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Involving Geometry and Constraints
I. Frequencies of a Two-Density
Inhomogeneous Drum®*

Stanley J. Osher! Fadil Santosat

Abstract

Many problems in engineering design involve optimizing the geometry
to maximize a certain design objective. Geometrical constraints are often
imposed. In this paper, we use the level set method devised in [11], the
variational level set calculus presented in {20], and the projected gradient
method, as in [15)], to construct a simple numerical approach for problems
of this type. We apply this technique to a model problem involving a
vibrating system whose resonant frequency or whose spectral gap is to be
optimized subject to constraints on geometry. Our numerical results are
quite promising. We expect to use this approach to deal with a wide class
of optimal design problems in the future.

1 Introduction and problem statement

This work is motivated by the need to develop methods for solving optimization
problems in engineering design. Many of these problems involve optimizing the
geometry to maximize a certain design objective. Constraints, often involving
geometry, are imposed. Therefore, the problems can be viewed as constrained
optimization. )

An example of such a problem arises in structural engineering. Here, a
structure is assigned to support a given load. The objective is to make the
structure as light as possible while satisfying a compliance constraint, which
could be stated as displacing a fixed amount for a given load [3, 14, 4]. Such
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problems have been studied extensively and it has been shown that the optimal
solution is a composite in the sense that it has microstructures [2].

Other applications of the techniques developed here include design of pho-
tonic bandgap devices [8].

Here we consider a model problem of structural vibration control [3, 14].
We are given a vibrating system whose resonant frequencies may lie in scme
undesirable window. We are allowed to change the geometry of the structure,
or add mass to it, in order to push the resonant frequencies away from the
prespecified window. The constraint may be geometrical — the structure must
have certain topology, or it may be for other consideration — the total mass we
add to the structure must be fixed.

Anocther problem we consider is one where the structure has the desired
resonant frequency gap, and our goal is to find a ‘simpler’ design that still
possess the desired gap.

Te demonstrate the main ideas of our approach, we study the following
eigenvalue problem. Consider a drum head with a fixed shape 1 € R? and
variable density p(z). The resonant frequencies of the drum is found by solving
the eigenvalue problem

—Au = Mp(ziu, =zefl, (1a)
u=0, z€dl. (1b)

Let § CC € be a domain inside (2. We do not assume any topology on §. We
assume that the density p(x) takes on two values

[ p for z€S
p(m)_{pg for 2l ° (2)

We will deal only with the first two eigenvalues A; and A.. For simplicity, we
assume that they are distinct, and that A, is separated from A; for any S. We
shall relax this assumption in future work.

The optimization problems we want to consider are as follows.

Problem 1: Solve the optimization

A i -
max A, or min At or max (Ao — A1),
subject to the constraint

18]l = K,

where K is a prescribed number. This problem is a cartoon of the structural
vibration control that we described earlier.

Problem 2: Solve the optimization

mSin [iS|| subject to Ay — Az =M.

Here M is a fixed number. This represents the ‘simplification of a design’
problem alluded to above.



The challenge in solving these problems come in the fact that we do not know
the topology of 5. 'l'o overcome this, we use the level set approach proposed by
Osher and Sethian {11]. The method provides an efficient way of describing time
evolving curves and surfaces which may undergo topological change. Another
challenge is the presence of one or more constraints in the optimization. We
tackle this difficulty by modifying the projected gradient method devised for
deblurring and denoising of images by Rudin, Osgher and Fatemi [15]. The
modification comes in the fact that we use Newton’s method to project back
into the constraint manifold after we ‘stray’ too far from it.

Therefore, viewed at a high level, this work presents a method for dealing
with optimal design problems involving geometry and constraints. We note
that Sethian and Wiegmann [17] studied the problem of structural optimization
using level sets. What sets the present work apart are the use of functional
gradients to calculate the velocity of the level set, and the precise way we deal
with the hard constraints.

Theoretical issues concerning Problem 1 have been investigated by Cox and
McLaughlin {9]. They addressed the existence of extrema, and provided a char-
acterization of the extremal solution using the nodal domains of the eigenfunc-
tions. A numerical algorithm for minimizing the first eigenvalue based on this
theoretical work has been implemented in {6]. Cox [7] also studied the gradi-
ents of the eigenvalues with respect to a distributed density, and in particular,
consider the case where an eigenvalue is repeated. For the case of two-density
domains, the functional analysis of the gradients of the eigenvalues and con-
straints still needs to be done. We note the work of Sckolowski and Zolesio [18]
which addresses differentiability of certain functionals with respect to geome-
try. The results of their work may well be applicable to the present problem.
However, we defer investigation of the more theoretical aspects of this prob-
lem. Instead, we will focus on developing effective numerical schemes for the
problems stated.

2 Level set formulation and the projected gra-
dient approach

A key idea that makes the optimization tractable is to represent the unknown
set S as the level set of a function #{z) where

Si={z: ¢(x) > 0}. (3)
Then p(zx) in (2) is given by

[ for {z:¢(x) <0}
ple) = { pa for {z:¢(z)>0} ° @)

We will now work with function ¢(z) instead of p(z).
The generic optimization problem we need to sclve is

min F(¢) subject to G(¢) = 0. {5)



If we are solving Problem 1, then F{-) represents an objective associated with
the eigenvalues of (1}, and G(-) represents the constraint on the mass, which we

rewrite as
mw:/ ldz—K.
{x:19>0}

) = -[[.'c:¢>0} Ldo,

and G(¢) = Az — A. In summary, what we need to address is an optimiza-
tion involving a nonquadratic functional and a single nontinear constraint. We
emphasize that several of the problems described in [14, 3] fall into this class.

We use the Lagrange Multiplier Method to solve the optimization problem
(5). The Lagrangian, with multiplier v is given by

L(¢,v) = F(¢) + vG{$). (6)

The necessary condition for a minimizer is

For Problem 2, we take

DyL(,v) = Dy F(¢) + vDyG(9) = 0. (7a)

This, together with the constraint
G{¢) = 0, (7b)
allows us, in principle, to find ¢ and v. Next we address the issue of how to

formally compute the gradients of F and G with respect to ¢.

2.1 Gradient calculations

To facilitate the calculation of the gradient of F' with respect to ¢, we observe
that F is a function of p, which is given implicitly in terms of ¢ through (4).
We will use the chain rule

DsF(§) = DpF Dyp,

because the derivative of F with respect to p is straightforward.
As an example, let F(#) = A;. Then, the eigenpair {uy, A1) solves

"‘Aul = Alp(x)uia TE Q‘:
uy =0, =z¢&d.

A variation in the density by an amount dp results in variations in vy and A;. We
denocte these by du; and §A;. Applying the variation to the partial differential
equation leads to

—Abduy = A p(z)duy + dApus + Mdp(z)uq.



Figure 1: The geometry of the zero level set under variation in ¢.

Rearranging, we have
—Aduy — A plz)duy = M pus + bp{r)us.

For the equation above to yield a nontrivial du,, the right-hand side must be
orthogonal to u;. This implies that

A [, dp(zhuf de
Jo plz)u? ds

For functionals ' involving A; and Ay, we can proceed in a similar way.

The calculation for the gradient of p with respect to ¢ is more complicated.
There are several ways to proceed. The approach presented by Zhao et al [20]
is an effective way of dealing with such a calculation. Here, we follow the
derivation outlined in [16]. We begin by studying the geometry of the zero level
set, 8S = {x : ¢(x) = 0} under a variation in ¢. Consider the situation depicted
in Figure 1. The solid curve is the zero level set before ¢ is varied; the dashed
curve is the zero level set of ¢ -+ d¢p. Suppose the set S become S' under the
variation in ¢. A point = on the zero level set has been displaced by dz.

The variation dp is integrated against a test function f(z)

DpAl . (5,0 = (5/\1 = (8)

<apf>i= [ bpe) f@yda= [ @) 1) do,
o symdiff(s,s")
where symdiff(S, $') = (SUS)\ (SN §’) is the symmetric difference of the sets
& and S'. Because the difference in § and $§' is infinitesimal, we can reduce the
area integral to a line integral. Let n(z) = V¢/{V¢| denote the inward normal
to S. We use the fact that dp(z) is either plus or minus (pz — p1); plus when
dz - n(z) is negative, and minus otherwise. Therefore, the integral becomes

<op.f>== [ (pa=p)do-n(o) f(o) dsta),



where ds(z) is the incremental arclength.
We can now identify dp from the last expression as

) V()
0 == (b2 =) [ %

£E3S
To remove dz {from the expression, we take the variation of the equation ¢{z) =

0,
¢+ Ve - bz = 0. (9)

Therefore, we arrive at

o
7 (10

bp=Dy p-0¢ = (P2—P1)§*V—*

®EBS

We interpret the result as saying that when ¢(z) is varied, the variation in p(x)
occurs only along the zero level set 85.
Putting the results in {8) and (10) together, we get

A(p2 — p1) uf
Dghy - 0¢p =
o Joriddz Jas Vel

The same procedure can be applied to obtain gradients of objective functional
F which involve Ay and Xg.

In Problem 1, G(¢) = f[odz — K. To calculate the variation of G(¢), we
need to come up with an expression for the variation of the area of 5. We refer
to Figure 1. We observe that the change in area ab z is positive if éz - n(z) < 0,
and negative otherwise. The total change in area then is given by

4¢ ds(x). {11)

—faﬁmma@y
8s
Using (9) and n(z} = V¢/|V|, we get

DyG(@) 3= [ b dsta) (12)

The gradient formulas will be needed in devising a computational algorithm
for optimization, which we describe next.

2.2 Projected gradient algorithm

The surface ¢(z) will be altered so that points on a level curve will move per-
pendicular to it. This means that the change is given by the expression

do + v(z)|Ve| = 0.

The above is equivalent to a Hamilton-Jacobi equation if we view the change
as oceurring continuously in time. The function v(z) represents the velocity of
the level curves.



Choosing the velocity field v(z) amounts to choosing a descent direction for
the optimization. We choose the steepest descent direction. For the example
where F(¢) = A1, we find, from (11) and {12} that

DyL-86¢ = Dyhy-6¢+vDyG(g)-6¢

_ Mlps —m) o } ¢
"‘L{kﬁm%+”wmmm (1)
Now we set M )
e [ M\P2— Pt
§p = (-——-_-—fg o s uf + ,,) |Vl (14)

By substituting d¢ given in (14) in equation (13), we can conclude that it is a
descent direction. We can identify the velocity field v(z) as

v(z) = (Wu% +v) . (15)

Tt is important to note that we have ‘naturally’ extended the velocity from
its value on the zero level set 85 to the entire domain £ exploiting the fact
that u;(z) is defined in all of 2. The only requirement for the velocity to
correspond to a descent direction is for its value be as specified in (15) only on
8S. Therefore, an alternate implementation is to define the velocity on the zero
level set, and extend it to all of {1 by other means, such as the method outlined
in [5, 20].

However, this descent direction may take the current estimate for ¢(x) out
of the feasible set. The value of the Lagrange muitiplier will be set to keep
¢(z) + dp(x) feasible. We use a projection approach which is based on the
method described in Rudin, Osher and Fatemi [15] with a small modification.
The projection is based on the linearization of the constraint equation G(¢) = 0.
We insist that any update must be tangent to this set; that is §¢ must satisfy

DyG(¢) - ¢ = 0. (16)
For Problem 1, this amounts to a requirement on the velocity on the zero level

set. To see this, we take the expression for the directional derivative of G in
(12) and use d¢ + v|V¢| = 0. We get

[ o) ds(z) = 0.
a5

In implementation, we do not evaluate the contour integral. We use Stoke’s
identity to rewrite the contour integral as

_ Vo
/as v(z) n(z) -nlx)ds = fasv(m) i n(z) ds

- /Sv- (U(z)%) da.



Letting
_ Mlpz - p1) o
Uﬂ(m) = fg ,OU% dz Ut,
we obtain a formula for the Lagrange multiplier v

VE—LV-UO(m)T%dm//‘SV-l—g—%dm.

The linearized constraint in terms of velocity has a natural interpretation. It
states that for the total area of S to be conserved as required by the constraint,
the total flux on the zero level set must be zero.

Remark Alternately, one can deal directly with contour integrals by first
representing them with delta functions, and then replacing the delta functions
with smoothed approximations. This approach is outlined in [20} and goes as
follows. We write

[ viz) ds = / v(z)d(P(x))| V| d.
as Q

This equality uses the fact that 85 = {z : ¢(z) = 0}, and is formally justified.
In computations, we approximate §(z) by

0 for |z|>h
on{z) = { = {1+cos (ﬂhﬂ)] for |z| <A -

Thus, the line integral is approximated using an area integral.

The projection step, because we will be taking finite steps along the tangent
to the feasible set, will eventually make the iterates infeasible. To put an iterate
back onto the feasible set after it has ‘drifted’ too far away from the constraint
set, we use Newton's method. With the unknown being v, we write §¢{z;v) in
{14} as a function of . Then we take steps

v v —(DyG($+8¢(z,1)) ' Glg + Sz, v)).

Note that we only need to perform this step when an iterate has violated the
constraint by a specified tolerance. Moreover, the ingredients needed to do the
computation are already derived in the gradient calculations.

The approach outlined can be applied to Problem 2, as well as other types of
constrained optimization problems involving more constraints. We summarize
the method described above as an algorithm in Figure 2.

3 Numerical experiments

To test out the method for optimization as outlined in Section 2.2, we consider
solving the problem on a rectangular domain (& = [0, 1] % [0, 1.5]. We discretize
 using a regular mesh. The update for the level surface ¢{z) is given by

5¢ +v(z)| Vel =0,



initial guess for ¢{z)
do while not optimal
o compute DyF{(¢) and DyG(¢)
# solve for Lagrange multiplier » in (16} (when
needed, solve for v via Newton’'s method)

e pget descent direction §¢
s update ¢(z) to o(z)+ add{x)

Figure 2: Algorithm for solving min F(¢) subject to G(¢) = 0. Here o > 0 is
the step size.

where v(z) is given by (15). We view this as a discrete-time Hamilton-Jacobi
equation, with d¢ representing the difference of ¢ at two time instances. The
Hamiltonian is

H(z,V¢) = v(x)|V4.

The technology needed to solve such equations and accurately compute the
correct (viscosity) solution, kinks and all, is quite advanced by now. Higher
order ENO [12] and WENO [10] schemes are available. For problems involving
interfaces, such as ours, we are only interested in the zero level set of ¢(z). This
means that we can evolve the interface efficiently by only solving the equation in
the neighborhood of the zero level set. Methods which exploit this feature of the
problem have been proposed in [1, 13]. Note that the function ¢(z) is only in the
computation to keep track of the interface defined by the zero level set. Because
gteep or flat slopes can develop in the evolution of ¢(z) through the Hamilton-
Jacobi equation, it is advantageous to reinitialize ¢(z) using the signed distance
to a zero level set in order regularize the function ¢({x). This initialization, which
does not affect the computation of the zero level set, increases the accuracy of
the computation [19].

In the present work, this part of the calculation consumes only a small
fraction of the computational effort. We do not implement the local method
or the reinitialization. We simply adopt the simple monotone upwind scheme
devised in [11]. The calculation of the eigenvalues and eigenfunctions associated
with the objectives were done using Matlab routine eigs.

In all the experiments that follow, the mesh size is Az = Ay = 0.025 (40x60
grid}. The density is p; = 1 and p; = 2. The level set function is extended
periodically over the region 2. Because of the scaling in the eigenfunctions, we
needed to adjust step size o to ensure stability. This number can be arrived at
by considering the CFL condition. In our implementation for solving Problem
1, the Newton iteration is invoked each time we violate the constraint by more
that 3 pixels. For Problem 2, the Newton iteration is used when we violate the
gap constraint by more than 1%.

In the first example, we consider the problem of maximizing the first eigen-
value. We start with a density distribution shown in the upper left corner of
Figure 4. In that figure, white corresponds to pa = 2. The value of X; starts at
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Figure 3: Maximization of A;; see Figure 4 for corresponding densities.

below 8. As we iterate, the eigenvalue increases until it reaches a stable value
of around 13.5 after 200 iterations (see Figure 3). The density distribution as a
function of iteration is displayed in Figure 4. Note the change in the topology
of the region S as we iterate.

The second example demonstrates the process of minimizing the first eigen-
value. Starting with the same initial density distribution as in the previous
example, the algorithm found the minimum eigenvalue, at a little below 7.4,
after 400 iterations (see Figure 5). The density distribution as we progress
towards the optimum is shown in Figure 6.

Next we consider the problem of maximizing the gap between Ay and ;.
Starting with the initial density distribution in the upper left corner of Figure §,
we found the distribution that maximizes the gap in 400 iterations. The density
distributions as we iterate are shown in Pigure 8. It is instructive to examine
the evolution of the gap as a function of iterations in Figure 7. We see that the
second eigenvalue can be made larger at a modest cost of a small increase in the
first eigenvalue.

The fourth example deals with minimizing the area of the § while maintain-
ing a given gap. This is Problem 2 described in Section 1. The desired gap
corresponds to {Az — A;) for the density distribution shown in the upper left
corner of Figure 10. We show the reduction in the area of § as we iterate in
Figure 9. Figure 10 displays the density distribution as a function of iterations.
It is remarkable that everyone of the density distribution in Figure 10 has the
same gap. To see this more clearly, in Figure 11 we show the eigenvalues A; and
Ao a8 we iterate. We note that they move in parallel as a function of iteration,
leaving the gap constant.

The final example combines the optimization processes in Problem 1 and
Problem 2. We use the density corresponding to the maximum gap in the third

10



Figure 4: Maximization of A;: the densities as we iterate toward solution.
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Figure 5: Minimization of A;; see Figure 6 for corresponding densities.
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Figure 6: Minimization of A;: the densities as we iterate toward solution.
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Figure 7: Maximization of {Az — A;); sce Figure 8 for corresponding densities.

example, shown now in the upper left hand corner of Figure 13. Next, we take
the gap as a constraint and reduce the area of S. The reduction in area, and the
density distributions, as we iterate are shown in Figures 12 and 13. A density
with small {|S|| with the same gap is found. Figure 14 shows that the gap is
maintained as we iterate.

4 Discussion

‘We have presented a method for solving optimal design problems involving ge-
ometry and constraints using the level set formulation. The optimization strat-
egy is based on the projected gradient approach. We considered optimization
problems involving eigenvalues of a two-density drum either in the objective or
the constraint. The results we obtained are quite promising. We believe that
the general approach presented here can be applied to a wide variety of optimal
design problems involving geometry and constraings.
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