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Abstract

The level set method[21] has been successfully applied to a variety
of problems that deal with curves in R? or surfaces in R3. We present
here a combination of these two cases, creating a level set representa-
tion for curves constrained to lie on surfaces. We will study primar-
ily geometrically based motions of these curves on stationary surfaces
while allowing for topological changes in the curves, i.e., merging and
breaking, to occur. Applications include finding geodesic curves, short-
est paths, and curve shortening on surfaces. Further applications can
be arrived at by extending those for curves moving in R? to surfaces.
The problem of moving curves on surfaces can also be viewed as a sim-
ple constraint problem and may be useful in studying more difficult
versions. Results show that our representation can accurately handle
many geometrically based motions of curves on a wide variety of sur-
faces while automatically enforcing topological changes in the curves
when they occur and automatically fixing the curves to lie on the sur-
face. The method can also be easily extended to higher dimensions.
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1 Introduction

The problem of moving curves on surfaces is important in many applica-
tions. It can be thought of as a model constraint problem. Also, since it is
an extension of curve motion in R?, we may be able to extend the appli-
cations found there to surfaces. Such work includes those on geometrically
based motions, image processing, two phase flow, and materials science (see
[19]). We will mainly consider geometrically based motions here since it
is an integral part of all of the other applications. Curves on surfaces are
also useful in the study of surfaces. Geodesic curves and shortest paths are
important elements of a surface and can be computed using certain geomet-
rically based motions of curves. We allow for topological changes to occur in
the curves as this is useful in many of the applications we have mentioned.

One obvious way to move curves on a surface is using a front tracking
algorithm. This is where discrete points coming from a parametrization
of the curves are evolved according to the flow (see, e.g., [11]). The main
problem with this approach comes in finding when topological changes occur
and enforcing the change when it does, a difficult problem to handle even
for curves in R%. In this way, level set based methods are preferable since
topological changes are automatically taken care of by the representation.
Another issue in front tracking is in keeping the curve on the surface for all
time. Thus, a great deal of work on moving curves on surfaces do not use
this approach.

Previous work on moving curves on surfaces has mostly been confined
either to specific motions or specific surface types. In [7], Chopp studied
geodesic curvature motion of curves on manifolds by using a level set ap-
proach. This motion is also known as curve shortening or heat flow on iso-
metric immersion (see [14]). Chopp’s method involved computing on simply
connected coordinate patches of the manifold projected into R?. This algo-
rithm works for general manifolds as long as the patches are given. Finding
the coordinate patches, however, is in general difficult. In [14], Kimmel also
studied geodesic curvature flow using a different approach. He considered a
surface given as a graph of a function and evolved the iso-gray level contours
of a function representing a grayscale image on that surface as an application
to image processing of images painted on surfaces. The algorithm, however,
can only handle surfaces that can be represented as graphs of functions.
Other methods similar to this one can be found in [16] and [15], and also
in [10], which tackles the problem of grid generation. In [17], Kimmel and
Sethian used a fast marching approach[27] on level set functions to compute
geodesic paths on surfaces. In this method, the surface needs to be triangu-



lated and also seems to also be restricted to those that can be represented
as graphs of functions.

The method we construct will be able to handle a wide variety of mo-
tions for curves on more general surfaces as well as automatically enforce
mergings and breakings in the curves. It can be viewed as an extension of
[14] using a level set approach to more general motions and surface types.
Also, Bertalmio, Sapiro, and Randall[2] have applied a method of the same
flavor to the specific problem of region tracking. We will rederive and extend
their results in Section 12. We now take a closer look at the standard level
set method for curves in R? and surfaces in R3 as we will use the ideas there
to form our method.

2 Standard Level Set Method

The standard, or original, level set method[21] has been widely used to study
curves in R? and surfaces in R®. In this method, curves are represented by
the zero level set of a real valued function on R? and surfaces by the zero
level set of a real valued function on R3. These particular functions are
called level set functions. When studying moving curves and surfaces, the
level set function is allowed to depend on time. Thus the zero level set at
each time t represents the curve or surface at that time. Also, the motion of
the zero level set can now be carried out by evolving the level set function.
Usually this evolution is governed by a partial differential equation. One
benefit of evolving the level set function instead of just its zero level set is
that topological changes in the zero level set will be automatically enforced.
Note the ability of a curve or surface to be represented as the zero level
set of a function means the curve or surface must be the boundary of an
open set. This limits the types of curves and surfaces a level set method can
handle but does not seem to be overly restrictive and is a natural setup for
problems such as two phase flow (see, e.g., [26]).

Solving the evolution equation associated to the level set function usu-
ally needs to be done numerically. For this, a uniform grid (usually) is
placed in all of space, R? for curves and R? for surfaces. Finite difference
schemes are then used to discretize the evolution equation. An advantage
of this approach comes in the use of high order numerical discretizations on
uniform grids. Efficiency both in memory and speed can still be preserved
by only storing data and computing near the front[22] (see also [1]), though
sometimes at the price of a loss of accuracy.

The main advantage of level set methods, however, is that mergings and



breakings in the curves are automatically handled by the representation.
The time of this happening does not need to be computed and no extra
work is required to enforce the topological changes, unlike with front track-
ing methods. The evolution equation is simply solved in the same way at
every time step up to the desired time. The curve can then be interpo-
lated from the level set function at the end of a run, when the curve is then
plotted. During the run, the curve location is not needed and can remain
uncomputed. Although the ease in handling topological changes is one of
the main reasons for using level set methods, they are nonetheless attrac-
tive even when topological changes do not occur because of the simple and
accurate finite difference schemes on uniform grids that can be used. Thus
the level set method can be easily programmed and used. More on the level
set method can be found in [19]. All this naturally leads us to attempt to
use a level set based method for our problem of curves on surfaces.

2.1 Setup

In tackling the problem of moving curves constrained on surfaces, we begin
by using a level set formulation to represent the curves and surfaces. Thus
given a collection of surfaces M in R3 and curves 7 on those surfaces, we
represent M by the zero level set of a real valued function 1 on R? and
by the intersection of the zero level set of a real valued function ¢ on R3
with the zero level set of 1. As before, we will call these functions level set
functions. Since we will mainly consider the case where M is static in time,
1 will not depend on time. On the other hand, in order to study moving
curves on surfaces, we let ¢ depend on time. Thus the time evolution of
¢ allows us to follow the moving curves, keeping in mind that the curves
at time ¢ are the intersection of the zero level set of ¢ at time ¢ and the
zero level set of 9. In our representation, only a specific class of surfaces,
boundaries of open sets in R3, can be handled by this method. Similarly,
only a specific class of curves on the surfaces, boundaries of open sets on
M, can be considered. This implies that there is a notion of the inside and
outside of the curves or surfaces and we take, for definiteness, the inside to
be where the level set function is negative and the outside to be where it
is positive. Once again, this is especially natural, for example, for curves
denoting the interface between two fluids on M. We also note that 9 and
¢ need only be defined in a neighborhood of the curves and not necessarily
in all of R3. However, for simplicity of exposition, we will continue treating
them as functions over all of R3. The only concern will be when we need to
slightly modify the method to obtain optimal efficiency both in speed and



memory usage. This will be discussed in Subsection 8.1. Finally, we can
study constrained flows in other spatial dimensions by taking 1/ and ¢ to be
functions in R".

Note our setup is basically the same as in [3] except 1 is now held
fixed in time. Thus the constrained problem of moving curves on surfaces
turns out to be easier, using our setup, than the unconstrained problem of
moving curves in R?. We now develop various notation and tools for our
representation to help simplify and clarify future calculations.

3 Preliminaries

Given a vector w in R3, let P, be the orthogonal projection matrix defined

by
p,=1-2%"
|wl

where I is the identity matrix. Thus the components of the matrix are
(Pw)ij = 6ij — —-

where d;; is the Kronecker delta function. Note for z in M and v the normal
vector in R?® of M at z, P, projects vectors onto M at z, i.e., P, projects
vectors onto the tangent plane of M at z. Now for X a vector field in R3
we define the differential operator PxV by its components,

3
X, X,
(PxV)i=Y (% _ —;) O,
2%~ x]

Note this is just the projection matrix Px multiplying the gradient vector
operator in R3. In fact, given a real valued function u on R3,

(P)(V)’u, = P)(Vu,

and given a vector field Y on R3,

3
PxV-Y =) (PxV)Y;.
=1
We will constantly use this notation with the vector field X = V4, which is

parallel at each point in R? to the normal vector of the level set surface of
1) that passes through that point. So given a point z in R?, Py, projects



vectors onto the level set surface of ¢ passing through z. Therefore, if z € M,
Py, will project vectors onto M at x. This is very useful for putting vector
fields onto surfaces. Note especially that Py, Vu, evaluated on M, is the
projection of the gradient vector Vu in R?® onto M. This turns out to be
equivalent to the surface gradient of u on M. Similarly, Py, V- X, evaluated
on M, is equivalent to the surface divergence of X on M. We now present
a few useful properties of this operator.

Proposition 1 Let v, w,z be vectors, X a vector field, and u a real val-
ued function, all in R3. Also let e; denote the ith vector of the standard
orthonormal basis of R®. Then we have the following identities:

(a) Pyv-z=v-Pyz = Pyv- Pyz.

(b) (PXV),u =Vu- PXei.

(¢) PouV - (PouX) = V - (PouX |Vl g7

3.1 Projecting R? Equations onto Surfaces

In the course of studying the motion of curves on surfaces, we will need to
study partial differential equations on surfaces. Usually, from work already
done using the original level set method, we already know the form of the
partial differential equation corresponding to the same type of motion for
curves in R?. Thus one easy way to get the correct evolution equation on the
surface would be to change the equation for curves in R? accordingly, i.e.,
projecting it onto the surface, hopefully preserving its important properties.

Given a point z on M, we will project the form of the equation onto the
surface at this point. Let v be the normal vector of M at z and let €, €9, €3
be an orthonormal basis of R3 with e3 = v. Also let 51 be the derivative
corresponding to &;, 1 = 1,2,3. We can then write the partial differential
equation on M at z by treating the tangent plane at z as R?, where the
form of the equation is known. This means we will put all quantities in the
R? equation onto the tangent plane at z. This just involves changing those
quantities to fit the new frame €; and é3. Note this will especially involve
the surface gradient vector operator defined by

Vo = 51uél + 5211&2,
for v a function on M and
VS - X = <51X, 61) + <52X, 62),

for X a vector field on M. For example, on M and at z, the Laplacian of a
function v takes the form 0;0;u + 020ou, which can be written as V¥ - VSu.



So in this case, V is simply replaced by V¥ to get from the R? Laplacian to
the surface Laplacian. We will use this procedure to project other partial
differential equations in R? onto surfaces. Assuming that the important
properties of the equations are preserved during this transition, this is a
quick way to get the evolution equation we want on M.

The main replacement when projecting R? partial differential equations
onto surfaces is, as we have seen, changing V to V°. The connection between
the surface gradient V° and our previous operator PgyV is given by

Proposition 2 We have the following properties:
(a) For u a real valued function in R3,

VS’U, = Pv,qu,

on M, where VSu means the surface gradient applied to the restriction of u
on M.
(b) For X a vector field in R3 which is tangent to M on M,

V5. X = PyyV - X,

on M, where VS - X means the divergence of the restriction of X on M with
respect to the surface gradient.

So V¥ and Py, V are equivalent on M. The difference is that Py, V is
easier to deal with numerically. Because of this, we will write all our equa-
tions using this form. We also note the importance of replacing the integral
over R?, Jr2 dz, with the surface integral, [¢dA, which is equivalent to
Jrs 6(1)|Vep|dz, when projecting R? equations onto surfaces. Finally, the
R? equation should be invariant under a rotation of frames in R2?, otherwise,
projecting it onto the surface may not be a well defined process.

Thus using all our tools, we can easily write all the geometric quantities
of curves on surfaces in terms of our representation, i.e., in terms of 9 and ¢.
We will see examples of this later on when dealing with various geometrically
based motions. Examples can also be seen in [3] for the case of unconstrained
curves moving in R3. For more on the geometry of curves and surfaces and
partial differential equations, see [9] and [24].

4 General Numerics

The main advantage of our approach lies in the effective numerical schemes
that can be used to solve the partial differential equations associated to the



motions. In general, we lay down a uniform grid in R3. In reality, not
all the points in this grid need to be used since we only have to solve the
equation in a neighborhood of the curves. This is called a local level set
method (see, e.g., [22]), which we will discuss later. The level set functions
1 and ¢ are either given or created on this grid initially. Usually we use
analytical expressions for 1) but we may just as well only give values for
1 at the points in our grid. The partial differential equation for ¢ is then
solved by using appropriate finite difference schemes, which the uniform grid
lets us easily create and implement. Also, note under our representation,
the curve will not leave the surface and so the constraint that the curve
lies on the surface is always satisfied. In fact, the curve location does not
need to be determined for our computations but only when the curve is to be
plotted. The plotter we use is the one used in [3] which divides the space into
tetrahedra and uses linear approximations of ¢ and ¢ in each tetrahedron
to solve for the intersection of the zero level sets. The level set method
representation also automatically takes care of any merging that may occur.
The partial differential equations for the evolution are just solved in the
same way until the end time regardless of whether merging has occurred or
not. Of course, this ease in handling merging is one of the main reasons for
using a level set based method. However, the method is still attractive in
general because of its simplicity in using uniform grids and finite difference
schemes. Finally, note that very complicated surfaces are easily taken care
of since 1 is given as a set of data on grid points.

The numerical algorithm can easily be extended to higher dimensions
but because of the uniform grid, operating in very high dimensions can be
overly expensive. Computing in R? is viable but above this, the method
may not be the most efficient.

5 Introduction to Flows

In the following sections, we will use our format to generate and solve evo-
lution equations for curves on surfaces moving under constant normal flow,
geodesic curvature flow, Wulff flow, and flow under fixed enclosed surface
area. In the process, we will develop other uses for these flows such as
obtaining signed distance functions, geodesics, Wulff minimal curves, and
Wulff shapes. These flows and their applications all come from flows and
applications for curves in R? (see [19]). Finally, we extend our results to al-
low the surface to also move. We will mostly derive the evolution equations
in multiple ways, by projecting an R? equation onto the surface, by finding



a velocity field under which to move the curves, and sometimes through
modified gradient descent minimizing an energy. The first way is quick and
easy but the other ways are more geometric and intuitive.

As notation, we will use the term “surface” to denote the types of surfaces
generated by zero level sets of level set functions and “curve” to denote the
types of curves generated by the intersections of zero level sets of two level
set functions. Note thus a “curve” or “surface” may actually be a collection
of curves or surfaces.

6 Flow Under A Given Velocity Field

We first consider the simple problem of moving a curve on a surface by a
given and fixed velocity field tangent to the surface. This can later be used
on more general motions by looking at more general forms of velocity fields.
The first step is to extend all our quantities to R3, creating 1 from the
surface, an initial ¢ from the curve, and v from the velocity field, unless
these are already given initially. There are various numerical methods that
can do this, e.g., see [5]. The evolution for ¢ then becomes

¢t + Pyyv - Vo =0,

which means we are moving the level sets of ¢ in R3 under the velocity
field Pyyv. The projection matrix in front of v keeps each level set of 1
independent from the others so that the flow on one level set of 9 will not
affect or be affected by the flow on the others. Note on the surface we are
interested in, Pyyv = v. So under this velocity field, for a given level set
surface of 1, the level sets of ¢ on that surface will move according to the
velocity field projected onto that surface and, especially, the zero level set of
¢ on the zero level set surface of 9, i.e. the curves on M, will move according
to v on M. This means the evolution equation gives the flow on M under
the velocity field v, which is what we want.

A more detailed way to see this is to look at the surface {¢) = C3} and
the curve on that surface y(s,t) obtained from the intersection of {¢ = C1},
taken at time ¢, with the surface. We study the flow of v on the surface
according to a vector field tangent to the surface, Py,v. Considering general
C: and C, allows us to obtain an evolution equation valid in all of R3. From
the definition of 7, we have ¢(v,t) = C for all s and ¢. Therefore, taking a
derivative with respect to t gives

Vé(v,t) -y + de(y,t) = 0.



The curve moves under the vector field Pyyv implies that v = Pyy(,)v(7)-
Therefore, the form of the equation becomes

$e(7,1) + Poyyyv(y) - Vo(v,t) = 0.

So, on the curve, we have
¢t + va’l) . V¢ =0.

Since C7 and Cy are arbitrary, we then imply that this equation is valid in
all of R?, giving us back the same equation as before.

Our process of projecting R? evolution equations onto surfaces gives the
same evolution equation. For curves in R? and using the original level set
method, the evolution equation is

¢ +v-Vo=0,

where v is a velocity field given in R?. We want to look at the form of this
partial differential equation on the surface M, i.e., to project the equation
onto the surface. Given z on M, note V1 is normal to M at = and let
€1,62,é3 be an orthonormal basis in R?® with é; = V4 at z. This frame
then allows us to define the surface gradient operator V¥ at z as before,
and so the equation on the surface will take the form

$et+v-Vig=0,

or, in detail, ~ R
¢t + <’U, é1>81¢ + <’U, ég)@g(ﬁ = O.

This can be rewritten in the usual format,
¢t +v- Pyy Ve =0,

which is equivalent to what we obtained previously. So projecting the R?
equation on the surface also gives the correct evolution equation.

Higher dimensions can also be considered with the same evolution equa-
tion simply by taking 1 and ¢ functions in R™ and v a velocity field in
R".

The derived evolution equation is a partial differential equation of Hamil-
ton Jacobi form and can be numerically solved using Total Variation Di-
minishing Runge-Kutta (TVD-RK) of third order in time (see [23]) and
Hamilton Jacobi Weighted Essentially Non-Oscillatory method (WENO) of

10



fifth order in space using the Godunov scheme[12]. The associated Courant-
Friedrichs-Lewy (CFL) condition says that At, the time step, must be less
than a constant times Az, the spatial step, with the constant depending on
the magnitude of v. Also, the singularity arising from |V| = 0 needs to be
regularized. This can be accomplished, for example, by replacing |V| with

\/ Y2, + 2, + P2, + €2, where € is positive and very small, when it appears
in a denominator.

The above process can then be used to derive evolution equations for
more general flows. First, a valid velocity field v, which now may depend
on ¢ and its derivatives, must be derived. This will depend on the type of
flow being considered. Then the evolution equation will take the same form
as above,

¢t +va’l) ' V¢ =0.

This equation will move the level sets of ¢ in R? under the desired velocity
field and thus will move the zero level set of ¢ on M according to the flow
being considered. It is also valid in more space dimensions, where 1 and
¢ are real valued functions on R™ and the projection matrix is an n by n
matrix. Note we cannot use the above discretization anymore for general
v. The valid discretization of the equation will depend on the form of v,
for example, if —Pyyv - V¢ is elliptic, then we can use central difference
schemes. We will constantly use this velocity field process to derive and
validate the evolution equations for our flows.

7 Constant Normal Flow

A difficult but important flow involves moving a curve in the outward normal
direction at a constant speed C' on the surface. This means at time ¢, the
curve we are looking for is the set of points of distance C't, measured on the
surface, away from 7y in the outward direction. Note that moving inward
corresponds to C being negative. For curves in R?, this flow has been used to
find flame fronts (see [18]) and is an integral part of many other applications
(see [19]).

We first use our approach for projecting R? equations onto the surface
to quickly generate the evolution equation. The corresponding evolution
equation for curves in R?, using the original level set method, takes the
form

¢+ C|Ve| = 0.

Once again, given z on M, let &, &3, €3 be an orthonormal basis in R? with

11



é3 = Vi) at z. This allows us to define V° at z and so the evolution equation
on the surface takes the form

¢t + C|v5¢| = 07

or, in detail,

b1+ C\V(Br9)2 + (B2

This can then be rewritten as
¢t + ClPgy V| =0,

which is the correct equation. We will, however, verify that it indeed moves
a curve in the outward normal direction at speed C by rederiving it using
the more intuitive velocity field approach.

In the velocity field approach, we want to calculate a velocity field v
under which the level sets of ¢, and especially the zero level set, will move
in the correct manner. For fixed ¢, consider the surface {¢y = C;} and the
curve generated by intersecting this surface with {¢ = Cs}, where C; and
C5 are constants. Note the case we are interested in is Cy = Cs = 0 but by
considering arbitrary C; and Cs, we get a velocity field valid in all of R?
which can be used to evolve ¢ in R3. Now on this curve, v should be normal
to the curve, have length C, and be tangent to the surface. Such a v will
give the desired motion for the curve on the surface. From this, we deduce

PgyVé

v=0—"——-.
| Py V|

Note, we could use vector cross products instead, since we are in R3, along
with the identity

PgyV¢  Vipx Ve

|Poy V| Vi x V4|’
to rewrite our expressions, but we will stick with the more general form.
Also, if C = 1, note v is the outward normal of the curve on the surface.
We will use this fact in many later computations.

Under such a velocity field, the evolution equation for ¢ takes the form

¢t +v-Vop=0,
since Pyyv = v. Simplifying, we get

Py, Ve

V¢ = C
vve PoyVd

V¢

12



Pgy V¢
| Pyy V|
C‘PV¢V¢|.

- PyyVo

So the evolution equation for moving curves on surfaces by constant normal
flow is

¢r + C|PyyVe| =0,
or, using vector cross products,

VY x V| _

This is the same equation as we obtained previously by projecting the R?
equation onto the surface.

Note if we have a partial differential equation of the above form, even
with C depending on ¢ and its derivatives, then we say the curve will move
by speed C' in the normal direction. In fact, all evolution equations for flows
can be written in this form. This is because given a velocity field v tangent
to the level set surfaces of 1), then at each point z, we can decompose v in

PyyVé
|Pyy V¢
equal to C|Pyy V|, for some C, and so moving under the vector field v is
the same as moving in the normal direction by speed C.

The partial differential equation we derived with C' constant is of Hamilton-
Jacobi form and so we discretize it using Hamilton-Jacobi WENO of fifth
order along with Local Lax-Friedrichs (LLF) in space and TVD-RK of third
order in time. To satisfy the CFL condition, At needs to be smaller than
a constant times Az. The term |Py,V¢| is also regularized to remove the
singularity arising from |V| = 0.

In Table 1, we see that the our discretization is second order accurate
before merging occurs. This was checked for a circle moving on a sphere by
unit normal flow, i.e., flow in the normal direction at unit speed. The whole
algorithm, including the second order accurate plotter, is included in this
test. By using a higher order plotter, we should be able to get higher order
accuracy.

In Figure 1, we show a curve moving over two mountains by unit normal
flow. The curve breaks into two pieces, with each piece moving up each
mountain. In Figure 2, we show a curve moving on a volcano. The curve
starts outside the volcano and goes up and into the core. In Figure 3, we

terms of and the vectors perpendicular to it. Thus v - Py, V¢ is

13



‘ grid size H error ‘ order ‘

32 x 32 x 32 0.00561706
64 x 64 x 64 0.001703 1.7217
128 x 128 x 128 || 0.000447336 | 1.9286
256 x 256 x 256 | 0.000115601 | 1.9522

Table 1: This is the order of accuracy analysis for unit normal flow. The
example considered was a circle moving on a sphere. The results show
second order accuracy. Note the accuracy of the whole algorithm, including
the second order interpolation scheme used to plot the curve, is tested.

show a curve on a two holed torus. The curve moves across the two holed
torus, breaking and merging multiple times. Thus we see that the motion
of the curve by constant normal flow on complicated surfaces, even when
merging occurs, is easily handled by our algorithm. Finally, we show in
Figure 4 flow in the normal direction by a non-constant speed. For each point
on the curve, this speed is equal to a function 8 evaluated at the outward
normal vector of the curve. The function we chose is B(z) = |z1|+|z2|+|z3],
which is related to crystal shapes. Note the squarish aspect of the growing
curve.

We can also study the behavior of the flow in higher dimensions. The
evolution equation

¢t + C|Pyy V| =0,

is still valid with ¢ and ¢ real valued functions over the space R™. When
we drop a dimension and flow points on curves, the evolution equation takes

the form

[y bz — Pudyl
[V
Note the numerator of the second term is the absolute value of the Jacobian
of 9 and ¢. Thus it is possible, for example, to do constant normal flow of
a two dimensional surface constrained on a hypersurface in R* or constant
normal flow of points constrained on a curve.

o +C =0.

8 Signed Distance Function

In an extension of constant normal flow, we wish to find the signed distance
of each point on a surface M away from a curve y confined to M. The signed
distance on M of a point away from a curve is the minimal distance measured

14



on the surface, with a negative sign if the point lies inside the curve, of
that point to the points of the curve. Obtaining signed distance allows for
construction of geodesics and can be used for path planning on manifolds. It
can also reveal important information about a surface’s geometry. We solve
the problem by setting 1 to have M as its zero level set and trying to find a
real valued function d in R3 such that given a point x € M, d(z) gives the
signed distance of z away from +. d is thus uniquely defined on M, though
not in R3, and we call d a signed distance function of v on M. Note since on
M, d = 0 only at vy, we have, as before, that <y is the intersection between the
zero level sets of ¥ and d. Also note this problem is different from the ones
we have previously studied because we are looking for a function defined on
all of M rather than one defined near v only.

For 7 a curve in R?, finding the signed distance function using the orig-
inal level set method is accomplished by introducing a time element and
creating a partial differential equation whose steady state solution values
give signed distance. Starting with a level set function ¢ initially having v
as its zero level set and negative inside v, the equation

¢t +sgn(¢(z,0))(IVe| — 1) =0,

will give signed distance as its steady state viscosity solution. The signum
function keeps ¢ = 0 on v for all time and the rest of the equation tries to
force |[V¢| = 1, making the steady state solution a signed distance function.
We will derive the correct evolution equation on the surface in two ways, by
looking at this equation written on the surface and by using the philosophy
behind this equation to recreate it on the surface. In projecting the equation
on the surface M, we fix £ on M and éi, &, é3 an orthonormal basis of R?
with é3 = V) at z. Then V¥ is defined at = and the equation takes the
form

¢r +sgu($(z,0)(IV7¢| - 1) =0,

or, in detail,

o +50(6(0,0)) (/@192 + (B2 —1) =0
This can then be written as

¢t + sgn(é(z,0))(|Pyy V| — 1) = 0.

This is the correct equation but we will rederive it in the more detailed and
intuitive way by following the basic philosophy behind the R? equation.
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To find d on M, we can imitate the method for curves in R?, i.e., intro-
duce a time element and create a partial differential equation that has d as
its steady state solution on M. Let ¢ initially be such that the intersection
of its zero level set with M is y, with ¢ negative inside . If ¢ is a signed
distance function on the surface, then it must satisfy |Py,V¢| = 1, ie,
|[VS¢| =1, on M. So we wish to create an evolution equation such that on
M, the steady state solution satisfies this property while keeping the zero
level set of ¢ fixed at its original position. One such candidate is

¢i + sgn(d(z,0))(|Pyy V| — 1) =0,

which is the same as the equation we derived previously. The steady state
viscosity solution on M of this evolution equation will be d. Note that the
evolution equation is solved in all of space but steady state may sometimes
only be achieved at M.

This equation is also valid in space dimensions other than three and, in
fact, the equation for distance on curves in R? takes the form,

VIVIPIVEP - (V§-V§)® 1) o

1 + sgn(d(x,0)) <

IV
In R?, with vector cross products, the equation can be written as
Vi x V|
¢t + sgn(p(z,0 <7 —1) =0.

The signed distance evolution equation is of Hamilton-Jacobi form and
we solve it using Hamilton-Jacobi fifth order WENO-LLF in space and
third order TVD-RK in time. We also replace the signum function by a
smooth version (see [22]) and regularize to remove the singularity occurring
at |V4| = 0. To satisfy the CFL condition, At needs to be less than some
constant multiple of Az.

In Table 2, we see that the algorithm for finding signed distance functions
is first order accurate. This is because the curve is moved slightly during
iterations of the method. Theoretically this should not happen but because
of the numerical signum function and because of the grid, we see a small shift.
Table 3 shows that the method has a high order of accuracy when looking
at the quantity ||Py,Vd| — 1|. So altogether, this means the numerically
computed signed distance function is a high order signed distance function
for a slightly perturbed curve.

In Figure 5, we show a curve on a volcano along with the other contours
of the distance function. Note the contours are well-spaced. In Figure 6,

16



‘ grid size H error ‘ order ‘

32 x 32 x 32 0.020416
64 x 64 x 64 0.0106933 | 0.9330
128 x 128 x 128 || 0.00526517 | 1.0222
256 x 256 x 256 || 0.00261509 | 1.0096

Table 2: This is the order of accuracy analysis for the signed distance func-
tion. The curve from which distance was measured was a circle and the
surface was a sphere. The results show first order accuracy.

‘ grid size H error ‘ order ‘

32 x 32 x 32 0.000527837
64 x 64 x 64 4.7333%¢ — 06 | 6.8011
128 x 128 x 128 || 4.75352e — 08 | 6.6377

Table 3: This is the order of accuracy analysis for the signed distance func-
tion, measuring || Py, V$| — 1|. The curve and surface were the same as in
Table 2. The results show high order accuracy.

we show a curve on a torus along with the other contours of the distance
function. Once again, the contours are well-spaced. Thus we see that the
signed distance function may be used to create grids on surfaces.

8.1 Keeping Level Set Functions Well Behaved During Flows

One important application for signed distance functions is the role it can
play in keeping the level sets of a level set function well behaved on the
surface during a flow. This helps reduce numerical inaccuracies that may
appear from an overly steep or flat level set function. For curves in R?, this
is accomplished by making the level set function into the signed distance
function to its zero level set at each time step of the flow. We can do the
same for level set functions on surfaces. Note since 1/ can be chosen to be
well behaved or made so by replacing it by the signed distance function in
R3 to its zero level set surface, we will only study the effect that different ¢
have and assume %) is already well behaved.

Certain types of flows may result in a bunching of level sets, where the
function restricted on the surface is steep, or a spreading out of level sets,
where the function is almost flat (see, e.g., [8]). Numerically, this is undesir-
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able and may introduce large errors in the finite difference approximations.
Further errors may also be introduced when interpolating to find the lo-
cation of the curve, especially if the function on the surface is almost flat.
Finally, flatness may cause singularities if we need to divide by the magni-
tude of the surface gradient, as is done in geodesic curvature flow. But if
the level set function is constrained to be a signed distance function, then
the surface gradient will have a magnitude of value 1 everywhere except at
kinks. This makes the level set function well behaved, especially and most
importantly near the curve. When we consider a particular flow, i.e., solve
an evolution equation for ¢, the signed distance constraint is enforced usu-
ally by iterating the corresponding partial differential equation a few times
after every time step of the flow. We only need to iterate a few times since
usually only the information around the curve affects its motion and so we
only need to enforce signed distance in a neighborhood of the curve. Note
the zero level set of ¢ theoretically remains fixed when iterating to a signed
distance function and so this process should not affect the flow of the curve
on the surface.

Another way computations may break down is when the level sets of
¢ become tangent to the surface. Note this has nothing to do with the
level sets of ¢ on the surface, where the signed distance constraint makes
¢ well behaved, but with the behavior of the level sets of ¢ off the surface.
For example, ¢ = xo — Cz; is already a signed distance function on the
surface zo = 0 for all C' > 0 but as C tends to zero, the level sets of ¢
become tangent to the surface. Thus the surface gradient becomes zero,
and especially numerically inaccurate, and also any small perturbation of
¢ may greatly shift the location of the curve or even introduce spurious
curve parts. To prevent this from happening, we want to make the level set
surfaces of ¢ perpendicular to M on M, especially near the curve. This can
be accomplished by iterating a few steps of the partial differential equation

v
¢t + Sgnw)% V¢ =0,

at each step of the flow after signed distance is enforced. Note this equa-

tion forces |g$| - V¢ = 0 at steady state so that the level sets of ¢ will be

perpendicular to the surface. It also keeps the level sets of ¢ fixed on the
surface so that signed distance on the surface is preserved. The fast march-
ing method[27] might also be used in place of the above partial differential
equation.

The partial differential equation is of Hamilton Jacobi form and we solve
it using fifth order WENO-Godunov in space and third order TVD-RK in
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time. The CFL condition says At needs to be less than a constant multiple
of Az.

8.2 Geodesics

The signed distance function can also be used to compute geodesics on
surfaces from points to curves. This means given a curve v on M, we
want to find the shortest path on M from any point on M to «. This can
be accomplished using a signed distance function d of ¥ on M. In fact,
the shortest path is simply the part of the integral curve of the vector field
—dPgyVd drawn from the chosen point to . This simply means the shortest
path starts at the chosen point and follows the steepest descent direction
of d on M with speed d. The speed is thus zero at v and so we follow the
integral curve until convergence. The integral curves, y(s), of the vector field
are curves in R? and can be computed according to the ordinary differential
equation

§(s) = —d(y(s)) Poy(y(s)) Vd(y(s))-
For a chosen point z on M, the geodesic from z to -y is thus found by solving
the above ordinary differential equation with initial condition y(0) = z. This
can be done numerically using a Runge-Kutta scheme.

When we want the geodesic between two points a and b, we can first get
a d which gives the signed distance function to a small curve surrounding
the point a, i.e., approximating a. Then d = d + d(a) is an approximate
signed distance function to a on the surface which is exact when the small
curve approximating a is at a uniform distance away from a. Using this d
in the ordinary differential equation above along with the initial condition
z(0) = b allows us to calculate an approximate geodesic. Or, we can require
that signed distance be given initially in a neighborhood of the point a
and then solve for a signed distance function d to a on M by iterating
the corresponding evolution equation but only outside the neighborhood of
initial given values, the given values being fixed. We can then use this d
along with z(0) = b for our initial condition to calculate geodesics.

A drawback of this signed distance function method for geodesics is that
when there are two or more geodesics, we have almost no control over which
one or whether any will be chosen. Also note numerical approximations of
the geodesics are not forced to lie on the surface, unlike what happens in
our basic representation.

In Figure 7, we show a curve in the core of a volcano and the geodesics
from certain points to that curve. The geodesics travel up the volcano
and down into the core to reach the curve. In Figure 8, we show a curve
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wrapped around a torus and the geodesics from certain points to that curve.
The geodesics travel across the torus and around the hole to reach the curve.
Thus we see how the signed distance function can be used to find geodesics
from points to curves on surfaces.

9 (Geodesic Curvature Flow

One of the most geometrically important motions of curves on surfaces is
geodesic curvature flow. This motion is important as curve shortening and
can be used to get geodesic curves of surfaces and even to generate min-
imal surfaces on hypersurfaces of R*. Constructing the correct evolution
equation can be accomplished in a few ways, all of which lead to the same
equation. The first way is by projecting the corresponding evolution equa-
tion for curves in R? onto the surface. The second way involves finding the
curvature times normal vectors of the curve in R3 and projecting them onto
the surface. This gives the velocity vectors with which to move the curve.
The third way is studying modified gradient descent minimizing the length
of the curve constrained on the surface. The fact that these are all equiva-
lent means moving a curve by curvature is a minimization of the length of
the curve.
First Method: Projecting R? Equation Onto Surface.

We note that the corresponding evolution equation in R? takes the form

o

=V (|V¢|

) 194,

where —V - (%) is the mean curvature of the curve. Given x on M and

an orthonormal basis €1, &, €3 in R? with é3 = V4 at z, we can define V°
at . So the partial differential equation put onto M at x takes the form

S
g = V5. <|§52|> V54,

VS
V2 ¢l

where, in fact, —V?° . (

detail, the equation is

- b, N By - -
o= 10 + 0y 019)2 + (029)2,
( (¢(51¢)2+<52¢>2) (¢<51¢>2+<52¢)2>) V(E9P + o)

20

) is the geodesic curvature of the curve. In




with

() e
\/(51@2 + (029)? \/(51(1?)2 + (029)?

the geodesic curvature. We then rewrite all this as

o= (g ) Fe!
| 7

Poy Vo V]
with

<PWV¢H w)

Py Vel ik

the geodesic curvature. This equation translates to moving a curve on M in
the normal direction by geodesic curvature, which is what we want.
Second Method: Projection of Free Space Curvature Times Nor-
mal Vector.

Consider the surface {1 = C1} and the curve generated by intersecting
this surface with {¢ = Cs}, C; and Cy constants. This means Vi x V¢
taken on the curve is parallel to the tangent vector of the curve. So the

tangent vector of the curve can be written as T' = .
8 Vi x V]

curvature times normal vector of the curve in R3, kN, is the change in the
tangent vector along the curve. Therefore, using directional derivatives, we
get

kN = (VTl . T, VTQ * T, VT3 . T),

where T' = (T1,T5,T3) (see [3]). We now project this onto the surface to get
PgykN. Using this as our velocity field leads to the evolution equation

¢t = —Pv¢KN . V¢

This equation also gives geodesic curvature motion of curves on surfaces.
Third Method: Energy Minimization.
We consider the energy

0) = [ 3606 Poy Vl|Vylda.

which gives the length of the curve represented by the intersection between
the zero level sets of ¢ and 1.

Proposition 3 The Euler-Lagrange equation of this energy is
PgyVé
0=-V- Vi .
(|P il |> 5(0)6(6)
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Replacing 6(1)d(¢), which we treat as smoothed out delta functions, by
[Pyy Ve
V|

in our gradient descent gives us the evolution equation
PyyV¢ [ PoyVé|
by =V - Vol | — 7>
=V \Popvel ™) o

which is exactly what we got using the first method. Note because every-
thing is in R3, we can also write this equation as

(V¢ x V¢) X V¢> VY x V|
[V x V| Vg2

¢t=v'(

We made the above replacement because it matches the equation derived
using the first method. Also, according to standard level set practice[28],
we see that d(1)d(¢) should be replaced by a quantity that yields a gra-
dient descent algorithm for minimizing the enclosed surface area of v with
inward normal flow at unit speed. The enclosed surface area for our curve

on M is given by / H(—¢)6(¢)|Vp|dz, where 1 is static and H is the one
R3

dimensional Heaviside function. So the Euler-Lagrange equation is

0= —5(¢)d(4)| Ve,

and gradient descent with the above replacement gives

Vi xV
5 [V VOl
VY|
which is inward normal flow at unit speed.

Equivalence.

We will now show that the evolution equations for the first and third
methods are equivalent to the evolution equation for the second method.
The main result is the following identity,

Proposition 4
V- (T xVi¢)=&kN-(Vyp xT),

where

Vip x Vo

T = NV
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Using this to expand the right hand side of the evolution equation in the
second method, we get

—vah)N-VgZS = —vaV(ﬁ‘hiN
_ LN (WWW— (w-vww)
- 2
VY]

= —kN

(9279 x9¥)

V|2
o (Vi xVe) x Vi [Vy) X Vg
= N ( IV x V| ) Vo2

VY x V|
[Vep[?
VY x V|
[Vep[?
_v. ((V¢ X V) x V¢) VY x V|
[V x V| Vg2

= —kN-(VyxT)

= V(T x V)

which is the right hand side of the evolution equation in the third method.
This means all the evolution equations are equivalent. We summarize this
result in the following,

Proposition 5

PgykN -V¢ =—V - ( Poy Ve ||v¢\> |Poy V|

[Py Vel VY|

The resulting evolution equation is valid in any dimension and thus it is
possible to study, for example, minimal surfaces on hypersurfaces in R*.
We also have the property

Proposition 6 The evolution equation is degenerate second order parabolic.

Thus we use central differencing in space with third order TVD-RK in time
to numerically solve the evolution equation. We also regularize the equation
to remove the singularities arising at V1| = 0 and | Py, V| = 0. To satisfy
the CFL condition, At needs to be less than a constant multiple of Az2.

In Table 4, we see that the method is second order accurate. This result
was obtained by studying a circle moving by geodesic curvature flow on a
sphere.

In Figure 10, we show a curve moving on two mountains. The curve needs
to move over the mountains before it can shrink to a point and disappear.
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‘ grid size H error ‘ order ‘
32 x 32 x 32 0.00203138
64 x 64 x 64 0.000540219 | 1.9108

128 x 128 x 128 || 0.00014037 | 1.9443

Table 4: This is the order of accuracy analysis for geodesic curvature flow
of a circle on a sphere. The result shows second order accuracy.

In Figure 11, we show a curve moving on a bent plane. Note the surface
has a kink in it. The curve navigates over this without any problems. In
Figure 12, we show a curve on a cylinder. The curve evolves and wraps
tightly around the cylinder, forming a circle. This is a geodesic curve for
the surface.

10 Wulff Flow

We now consider the problem of evolving a curve by Wulff flow on a surface.
This means minimizing the Wulff energy / B(v)ds, where B: 5% — (0, 00)
gl
and v is the unit normal of v lying on the surface M. We will only study
the case of convex Wulff energies (see Proposition 8 below). Also, note
when 8 = 1, the Wulff energy is the length of the curve. Thus Wulff flow
is a certain generalization of geodesic curvature flow which is related, for
curves in R? and surfaces in R3, to crystal shapes (see [25]). We make a

homogeneous degree one extension of 8 to R and then rewrite the Wulff
energy using our usual representation to get

= LPoyVe X T
)= [ 6 (| o ¢|> 5()5(¢)| V) x V.

Proposition 7 The Euler-Lagrange equation of this enerqy is

0= —V - (Pyy VB(Pyy V) [ V4)5()5(9).

So the evolution equation, enacting the usual replacement to the delta
functions, can be written as

|Pyy V|
V|

This moves a curve by Wulff flow on a surface. The evolution equation also
satisfies

¢y = V - (PyyVB(Pyy V)| Vi)
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Proposition 8 The evolution equation is degenerate second order parabolic

if
2, PvypVe
v (\wa)

1is nonnegative definite.

To see that the equation we derived is the same as when projecting the
R? evolution equation on the surface, we note that for curves in R?, Wulff
flow is given by

¢ =V -VB(Vg)|Vg.

So given = on M and &, &y, 3 an orthonormal basis for R? with é3 = V4
at =, we can define V¥ at z and, thus, the equation on the surface takes the
form

¢ = V5 - VIB(VIH) VI,

or, in detail,

¢t = (01(018(010€1 + Bré2)) + 05(0oB (D1 hé1 + 52¢é2)))\/(‘§1¢)2 + (0200)2.

This can then be written as

¢s = PyyV - (PyyVB(Pyy V)| Poy Vi,

which is equivalent to the equation derived using energy minimization. Note
higher dimensions can also be considered by using the same equation.

We numerically solve the evolution equation using second order central
differencing on all spatial derivatives. The time derivative is discretized using
TVD-RK of third order. The equation is also regularized at the singularities
that occur at |V¢| = 0 and [Py, V| = 0.

In Figure 13, we show a curve moving on the bottom of a paraboloid.
The Wulff energy we used was with a smoothed out version of f(z) =
|z1| + |z2| + |z3|. Its exact form is

ﬁ(w):\/a:%—i-@—l- T3+ €2 + (/13 + €2,

with € = 0.1. Thus the curve develops a squarish shape while shrinking. In
Figure 14, we show a curve moving on a bent plane. The curve once again
develops a squarish shape and we see that computing over kinks in the
surface, which cause kinks in the curve, is not a problem for our algorithm.
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10.1 Wulff Minimal Curves

The evolution equation for Wulff flow can be slightly altered to give a method
for finding Wulff minimal curves on surfaces. Given a set of points on M, we
want to find the curve on the surface that passes through these points with
the minimum Wulff energy. We will call the given points boundary points.
Thus Wulff minimal curves are the one dimension version of Wulff minimal
surfaces (see [6]). This problem may be useful in the study of properties of
crystals on surfaces.

For 8 = 1, we are searching for the curve on the surface of minimal length
that passes through the boundary points. When M is a plane, this curve is
the boundary of the convex hull of those points. For general surfaces in R?,
the curve will be piecewise geodesics. We find the solution to this problem
by solving to steady state the zero level set of ¢ on M in the evolution
equation

¢t = —uPyyrN -V,

where g is smooth with pu(xz) = 0 if z is a boundary point and p(z) = 1
outside a small neighborhood of the boundary points. The initial curve,
Yo, is chosen to pass through the boundary points. This approach is an
extension of the one used in [6].

In the case where the boundary points consist of just two points, a and
b, and g is chosen carefully, we get the geodesic between a and b. However,
if the initial curve 7 is not chosen to be topologically equivalent to the
answer, parts of it may merge at later time and not evolve into what we
want.

For general 8, the evolution equation we are interested in is

| Py V|

¢t = puV - (vavﬁ(PWﬁV(ﬁ)W?ﬁDW-

We note that when M is a plane, the solution is usually still the boundary of
the convex hull of the boundary points. Numerically, the evolution equation
is solved using the same finite difference schemes as in the Wulff flow case.
The p is just treated as a coefficient in front of the rest of the equation.
For higher dimensions, the same evolution equation holds since it is already
in its general form. Thus it is possible to study Wulff minimal surfaces
constrained on hypersurfaces in R?.

Creating a 7y, or the corresponding initial level set function, that passes
through the boundary points may not be easy but sometimes we can simply
take as 7y any curve on the surface that encompasses all the boundary
points. Thus the initial ¢ is easy to construct. When we run the evolution
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equation in time, the curve will shrink and sometimes end up going through
all the boundary points. Other more robust interpolating methods can also
be used (see [29]).

11 Fixed Enclosed Surface Area

We now consider the problem of evolving under a certain motion a curve
v on a surface M with the constraint that the surface area of the part
of the surface enclosed by + is fixed in time. For curves in R?, this can
be used to study bubbles or other fluids that conserve enclosed area or
volume (see [13] and [30]). We will mainly look at geodesic curvature flow
and will occasionally comment on more general motions. In this case, the
energy involving the length of the curve coupled with the constraint gives
us the energy we are interested in. The constraint can be translated as the

condition that / H(—¢)0(¢)|Vy|dz remains constant throughout time.
R3

Note this means if v is a collection of curves, then the total enclosed area
is fixed, not the area enclosed by each curve in the collection. So the new
energy to consider is

B(¢) = [ 30)3(¢)|PoyVelda =X [ | H(=)o()|Vylds.

where A is a Lagrange multiplier.

For other flows, we can replace the first integral with the energy corre-
sponding to the type of flow. This just means we are coupling a different
energy with the constraint. For example, if we want Wulff flow then we use
the Wulff energy. Details of this will be given when we discuss Wulff shapes
on surfaces.

The Euler-Lagrange equation then becomes

B PgyVé
0_—v-<|P v ¢||v¢|> 5(8)5(9) + AIVHIS)3(4).

Under our usual replacement for 6(¢)d(¢$) and previous results, we get the
evolution equation

PgyV Py, V
b1+ A PoyVel =V (uf‘”vm ¢|> %

We can find the value of A by enforcing the constraint,
= H(— d
dt / NIVede
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/ $16(#)5(¥)|Vp|dz

B Pgy Vo B
- /. <v <|P v ¢|”W‘) A|PWV¢|> 5(6)5()| Veplda.

Solving for A in this equation gives

Py, V¢
FARV D (DT

A\ =
[ 1PesTals(@)s) Vs

All this together defines the evolution equation for ¢ that moves a curve by
geodesic curvature flow while keeping the enclosed surface area fixed. This
equation is also valid and can be used in higher dimensions. For more on
the process of fixing enclosed area or volume, see [13] and [30].

Numerically, the right hand side of the evolution equation is handled in
the manner corresponding to the flow. The left hand side is in Hamilton
Jacobi form and we solve it as in the constant normal flow section, i.e., using
third order TVD-RK in time and Hamilton Jacobi fifth order WENO-LLF
in space. At each Runge-Kutta step, we solve for A by using a second order
approximation for the integrals, which are only taken near the front because
of the delta functions, and using ¢ from the previous step in the integrands.

When deriving the evolution equation from the corresponding R? equa-
tion,

b+ NV| = V- VB(VH)| V|,
with
/sz -VB(V$)|Ve|é(¢)dx

[ volé@ds
R2

we note that all the terms have been considered previously except the A
term. For A, we would like to take the integrals over the surface instead of
over R?. This means we change the integral from [ dz to [gs 6(4)|V|dz.
Using this, the rest of the terms carry over as before and so projecting the
R? equation on the surface gives the same evolution equation derived above.

We can also consider flows that are not minimizations of energies. If we
want the curve to move according to the equation

(:bt =0 V‘;b’
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where v can depend on v, ¢, and their derivatives, then the constrained
motion can be given by

¢t + A Pyy V| = —v -V,

where

/RS (v - V)3($)d ()| Vep|dz
/RJP 0y VB10(6)3 ()| Vplda

This will move a curve according to v while keeping the enclosed surface area
fixed. Note that this makes no mention of the evolution equation coming
from minimizing an energy. However, when there is an energy for the flow,
such as in geodesic curvature flow or Wulff flow, the evolution equation
makes more sense. Also, note A\ is now not exactly a Lagrange multiplier.
Higher dimensional motions preserving enclosed area can be considered using
the same evolution equations.

In Figure 15, we show a curve moving by geodesic curvature flow with
a fixed enclosed surface area constraint on a paraboloid. The steady state
curve is a circle symmetrically wrapped around the paraboloid. In Figure
16, we show a curve moving by the same flow on a sphere. The initial curve
is elliptical in nature. The steady state curve is a circle on the sphere.

A=—

11.1 Waulff Shapes

We can get further interesting shapes on surfaces by running the evolution
equation for Wulff flow with fixed enclosed surface area and looking at the
steady state of the zero level set of ¢ on M. For M a plane, i.e., for curves
in R?, this is a Wulff shape, which is the shape certain crystals form (see
[25],[20]). These shapes are also of interest as surfaces in R?. Following
the steps for deriving the evolution equation for the enclosed surface area
preserving motion on surfaces, we start with the energy

Pgy Vo
E:/ RACAL Ny SV P dx/\/H »)|V|de,
@) R35<|PWV ¢|)| o V4l V100 DIVY
where A is a Lagrange multiplier, and get the evolution equation
Py, V
b4 NPy = - (Peyp(Po,v9) T 2T,
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where

|,V (PouVB(Peu V) V#)3($)0w) Vi do
|, [PV 9l8(@)s ()| Vlda |

The steady state curve on M of this evolution equation gives a Wulff shape
on the surface. Wulff shapes in higher dimensions can be found using the
same equations.

In Figure 17, we show a curve moving under Wulff flow while fixing
the enclosed surface area. The steady state shape is a Wulff shape on the
surface and is squarish in nature since 5(z) used was a smoothed out version
of |z1] + |z2| + |z3|. More complicated curves and surfaces with topological
changes in the curves can also be considered using our algorithm.

A=

12 Moving Curves on Moving Surfaces

We now extend our results to include moving curves on moving surfaces.
Since the surface is moving, 9 will now depend on time with the zero level
set of 9 at any time giving the surface at that time. Also, the curve on the
surface at any time is given by the intersection of the zero level sets of 1
and ¢ at that time. To follow the surface and curve, we need only follow
1 and ¢ or, more accurately, the zero level set of ¥ and the intersection of
this with the zero level set of ¢. The initial surface and curve are given and
represented by an initial ¢ and ¢.

Suppose the motion we want for the curve satisfies on fixed surfaces, i.e.,
9 fixed in time,

¢t +v-Vop=0,

for some velocity field v tangent to the level set surfaces of 1 that can
depend on v, ¢, and their derivatives. Suppose the motion of the surface
itself satisfies

P +w - Vip =0,

for some velocity field w that can depend on v and its derivatives but not
on ¢ in any way. The fact that w does not need to be parallel to the
normal vector of the surface means the surface is allowed to twist within
itself without changing its shape. Thus we can get the velocity field under
which to move the curve by adding the two velocity fields v and w. This
means the evolution equation is

&+ (v+w) Vo =0.
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Note the curve and also the surface may undergo merging during the evolu-
tion process.

As an example, suppose we want the curve to move outward in its normal
direction at unit speed. Then we get v - V¢ = [Py, Vé|. Suppose we also
want the surface to move outward in its normal direction at unit speed. The
equation for this is

¢t + |V¢| = Oa
with w = |_¥1¢L| Therefore, w - V¢ = ZT/JVTY@ So the sum of the two

velocity fields gives the evolution equation for the desired motion of the

curve,
V-V —0
V] '

Another example is where the curve itself does not move but the surface
moves under the velocity field w. Thus the motion of the curve in R3 is
due only to the motion of the surface. This specific problem, called region
tracking, was first solved in [2] using the same representation we use here.
In this case,

¢t + Pyy Vo +

P +w-Vip =0,

is the equation for the motion of the surface, and thus,
¢ +w-Vo=0,

is the equation for the motion of the curve.

All this can also be done for other previously described motions except
for the case of fixed enclosed surface area. In this case, we need to clarify
what we really want since the surface may shrink until its total surface area
is smaller than the enclosed surface area to be fixed. Higher dimensions are
also covered by the above evolution equations.

A drawback of this method is that spurious curves may appear when
surfaces merge. This happens when a part of the surface with negative
values of ¢ touches a part of the surface with positive values. At the place
of contact, a zero level set of ¢ is created in between the positive and negative
values and so gives rise to a spurious curve on the surface. If the problem we
are considering is curves on surfaces then this is a wrong answer. But if we
look at a different problem, then the spurious curve actually makes sense.
Let us think of the curve as the boundary of the set of negative values of ¢
on the surface and the movement of the curve as being due to the expansion
or contraction of that set. The negative values may denote one substance
and the positive values a different substance, as in two phase flow. When
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negative and positive values touch, a new boundary for the set of negative
values needs to be created and, hence, we should get a curve appearing there
to separate the positive and negative values. This way of thinking is not
only convenient here but may also be useful in physical applications.

In Figure 18, we show initially a circle on a plane. The circle is moving
by constant normal flow on the plane and the plane is moving by constant
normal flow in R3. The final picture shows at the final time a dilated circle
on a translated plane. More complicated curves and surfaces can also be
handled by the algorithm.

13 Local Level Set Method

A curve is a one dimensional object, so to solve an evolution equation in all
of R? is overly expensive. In most cases, we only need to solve the equation
in a neighborhood of the curve. Exceptions, however, include getting signed
distance functions to curves, where the ¢ is needed over the whole surface,
or cases where curves can appear out of nowhere, for example, in the active
contour method of Chan and Vese[4]. But in most of the motions we have
studied here, the evolution equation is only needed in a neighborhood of the
curve.

We have succeeded in localizing near the surface, i.e., retaining only the
grid points that are near the surface. This is optimal for problems that
need ¢ defined on the whole surface, e.g., getting signed distance. We create
a data structure to hold only the grid points close to the surface. The
structure only needs to be created once, at the beginning, since the surface
is static. This immediately cuts down on our memory storage. Also, we
solve our partial differential equations only at the retained grid points in
this structure, thus greatly speeding up the method. To determine which
grid points are near the surface and thus should be in the structure, we look
at the distances in R3 of those points away from the surface. Only points
under a certain value, a constant times Az, are retained, which makes this
method optimal when ¢ is needed over the whole surface. We use the fast
marching method once at the beginning to create the distance values at the
grid points.

In actuality, we will only solve our partial differential equation in a
smaller neighborhood of the surface than the neighborhood of retained
points. This is done so that the stencils of the finite difference schemes
we use will not exit the neighborhood of retained points. Fortunately, the
fast marching method we used to obtain distance to the surface, as a by-
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product, also gives an ordering of the points with respect to their distance
values, from least to greatest. We can then use this to enforce Neumann
boundary conditions on the boundary of the smaller neighborhood by ex-
tending the values there, following the normal vectors of the boundary, to
the larger neighborhood. Note the normal vectors of the boundary are in
the same direction as the gradients of the distance values and thus following
the ordering given by the fast marching method correctly propagates the
values. So even though the partial differential equation is only solved in
the smaller neighborhood, the finite difference schemes will use values in the
whole neighborhood. The method, under these operations, still retains the
same accuracy.

We may also want to make sure that the numerical boundary conditions
will not adversely affect the behavior of ¢ on the surface. For this, we can
make the level set surfaces of ¢ perpandicular to the surface while fixing the
values of ¢ on the surface. This is accomplished using the evolution equa-
tion described previously in Section 8 for this purpose. The fast marching
method can also be used instead. The process of making the level sets of
¢ perpendicular to the surface, however, may reduce the accuracy of the
method.

So far, we have constructed a local level set method that is optimal
for solving partial differential equations over the whole surface but not for
solving just in a neighborhood of a curve. For this, we currently have a
method that has the potential to be optimal in both speed and memory but
has not yet been programmed in such a way. It similarly involves retaining
only the grid points that are near the zero level sets of 1) and ¢, solving in a
smaller neighborhood of these retained points, and making the level sets of
1 and ¢ well behaved as described previously in Section 8. This ensures that
the boundaries of the neighborhood do not affect the motion of the curve.
However, the data structure is no longer static since the curve is moving,
taking the neighborhood along with it. This aspect slightly complicates the
problem and especially the programming issues.

Table 5 shows the local level set method applied to constant normal flow.
The evolution equations are solved only in a neighborhood of the surface.
Also, the level sets of ¢ are not enforced to be perpandicular to the surface.
The test includes all elements of our method, including the plotter. It was
generated by looking at a circle moving on a sphere and the results show
roughly second order accuracy (compare to Table 1). Running the algorithm
to make the level sets of ¢ perpandicular to the surface will slightly move
the contours on the surface and reduce the accuracy to first order. We
remark again that much finer grids can be used than for the global method
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‘ grid size H error ‘ order ‘

8x8x8 0.053125

16 x 16 x 16 0.016274 1.7068
32 x 32 x 32 0.00561706 | 1.5347
64 x 64 x 64 0.00173415 | 1.6956
128 x 128 x 128 || 0.000433395 | 2.0005
256 x 256 x 256 | 0.000169642 | 1.3532
320 x 320 x 320 || 0.000107546 | 2.0425

Table 5: This is the order of accuracy analysis for the local level set method
for constant normal flow. The grid size represents the equivalent sized grid
if all grid points were used. The example considered was a circle moving
on a sphere (as in Table 1). Because of the behavior of the error for the
256256 x 256 case, we only say the method is roughly second order accurate.
Note we can run the program on a grid equivalent to 320 x 320 x 320 with
this algorithm.

that solves in all of R3. Table 6 shows the local level set method applied
to finding signed distance functions. Once again, the level sets of ¢ are
not enforced to be perpandicular to the surface. The result is first order
accuracy, as in the global case. The table was generated by looking at a
circle on a sphere. Note, much finer grids can be used than for the global
method. All in all, the local level set method is faster and needs less memory
than the global method while still being able to preserve the accuracy of the
method.

14 Higher Dimensions and Codimensions

We can further extend our method to higher dimensions and codimensions
(see [3]) by using more functions ¢1, ..., ¢ and 91, ..., 9y, in R™, for k+m <
n. The intersection of the zero level sets of 91, ..., ¥, gives the constraint,
and the intersection of this with the intersection of the zero level sets of
¢1,...,¢r gives the object to be moved under the constraint. This means
the constraint surface has dimension n — m and on this, we move an object
with dimension n — m — k. The actual motions will be carried out under a
system of evolution equations for ¢1, ..., ¢r. Note, however, the fact that
our methods are grid based, usually using uniform grids, means the size of
computer memory needed to run simulations in very high dimensions may
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‘ grid size H error ‘ order ‘

10 x 10 x 10 0.04269
20 x 20 x 20 0.0300296 | 0.5075
40 x 40 x 40 0.0170282 | 0.8185
80 x 80 x 80 0.00864061 | 0.9787
160 x 160 x 160 || 0.00435087 | 0.9898
320 x 320 x 320 || 0.00213815 | 1.0249

Table 6: This is the order a accuracy analysis for the local level set method
for distance functions. The grid size represents the equivalent sized grid if
all grid points were used. The curve considered was a circle on a sphere
(as in Table 2). The method is first order accurate. Note we can run the
program on a grid equivalent to 320 x 320 x 320 with this algorithm.

be restrictive, even with a local level set method.

15 Conclusion

We have devised a level set based method for moving curves constrained on
surfaces. This method can accurately handle a wide variety of curves and
surfaces and motions. It can also extend all the results of the original R?
level set method and thus conceivably has a wide range of applications. Basic
applications already allow us to create signed distance functions, geodesics,
and various interesting crystal shapes on surfaces. The limitations of our
method are just the limitations of any level set based approach. Finally,
the method is easy to implement because complex surface topologies and
procedures, such as merging or breaking or keeping the curve on the surface,
are all handled automatically.
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17 Proofs of Propositions

Proof of Proposition 1
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We will prove that these identities hold in R™ for arbitrary n.
(a) This follows from the fact that P, is a symmetric matrix and P2 = P,,.
(b) This follow from the fact that

(PxV)ju = PxVu-e; = Vu- Pxe;.

(c) We prove this property by brute force calculations and, for simplification,
summing over repeated indices. Let e; be the vector with 1 for its ith
component and 0 for the rest. This means for the jth component, (e;); = d;;.
So we have,

VVe. (PgX) = VY¥(PyuX)i
= V((PyuX)i) - Pyye;

= (6 - 225 x; 5._M)
[(“ |vU|2> JL (’“ Vul?

k
= 0in — —2 9} X {8, — 2 ) x. kT
[(” |Vu|2) ”Li [(” |Vu|2> JLk |Vul?

Calling the first term I and the second term J, we have

Ug, Uy,
I:[((g.. i J)Xj] — V- (PyuX),

/A |V’U,‘2
and
J = — 5_#)){] ki
[( Yo vur )T, [Vl
[Vul? [Vul> /,, [Vul?
_ _uzkuml(Xz)mk uriqu(Xj)mkuwkuIi <u‘r%uz]> Xty Uz,
|Vul|? | V|t |Vul? . |Vu|?
B (uzjuzz> XU, Ug;
Vul* ), [Vul?
_ (uiﬂiul'jl'k 'U/mjuwizk N 2uiﬂjul‘iu$mu$mwk) X]uwkuwz
MR |Vaul* |Vul?
. 'U/:cku:cj;cka _ uwiuwjuiﬂkuwiiﬂka
|Vul? [Vul*
(X- B uziuijj) Ugy Uz, ),
|V [Vul?
V|Vul|
= Po. X ;
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So altogether,

VI (PouX) = V- (PeuX|Val) o
[Vul

which completes the proof.
Proof of Proposition 2

We will prove the results in general for R". We sum over repeated indices
for convenience.
(a) Fix a point z on M. Let v be the outward unit normal vector to M at
z. Now given two orthonormal bases in R", e; and &;, 7 = 1,...,n, let §;,
let &; and &; be (P,V); under the frames e; and €&;, respectively. This means

= (- e,

v|?

5, = (% (v ey, éj)) 3,

v?

where 8; and 9; correspond to the frames e; and é;, respectively. Because of
orthonormality, we have that é; = a;je; with the g;; forming an orthogonal
matrix, i.e., a;ja;; = ajar; = 0. Thus, we have d; = a;;d;. Therefore,

éigi = 61(51
Now taking e;, 1 = 1,...,n, to be the standard orthonormal basis in R" and
€,1=1,...,n, to be an orthonormal basis of R" with &, = v, we get
&id; = V°
eiéi = P,,V.
So
VS =PV,
and, especially, if u is a real valued function in R™, then
VSu = P,Vu.
(b) Continuing with the above computations, given X a vector field in R",
we have .
(6; X, &) = (0; X, e;).
Therefore,

vV®.X =P, VX.
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Proof of Proposition 3
Apply Proposition 7 with 8(p) = |p|, p € R3.
Proof of Proposition 4
See proof of Lemma 1 in [3].
Proof of Proposition 5
See main body of section for proof.
Proof of Proposition 6
With B(p) = |pl|, we get VB(p) = |1%| and V23(p) = 1 p So

~pl"?

PgyVe

VB | =P :
ﬂ<|vaV¢|> Py Ve

Therefore, using Proposition 8, we find that the principle matrix for the right
hand side of the evolution equation is Pyy Ppy,, v¢Pvy and also since Ppg, v
is nonnegative definite, with one zero eigenvalue and the rest being equal to
one, the evolution equation is thus degenerate second order parabolic.

To actually find the eigenvalues of the principle matrix, we note that
V1 and Py, V¢ are eigenvectors corresponding to the zero eigenvalue, since
vaV’gb = (0 and vawv¢Pv¢Pv¢v¢ = PPV¢V¢vaV¢ = O, respectively.
Also, given any other vector, v € R?, perpendicular to these two eigenvec-
tors, we have

PVlﬁPPV¢V¢PV1/1’U = vappvwv(z,’u = Pv¢ﬂ =.

Therefore, we can conclude that the principle matrix has two zero eigenval-
ues with all the rest being equal to one.
Proof of Proposition 7
See proof of Lemma 2 in [3].
Proof of Proposition 8
Let F(q,z) = PyyVB(Pyyq)|V|. Then we have

(Fi)q; (%) = PyyV?B(Pyyq)Pyy| V|,
where V24 is the Hessian matrix for j.
Therefore, the principle matrix for V - (Pyy VB (Pyy V)| Vip|) nell is

Py, V?B(PgyV ) Pyy| Poy V),

which can be rewritten as

PgyVo
Py V2B | === | Pyy,
vy ﬂ(\PV¢V¢|> Ve
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since V24 is homogeneous of degree —1.

Therefore, if the matrix N = V23 (%) is nonnegative definite,
v

then 2T Nz > 0 for all z € R3. This implies for any y € R?, taking z = Pyyy
gives that yTPWpN Pgyy > 0 and so Pyy N Py, is also nonnegative definite.
Note V1 is an eigenvector corresponding to the 0 eigenvalue.

So we have shown if N is nonnegative definite, then the evolution equa-
tion

b1 = V - (PoyVB(Poy V) V) ||va ;jﬂ

is degenerate second order parabolic.
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Figure 1: The surface, two mountains, is shown on the left and the evolution
of a curve is shown separately on the right. The curve is moving inward by
unit normal flow and breaks into two smaller curves, one on each mountain,
during the flow.
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Figure 2: The surface, a volcano, is shown on the left and the evolution of a
curve is shown separately on the right. The curve is moving inward by unit
normal flow and flow up the side of the volcano, then down into the core.
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Figure 3: The surface, a two holed torus, is shown on the left and the
evolution of a curve is shown separately on the right. The curve is moving
inward by unit normal flow, translating to the left on the two holed torus
while breaking and merging multiple times.

Figure 4: The surface, a folded plane, is shown on the left and the evolution
of a curve is shown separately on the right. The curve is moving outward in
the normal direction by a non-constant speed. The chosen speed, related to
crystal growth, causes the curve to develop a squarish aspect as it expands.
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Figure 5: The surface, a volcano, is shown on the left and the contours of
the signed distance function are shown on the right. The picture is similar
to that of constant normal flow on a volcano. Note the contours are well
spaced.
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Figure 6: The surface, a torus, is shown on the left and the contours of the
signed distance function are shown on the right. Note the contours are well
spaced on the torus.
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Figure 7: The volcano surface is shown on the left and geodesics from various
points to a curve in the volcano core are shown on the right. The geodesics
travel up the volcano and down into its core.

Figure 8: A torus is shown on the left and geodesics from various points to
a curve on the torus are shown on the right. The geodesics travel across the
torus, around the hole in the middle, to reach the curve.
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Figure 9: A simple surface is shown on the left and the evolution of a curve
under geodesic curvature flow is shown on the right. The curve shrinks on
the surface, minimizing its length, until it disappears.

Figure 10: The surface, two mountains, is shown on the left and the evolution
of a curve under geodesic curvature flow is shown on the right. The curve
is shrinking but needs to move over the mountains before it can disappear.
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Figure 11: The surface, a bent plane, is shown on the left and the evolution
of a curve under geodesic curvature flow is shown on the right. Note the
surface has a kink in it and the curve shrinks over this kink without any
problems.

Figure 12: The surface, a cylinder, is shown on the left and the evolution
of a curve under geodesic curvature flow is shown on the right. The curve
ends up wrapping tightly around the cylinder, forming a geodesic curve, in
this case a circle, on the surface.
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Figure 13: The surface, the bottom of a paraboloid, is shown on the left and
the evolution of a curve under Wulff flow, with $(z) a smoothed out form
of |z1| + |z2| + |z3|, is shown on the right. The curve shrinks, developing a
squarish shape on the surface before disappearing.

Figure 14: The surface, a bent plane, is shown on the left and the evolution of
a curve under Wulff flow, with 3(z) a smoothed out form of |z |+ |z2|+ |z3],
is shown on the right. The curve shrinks, developing a squarish shape on the
surface before disappearing. Note the kink in the surface does not present
any problems.
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Figure 15: The surface, a paraboloid, is shown on the left and the evolution
of a curve under geodesic curvature flow with fixed enclosed surface area is
shown on the right. The initial curve evolves to a steady state curve, a circle
symmetrically wrapped around the paraboloid.
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Figure 16: The surface, a sphere, is shown on the left and the evolution
of a curve under geodesic curvature flow with fixed enclosed surface area is
shown on the right. The initial curve evolves to a Wulff shape, a circle on
the sphere.

50



0.5

0.4

03

0.2

0.1

0.5

05 s -05 05

Figure 17: The surface, a bent plane, is shown on the left and the evolution
of a curve under Wulff flow with fixed enclosed surface area is shown on
the right. The initial curve evolves to a steady state curve, a smoothed out
squarish shape on the surface.
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Figure 18: This is a moving curve on moving surface computation. The
original surface and curve are shown in the two plots on the top. The final
surface and curve are shown in the two plots below. The surface and curve
are both moving by constant normal flow. The surface translates to the left
while the curve shrinks.
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