall agree from our proof are extra and unnecessary structures
for studying singular values. !

Based on Theorem 1, in Section 3, we establish via the statistical mechanics
approach the second result about the thermodynamiec limit (as N — oo} of the
singular value distributions {Theorem 2, Section 3). This is very similar to Wigner’s
celebrated semi-circle law for eigenvalues of GOE, and we call it the quadrant law
since gingular values are nonnegative. Simple and heuristic applications are outlined
at the end of the section. We shall also mention briefly in the beginning of the section
some earlier and more precise mathematical proofs by other authors. These were
proofs mostly based on the probabilistic estimations of certain numerical transforms
of the random matrices, and/or the moment method. But to the best knowledge of
the author, none of them started directly from the p.d.f. information of the singular
values.

2 The Distribution of Singular Values of G(N)

We shall mainly consider N by N real square random matrices. All the argument
can be modified easily for more general non-square and/or complex ensembles, and
such modifications will be briefly mentioned.

2.1 The Gaussian Ensemble G(N)

Let gl{ V) denote the general linear algebra of all N by N real matrices. An element
or an individual matrix in gl(N) is denoted by M = (a:;). Equip gl(N) with the
Euclidean structure by defining the Frobenius inner product:

(M, L) = trace(M L71), M, L € gi{N).

Let dyM denote the infinitesimal volume element of the Lebesgue measure of
(gl{N), {-,)). We thereby reserve the notation dM for the ordinary differential
1-form. Then the Gaussian Ensemble (GE) G(N} is a randomization of gi{N) un-
der the probability measure

P(de) — %e—%trace(MMT)d‘uM’ (3)

1pon submission, it came to the author’s attention that the same idea and philosophy also
appeared in Edelman’s lecture note in Berkely [7], where one can learn the much breader context
of the subject from the numerical linear algebra point of view,



The constant f denotes the inverse variance in statistics, and the inverse tempera-
ture 1/kT in statistical physics (k is the Boltzmann constant).

It can be shown by the similar argument for GOE as in Mehta’s clagsical
book [14] that Gaussian Ensemble is the unique measure u(d,M) on gl{N) that
meets the following two requirements:

(i) (Two-side Rotational Invariance) For any N by N orthogonal matrix @),
#(dy(Q M) = p(dy (M Q)) = p(dy M).

(it) (Independence of Entries) For any 1 < 4,7 < N, define the (ij)-entry

random variable X;; on (gl(V), u) by Xi;(M) = a;;. Then the N? random
variables (Xj; [1 <4,j < N) are independent.

(Note: This assertion is not true for GOE. As Mehta [14] showed, requirements (i)
and (ii) still allow another degree of freedom for the measure u — the mass center,
though it must be a scalar matrix. )

From the independence condition, we immediately see from (3) that X;; must
be a normal random variable N(0,1/8). In fact, in numerical linear algebra, the
GE is always generated element-wise, instead of by the above axiomatic approach.

2.2 Distribution of Singular Values of G(N)

As promised in the beginning, the main goal of this section is to derive the p.d.f of
the singular values directly from SVD,

Theorem 1 (p.d.f of singular values for GE) The probability density function
for the singular values of G(N) 15

1 g 2
Py(do) = e # Bt ] (03 - oB)ldo, (1)
N i>i
where ¢ = (01, ,0n) 18 the singular value vector (unnecessorily in the conven-

tional descending order). (The partition function Z) normalizes the integral on
[0, co)™.)

Proof. Any given N by N matrix My allows a singular value decomposition:
Mo = UpSoVy', (5)

where Uy and V; are orthogonal matrices and 55 = diag(crgo), e ,0'1(3)). The singu-
lar values are almost surely distinct in the Lebesgue measure. Therefore, a neigh-

borhood of My in gl{N)} allows the unigque SVD coordinate system:
M =USVY,  for any M in the neighborhood, (6)

such that we have N explicit singular value coordinates from S = diag(o1,- - ,on),
and a pair of (}) implicit coordinates from U and V on the orthogonal (Lie) group



O(N}. Here we certainly assume that |7 ~ Upl|, iV — Wi, and ||S — Sp|| are all
small.

Thanks to the two-side rotational invariance of Gaussian Ensembles, we can
assume that Uy = ¥ = Iy. Then U and V are both near the unit element Iy
in the Lie group O{N). Recall that the Lie algebra A(N) of O(N) is the linear
subspace of gl{N) consisting of all anti-symmetric matrices, and the exponential
mapping

A = Q = exp(—A4)

provides an isomorphism between the neighbors of 0 in A(IV) and Iy in O(N).
Hence, U and V' allow the explicit coordinates A and B in A(N) such that

U=e 4 and V=e5

and at A = B =0, we have dUU = —~dA and dV = —dB.
A total differentiation of (6) gives

dM =dU SVT +US dvT + U dS VT,
and at Up = Vo = Iy (ie. A= B =0) it simplifies to
dM =dS+dU S+S dVT =dS + 5 dB ~dA S. (7)
Define By =e; ® e; = eie;? with e; = (0,---,0, i,(}, -+ ,0)T. Then (7) becomes
dM = ZdﬁkEkk + Z(—deaij + Jidbij)Eij. (8)
k i#]

Since (Ej; | 1 <4,7 < N) is an orthonormal basis in (gi(V), {-,-)), we thus obtain
the formula for the volume element d, M:

dyM = kdoy A+~ Adon A [ (—ojdai; + odbi;). (9)
i#j

These are exterior products, and the correction sign % is because Lebesgue measure
dy M does not distinguish orientations. Noticing that for any 1 # j,

(——deaij -+ O’idbij) A (—O’ida.jz’ + O’jdbj,;)
= (—oydai; + oidbi;} A (oidai; — o5dbi;)

(0'32- — a?)da,;j A dbij,

we have

dyM =2~ [ (02 - 0?)| do duA d, B,
>



n
where d, A = \/5{2) H da;; is the volume element of A(N) (as a submanifold of
i>i
gl{IV)). Since the exponential mapping is an isomorphism, we have d,I7 = d, A and
d,V =d,B. Thus
&M = dUSVT) = 27D [[ (02 ~ 0?)| do 4,V d,V. (10)

>

Here d,U and d,V are understood as the intrinsic volume element of the orthogonal
group.
TFrom the SVD

M= 0'3111V1T + -+ O'NI.INV%,

we see that almost surely (1.e. when o.’s are distinct) each conjugate singular vector
pair (uy,vy,) is nnique up to a reflection. This introduces a multiplicity factor 2V as
we integrate. Thus from the GE distribution formula (3), we conclude: at a given
o= {0-1;"' JO-N)l

1 8 2 N 1
Pldo) = ——e~ 5Tt . 2=(D) TT (02 — 02)| do — U &,V
Zn E d 2N Jovyxoy
= -Zl,—e*% o H i(or? — o)} do,
N i
where the new partition function Z}; is given by
1 (P 2

The volume formula for the orthogonal group or more general Stiefel manifolds can
be found in [5, 14, 15]. This completes the proof. |

The approach here we have taken is very general. It contains more geomet-
ric and algebraic structures (based on rotational invariance and the Lie algebra of
O(N)) compared with the conventional more analytic one based on Jacobian evalu-
ation [5, 14, 15]. 2 Moreover, our approach allows one to “zoom” into the Jacobian
and see clearly the algebraic meaning of the mysterious factors |A; — A;|* that fre-
quently appear in the theory of random matrices. Here come our more detailed
cominents along this line.

Remark 1. {Spectral distribution for GOE.) Our approach also applies to Gaussian
Orthogonal Ensembles. M is symmetric and thus S is replaced by its eigenvalue

Tt is interesting to point out that all matrix factorizations familiar to numerical analysts have
nice Jacobians [5, 7, 15], — “a stroke of luck?” in Trefethen’s language [23).



matrix diag{X:,- -, Ay) and V = U is the eigenvector matrix. Therefore, in Eq.(8),
a;; = by, and

dM = Z dipErr, + Z()\,’, —A;) day; (Eyj + Ey).
k 3>i

Since (Exg, By + Eji | k;7 > 1) is an orthogonal basis in GOE, we have

dyM =dX TN — 2] duA.

=i

This easily gives the spectral distribution density of GOE.
Furthermore, each difference factor A; — A; also sees its clear algebraic meaning
from our approach. By Eq.(7) and (8), if we define

A-ij = Eij - Eji € A(N)

for each pair 4 < j, then the “finite difference” A; — A; of the spectra exactly comes
from the Lie bracket (which is an algebraic generalization of taking differentiation!):

[Asj, S] = Mgy § — S Aij = (05 — 0:)(Eij + Eji). (11)

Remark 2. (Real and complez ensembles: an algebraic approach.} Our approach
also easily offers a unified viewpoint on real ensembles and complex ensembles (and
even quaternion ensembles). Tt is well known that the only difference in the spectral
density functions between GOE and GUE is the factor of 2: in GUE, each spectral
difference is squared —(X; —A;)?. The above approach offers a very general algebraic
explanation. For GUE, a complete orthogonal basis for the anti-Hermitian algebra
consists of the elements A;; as defined above, as well as

Al = V=1{Ei; + Ej), for each pair ¢ < j.
Thus we have another bracket besides (11):
[Agj, S] = (o'j - G’.g)\/ —IAij. (12)

Since (E;; + Ej;) and +/—1A4; are orthogonal directions in GUE, the measure prod-
uct along the directions in Eq. (11) and (12} gives the squared factor. The same
discussion applies to quaternion ensembles.

Remark 3. (Non-square Gaussian Ensemble G{N, n).)

Our approach applies easily to any non-square Gaussian ensembles G(V,n) with,
say, N > n. Then in Eq. (5), Uy, So, and V5 have sizes N x n, n X n, and n x n.
Complete Uy to a square orthogonal matrix 5. Then the rotational invariance
allows us (by considering ﬁér « My - Vi) to consider only the much simpler case of



Up = (I5,0)T and V; = I,. Near such Uy and Vp, we have explicit coordinates:
A€ A{n) and W of N —n by n for U, and B € A(n) for V (of course valid onty
in a small neighborhood), such that U = (e™4,W)T and V = e~ &. Now Eq.(7)

becomes

_[dS+SdB-dA S
dM_[ aw S

(Note: W is a “free” variable (to the first order) near Wy = On-pn,n-) The only new
interaction comes from S and dW, which, after taking exterior products, contributes
a factor of (ay03 - - - 6,)Y ™ to the volume element d, W, since each o}, is multiplied
to a column of dW of length N — n. The remaining analysis is the same as in
the proof. Readers can find that our approach clearly explains the meaning of the
different factors in the p.d.f, first obtained by Fisher, Hsu and Roy in three different
papers in 1939 {see [5, 15]).

3 The Quadrant Law of the Thermodynamic Limit

In this section, we give the physics proof of the quadrant law for the thermodynamic
limit of the singular value distributions. We shall follow the standard statistical me-
chanics approach for GOE and GUE [14]. We called it “the physics proof” upon the
consideration of two factors: (1) first it is a proof since the correspondence between
the distribution of the singular values and Coulomb or quasi-Coulomb many-body
interactions is exact, and there is no approximation; (2) but it is the “physics” proof,
since the statistical mechanics approach only predicts the equilibrium state of the
thermodynamic limit of the many-body problem, and it does not offer the accu-
rate information regarding how such state is achieved, or mathematically speaking,
in the sense of weak convergence, in measure, or almost surely? The very recent
mathematical paper of Kiessling and Spohn [11] atternpted to address this problem
in a more accurate way.

There might exist earlier works, but from what the author has learned, the first
paper that gave the rigorous mathematical proof of the guadrant law appeared in
Wegmann [25, 1976], in which the author studied more general random matrices
from the non-commutative algebra €[4, A*], where A is a random complex matrix.
The major tool is the moment method. Another interesting paper that explicitly
mentioned the “quarter-circle law” was by Trotter [24, 1984], a concise summary
of which can also be found in Edelman’s lecture note [7]. The main techniques
of [24] include numerical transforms, the direct probabilistic estimations, and the
Jacobi tri-diagonal matrix associated with the three-term relation of the Hermitian
orthogonal polynomials. None of these works utilized the information of the p.d.f.
of the singular values in Theorem 1, however. The author would be glad to receive
any other information concerning the literature of the quadrant law.

3.1 ~v-Coulomb gases

We have observed the major difference between the spectral distribution of Gaussian
Orthogonal Ensembles and the singular value distribution of Gaussian Ensembles.



From the statistical mechanics point of view, this is the difference between Coulomb
and non-Coulomb gases. But the non-Coulomb gas corresponding to the singular
values are not too far away from the Coulomb gas as we shall explain below.

For any v > 1, define a “y-Coulomb gas” by the Hamiltonian

Hy(o) = Hylon,-- ,on) = 3 _V(ew) = Imo] -], (13)
& g>i
where V(z) is an external potential field acting on singletons. The admissible
domain (for the gas particles) is oy, > 0,k = 1,--- , N. {This seemingly artificial
constraint can be better explained by the energy barrier at the origin for all even
integers.)

If v = 1, this represents the classical Coulomb gas (in an external field). The
spectral analysis of GOE and GUE falls into this category. An extensive study on
such a gas is also motivated from the approximation theory and can be found in
the excellent monograph by Saff and Totik [18]. In the case of singular values of
GE, however, we have

Viz) = ~§—a¢2, and y=2,
and in terms of the Hamiltonian, the p.d.f becomes
1
P(do) = —Z—e-Hz(“) do.
Now we follow the standard practice to compute the thermodynamic limit. In
the limit, suppose the ratio of the total number of particles on [z, z+dz) is ¢(z) dz.
Then the total energy (¢ |3H,(z,y)| ¢) (using the standard quantum mechanics

notation) should be minimized. In other words, ¢(z) solves the following constraint
quadrature:

min{¢ |%H,,,{a:, W) & under the constraint /000 ¢(x)dz = 1. (14)

Notice that this is NOT the familiar Rayleigh quotient problem and thus NOT an
eigenvalue problem. In fact, the stationary equation for (14) is

V) - [l - y7le) dy = C,
0
where C is the Lagrange multiplier. Taking differentiation leads to the

(P.V.) fow 727 0(y) dy = V().

Y ——y’)’

Set F{x) = V’'(x} — the negative external force, physically speaking. Then

(P.V.) fﬂ T W) g = R,

xY —y'f

10



The beautiful property about this last equation is its scaling law. Define
Ha) =1/ P and  Plz) = 1y o PIFPEYT). (15)

Then the last equation becomes

(PV) /0 ” j—f_% dy = F(z). (16)

Notice that the scaling transform (15) preserves the total integral of ¢. This con-
forms to the constraint that ¢(z) is a probability density function. Eq. (16) is just
like the equilibrium equation for Coulomb gases (only that here the domain is half
of the real line)! As Mehta [14] pointed out, we only require the last equation to
be valid on the support of the distribution ¢(z) (due to the non-negativity of a
density).

3.2 The quadrant law for singular values

Let us apply the above result to the singular value distribution of Gaussian Ensem-
bles with inverse temperature 3. The equilibrium distribution depends on 8, and
thus is denoted by ¢3. We have v = 2 and F(z) = V'(z) = Sz and

F(z) = 1/2 2712 p(gt/?) = /2.

Thus we only need solve

A further change of variable z — z/8 leads to

o

P.V) om gi_% dy = % (17)

such that

ds(z) = B (B). (18)

This last equation clearly shows the re-scaling role of the inverse temperature !

The Cauchy integral equation (17) now is quite standard. In approximation
theory, Eq. (18) corresponds to the Laguerre weights w(z) = ¢~*/% on [0, 00) [18].
Therefore according to [18, Theorem 1.11 and Example 5.4], the support of 951 is
[0,4], and

hi@) = oo/ 22, (19)

&

11



which is a Beta distribution B{3/2, 1/2) if linearly scaled to the unit interval [0,1].
The combination of the two scaling transforms (15) and {i7) eventually gives

¢p(x) = 28721 (8°5°) = By (Ba), (20)

b1 (z) = 22¢1(2%) = 2z - m\/ Vi — 2,

for x € (0,2). Thus as in the classical spectral analysis for GOE, we have proved
the quadrant law for singular value distribution of GE in the thermodynamic limit.

where

Theorem 2 (Quadrant law for singular values) For Gaussian Ensembles with
inverse temperature § = 1, the thermodynamic equilibrium distribution ¢, (o) for
the singular velues obeys the quadmnt law:

(o) = 4 — g2, o €(0,2]. (21)

For general B, the distribution is gbﬁ(a) = B¢1(fc), and is thus supported on
[0,2/5]. Therefore, asymptotically for large N, the histogram of the singulor values
can be approximated by

havl(o) = x/fquﬁ(—f\/'ﬁ)

(since we need [ hy(o) do =N ).

Before ending this paper, we would like to make some profits from the quadrant
law. As in the case of GOE or GUE, the thermodynamic limit can offer very
important results without complicated algebra, though very often, the rigorous
proofs are surprisingly tedious. Physicists usually employ the thermodynamic limit
to guess or heuristically obtain many important results, whose rigorous proofs might
be missing. Here we follow such practice:

(a} Given 8, almost surely for any sequence of Gaussian matrices (My € G(N) [N =
1,2,.--), we have

o 1]l
N—oo ﬁ

=2/.

This result is easy to guess from the quadrant law, but its rigorous proof (in-
cluding non-Gaussian ensembles) is highly non-trivial and now has become a
classical result in the random matrix theory owing to Geman {8].

{b) Dencte the median of a collection of real numbers z = {x1, 22, -+ ,2n} by
med(z). Then almost surely for any sequence of Gaussian matrices (My €
G(N) | N=1,2,---), we have

Hm med(o(Mn))

N—oo

= (2/8) cosbm,

12



()

where 8, € (0,7/2) is the unique solution to 26 - sin28 = /2, so that the
vertical line x = cos §,, divides the quarter-disk

2+t =1, z,y >0

into two equal-area parts. The construction of a rigorous proof shall be another
good statistical problem.

Finally comes a more interesting result that gives the leading order information
of one of Edelman’s major contributions [5] in his thesis — the thermodynamic
limit of the p.d.f of op,, whose exact form has been re-formulated in Eq. (2)
in the introduction section. Again our argument is heuristically based on the
quadrant law. In the thermodynamic limit N — oo, the singular value sequence
of a sample matrix from the Gaussian Ensemble can be seen as independent
samples from the quadrant law. Assume f = 2 to make computation clear. For
any € € {0,1), define

4 f* 4
p5=;/ \/1“$2d93=;r“6+0(63).
0

Then,
N

Prob(%ﬁ > ¢) = Prob(all o} > €) = H Prob(oy > €) = (1 —p ).
k=1

Noticing that p, = Ofe), in the limit N — co, we have:

_ _ Omin o €. _ o (4/men _  _(armye
Prob(vV Nop, > €) = Prob(\/.ﬁ > N) =(1 T Y=e .
The last two equalities are understood in the sense of the leading order and
the limit as N — oo. Compared to Edelman’s exact formula (2), this heuristic
argument does catch the right scaling for the smallest singular value oy =
O(1/v/'N), which is far from being obvious according to the joint p.d.f, and
the leading order e (€ of the density function, though the heuristic coefficient
4/7 = 1.2732... is not right (the correct coefficient is 1 according to (2)}). In
numerical Hnear algebra, however, such heuristic estimation is already quite
useful since € is always small and its order is the most important.
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