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Abstract

We report here on our numerical study of the two-dimensional Riemann problem for the com-
pressible Euler equations. Compared with the relatively simple 1-D con�gurations, the 2-D case
consists of a plethora of geometric wave patterns which pose a computational challenge for high-
resolution methods. The main feature in the present computations of these 2-D waves is the use of
the Riemann-solvers-free central schemes presented in [10]. This family of central schemes avoids
the intricate and time-consuming computation of the eigensystem of the problem, and hence o�ers
a considerably simpler alternative to upwind methods. The numerical results illustrate that despite
their simplicity, the central schemes are able to recover with comparable high-resolution, the various
features observed in the earlier, more expensive computations.

AMS subject classi�cation: Primary 65M10; Secondary 65M05

Key Words: Multidimensional conservation laws, Euler equations of gas dynamics, Riemann problem,
semi-discrete central schemes, non-oscillatory piecewise polynomial reconstructions.
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1 Introduction

We report here on our numerical study of two-dimensional (2-D) Riemann problem for the compressible
Euler equations, following the works of Schultz-Rinne et. al. [24, 25], Chang et. al. [1], Zhang & Zheng
[30], Lax & Liu [16], and Chang et. al [2].

Before turning to the 2-D case, we recall the corresponding one-dimensional setup. The one-dimensional
(1-D) Riemann problem could be solved in terms of a succession of centered waves, [15]. In particu-
lar, the 1-D centered waves associated with gas dynamics equations consist of shock-, rarefaction-
and contact-waves, [3, 15, 28]. The exact (or approximate) 1-D Riemann problem solvers serve as
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2 A. Kurganov & E. Tadmor

a building block for the large class of so-called upwind schemes, following the seminal work of Go-
dunov [3]. The other class of so-called central schemes o�ers an alternative to upwind methods by
avoiding the time-consuming computation of (approximate) Riemann problem solvers, yet retaining the
desired high-resolution. Unlike the 1-D case, however, no explicit Riemann solvers are available in the
two-dimensional case. Indeed, the 2-D Riemann problem separated by 1-D elementary waves o�ers a
plethora of no less than 19 di�erent admissible con�gurations [1, 16, 30, 24, 25, 2], which therefore
cannot be utilized as a building block in the two-dimensional case. Consequently, 2-D upwind schemes
require some sort of dimensional splitting, where 1-D Riemann problems are solved, one dimension at
the time. The advantage of the Riemann-solvers-free central schemes is therefore further ampli�ed in
the 2-D case. By avoiding the intricate and time-consuming computation of the eigen-structures in one-
and in particular, two-dimensional problems, we end up with a considerably simpler and faster class of
high-resolution schemes.

Central schemes can be formulated along the lines of the original Godunov's framework, [3], namely,
realizing the evolution of piecewise polynomial solution after each small time step by its cell averages.
To avoid Riemann problem solvers, however, the solution of central schemes is realized by cell averages
computed over staggered cells, which in turn yield numerical uxes located inside the smooth part of
the piecewise solution. In the original 1-D second-order central scheme of Nessyahu and Tadmor [23],
and its higher-order and 2-D generalizations [21, 6], cells of typical spatial length �x were staggered in
alternate time steps, by being placed �x=2 away from each other. In the more recent, less dissipative
versions of central schemes presented in [13, 9, 11, 10, 12], staggered cells were placed in a distance of
order O(�t) from each other. The latter versions admit a particularly simple semi-discrete limit by
letting �t # 0. Consequently, alternating cells collapse onto each other in the semi-discrete limit and
staggering is avoided altogether. Let us also mention that there are other derivations of central schemes,
most notably, as limits of relaxation methods [7] or by ux splitting [22].

In Section 2 we provide a brief description of the central schemes proposed in [10], which have been
applied to the two-dimensional Euler equations of gas dynamics in Section 3. Compared with the 'simple'
1-D con�gurations, the 2-D case o�ers 19 di�erent con�gurations which consist of a considerably richer
variety of 2-D geometric patterns formed by shocks, rarefactions, slip lines, and contacts. The main
feature of the present computation is the use of Riemann-solvers-free central schemes to resolve this
variety of wave formations. Remarkably, the numerical results reported in Section 3 show that despite
the lack of any speci�c 'physical' input beyond the maximal local speeds, the central schemes recover
with a comparable high-resolution, all the features observed by the earlier, more expensive computations
based on upwind schemes.

2 Genuinely multidimensional semi-discrete central schemes

2.1 Fully-discrete central schemes

We consider a general two-dimensional system of hyperbolic conservation laws,

ut + f(u)x + g(u)y = 0: (2.1)

The computed solution is realized in terms of the cell averages

�unj;k :=
1

�x�y

x
j+1

2Z
x
j� 1

2

y
k+1

2Z
y
k�1

2

u(x; y; tn) dx dy;
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based on spatial cells Ijk = [xj� 1

2

; xj+ 1

2

]� [yk� 1

2

; yk+ 1

2

]. Here and below, (x�; y�) = (��x; ��y) denote

the coordinates of the computational grid. To advance the computation to the next time level at
t = tn+1, we proceed with three steps of reconstruction, evolution and projection.

Starting with the given cell averages �unj;k, the �rst step consists of reconstructing a non-oscillatory
piecewise polynomial of the form

eun(x; y) :=X
j;k

pnj;k(x; y)�Ijk
(x; y); (2.2)

where the �'s are the characteristic functions of the corresponding intervals. Di�erent choices of poly-
nomial reconstructions result in di�erent types of central schemes. Few choices will be outlined below
in (2.5),(2.6). In the second step, we evolve the piecewise polynomial ~un(x; y) in time by solving the
initial-value problem (2.1),(2.2). Each of the polynomial pieces of eun(x; y) centered around the vertices
(xj� 1

2

; yk� 1

2

) is propagated within a 'rectangular cone' of inuence, Dj� 1

2
;k� 1

2

, whose boundaries propa-

gate with di�erent right- and left-sided local speeds, consult the oor plan in Figure 2.1. The computed
values of the local speeds a�

j+ 1

2
;k
; b�

j;k+ 1

2

are speci�ed below at (2.8).

xj-1 x x xj-1/2 j+1/2 j+1xj

k+1/2
y

y

y

y

k+1

k-1/2

k-1

y
k Dj,k

D

Dj+1/2,k

j,k+1/2 Dj+1/2,k+1/2

Figure 2.1: Two-dimensional central-upwind di�erencing

Integrating (2.1),(2.2) over rectangular control volumes erected under the aforementioned domains,
D�� � [tn; tn+1], results in the new cell averages at time t = tn+1, which are denoted, respectively, by
f �wn+1

j;k+ 1

2

g, f �wn+1
j+ 1

2
;k
g, f �wn+1

j+ 1

2
;k+ 1

2

g and f �wn+1
j;k g. These cell averages can be computed explicitly following

the approach in [6], using appropriate quadrature rules to approximate the ux across the temporal
interfaces, consult [10] for details.

At this stage we end up with an approximate solution at t = tn+1 of the form

ewn+1(x; y) :=
X
j;k

h ewn+1
j;k �Djk

(x; y) + ewn+1
j+ 1

2
;k
�D

j+1
2
;k
(x; y) +

+ ewn+1
j;k+ 1

2

�D
j;k+1

2

(x; y) + ewn+1
j+ 1

2
;k+ 1

2

�D
j+1

2
;k+1

2

(x; y)
i
:
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Finally, we conclude by projecting this computed solution back onto the original cells, which is again
realized in terms of the cell averages

�un+1j;k =
1

�x�y

x
j+1

2Z
x
j� 1

2

y
k+1

2Z
y
k�1

2

ewn+1(x; y) dxdy: (2.3)

The above derivation results in the second- or third-order fully-discrete central schemes, with explicit
yet complicated formulae. A particular advantage of these type of central schemes, compared with
the original staggered version of central schemes introduced in [6], is the simpli�cation that could be
achieved by taking a semi-discrete limit, letting �t # 0.

2.2 The semi-discrete limit

Following the approach in [13, 11, 10], we consider the central algorithm described above and pass to
the limit as �t ! 0. Notice that the cone of inuence, Djk � [tn; tn +�t], falls back onto the original
cell, Ijk, we have started with at t = tn.

The resulting semi-discrete scheme can be written in the conservative form (see [10] for the detailed
derivation),

d

dt
�uj;k(t) = �

Hx
j+ 1

2
;k
(t)�Hx

j� 1

2
;k
(t)

�x
�

Hy

j;k+ 1

2

(t)�Hy

j;k� 1

2

(t)

�y
: (2.4)

Here, the numerical uxes are obtained using a quadrature formula of an appropriate order for ap-
proximating the integrals across the interfaces of the domains Dj� 1

2
;k and Dj;k� 1

2

. We consider few

examples.

� A second-order method. A second order method requires a piecewise linear reconstruction, (2.2), of
the form

pnj;k(x; y) = �unj;k + (ux)
n
j;k(x� xj) + (uy)

n
j;k
(y � yk): (2.5)

Here, (ux)
n
j;k and (uy)

n
j;k

stand for an (at least �rst-order) approximation to the derivatives ux(xj ; yk; t
n)

and uy(xj; yk; t
n), respectively. To ensure a non-oscillatory nature of the reconstruction (2.2){(2.5), one

needs to employ a nonlinear limiter in the computation of these slopes. This can be done in many
di�erent ways (see, e.g., [4, 5, 8, 29]). In this paper, we have used van-Leer's one-parameter family of
the minmod limiters, [17, 4, 29],

(ux)j;k = minmod

�
�
�uj+1;k � �uj;k

�x
;
�uj+1;k � �uj�1;k

2�x
; �

�uj;k � �uj�1;k
�x

�
;

(uy)j;k = minmod

�
�
�uj;k+1 � �uj;k

�y
;
�uj;k+1 � �uj;k�1

2�y
; �

�uj;k � �uj;k�1
�y

�
; (2.6)

where � 2 [1; 2], and the multivariable minmod function is de�ned by

minmod(x1; x2; :::) :=

8<
:
minjfxjg; if xj > 0 8j;
maxjfxjg; if xj < 0 8j;
0; otherwise:

Remark. Notice that in the scalar case, larger �'s in (2.6) correspond to less dissipative, but still

non-oscillatory limiters, [6, 13, 11, 10]. For systems of conservation laws, no proof of a non-oscillatory
property is available. Nevertheless, a large variety of computations performed with central schemes
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con�rm stability and lack of spurious oscillations while achieving high-resolution throughout the com-
putational domain. In particular, central schemes owe their considerable simplicity to implementation
of the minmod limiter (2.6) componentwise; no need for eigen-decomposition of the vectors of divided
di�erences. Our numerical experiments (Section 3, see also [11, 10, 13]) indicate that the optimal values
of � vary between 1 and 1.5.
Given the piecewise linear polynomial we can compute the reconstructed values at the interfaces

uNj;k := pnj;k(xj; yk+ 1

2

); uSj;k := pnj;k(xj ; yk� 1

2

); uEj;k := pnj;k(xj+ 1

2

; yk); uWj;k := pnj;k(xj� 1

2

; yk): (2.7)

These interfaces are moving with the corresponding speeds

a+
j+ 1

2
;k

:= max
n
�N

�@f
@u

(uWj+1;k)
�
; �N

�@f
@u

(uEj;k)
�
; 0
o
;

b+
j;k+ 1

2

:= max
n
�N

�@g
@u

(uSj;k+1)
�
; �N

�@g
@u

(uNj;k)
�
; 0
o
;

a�
j+ 1

2
;k

:= min
n
�1

�@f
@u

(uWj+1;k)
�
; �1

�@f
@u

(uEj;k)
�
; 0
o
;

b�
j;k+ 1

2

:= min
n
�1

�@g
@u

(uSj;k+1)
�
; �1

�@g
@u

(uNj;k)
�
; 0
o
; (2.8)

where �N and �1 denote the largest and the smallest eigenvalues of the Jacobians @f
@u

and @g
@u
, respectively.

Using second-order midpoint rule to approximate the spatial integrals along the faces of side cells,
Dj+ 1

2
;k and Dj;k+ 1

2

, results in the second-order numerical uxes

Hx
j+ 1

2
;k
=

a+
j+ 1

2
;k
f(uEj;k)� a�

j+ 1

2
;k
f(uWj+1;k)

a+
j+ 1

2
;k
� a�

j+ 1

2
;k

+
a+
j+ 1

2
;k
a�
j+ 1

2
;k

a+
j+ 1

2
;k
� a�

j+ 1

2
;k

h
uWj+1;k � uEj;k

i
; (2.9)

and

Hy

j;k+ 1

2

=
b+
j;k+ 1

2

g(uNj;k)� b�
j;k+ 1

2

g(uSj;k+1)

b+
j;k+ 1

2

� b�
j;k+ 1

2

+
b+
j;k+ 1

2

b�
j;k+ 1

2

b+
j;k+ 1

2

� b�
j;k+ 1

2

h
uSj;k+1 � uNj;k

i
: (2.10)

Remark. The computation in (2.8) takes into account the di�erent local speeds from each side of
the x- and y-interfaces. If we further simpli�ed by using a symmetric cone of propagation with local
speeds a�

j+ 1

2
;k
:= �maxfja+

j+ 1

2
;k
j; ja�

j+ 1

2
;k
jg; b�

j;k+ 1

2

:= �maxfjb+
j;k+ 1

2

j; jb�
j;k+ 1

2

jg, then the central scheme

(2.4),(2.9){(2.10) is reduced to the central scheme introduced earlier in [13]. The re�nement, introduced
in [10], requires a more precise cone of propagation, which nevertheless avoids any additional information
on the eigen-structure of the problem.
� An alternative second-order method. With the same piecewise linear reconstruction as before, (2.5),

we introduce the corner values

u
NE(NW)
j;k := pnj;k(xj� 1

2

; yk+ 1

2

); u
SE(SW)
j;k := pnj;k(xj� 1

2

; yk� 1

2

); (2.11)

Replacing the second-order midpoint rule with the trapezoidal rule gives the alternative second-order
numerical uxes,

Hx
j+ 1

2
;k

:=
a+
j+ 1

2
;k

2(a+
j+ 1

2
;k
� a�

j+ 1

2
;k
)

h
f(uNEj;k ) + f(uSEj;k)

i
�

a�
j+ 1

2
;k

2(a+
j+ 1

2
;k
� a�

j+ 1

2
;k
)

h
f(uNWj+1;k) + f(uSWj+1;k)

i
+

+
a+
j+ 1

2
;k
a�
j+ 1

2
;k

2(a+
j+ 1

2
;k
� a�

j+ 1

2
;k
)

h
uNWj+1;k � uNEj;k + uSWj+1;k � uSEj;k

i
; (2.12)
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and

Hy

j;k+ 1

2

:=
b+
j;k+ 1

2

2(b+
j;k+ 1

2

� b�
j;k+ 1

2

)

h
g(uNWj;k ) + g(uNEj;k )

i
�

b�
j;k+ 1

2

2(b+
j;k+ 1

2

� b�
j;k+ 1

2

)

h
g(uSWj;k+1) + g(uSEj;k+1)

i
+

+
b+
j;k+ 1

2

b�
j;k+ 1

2

2(b+
j;k+ 1

2

� a�
j;k+ 1

2

)

h
uSWj;k+1 � uNWj;k + uSEj;k+1 � uNEj;k

i
: (2.13)

Remark. The numerical uxes in (2.12) and (2.13) o�er a genuinely multidimensional discretization by
adding the cross diagonal directions to the Cartesian directions utilized in (2.8).
� A third-order method. The third-order scheme is based on a reconstruction of a non-oscillatory

piecewise quadratic polynomial. One of the possible ways to obtain an essentially non-oscillatory third-
order reconstruction is by using a weighted ENO approach (see the reconstructions presented in [18, 19]).
The disadvantage of the ENO-type interpolants is that they are based on smoothness indicators, and
thus on an a-priori information about the solution, which may be unavailable. This may result in
spurious oscillations or extra smearing of discontinuities.

In this paper, we have used an alternative reconstruction, which was proposed in [11]. The main
idea is to apply one-dimensional non-oscillatory piecewise quadratic interpolants (for examples of such
one-dimensional reconstructions we refer the reader to [20, 21, 11]) in the x- and y-directions, and in
the diagonal directions. The detailed description of this two-dimensional extension can be found in [11],
see also [10].

The numerical uxes, which correspond to the fourth-order Simpson's quadrature rule, are

Hx
j+ 1

2
;k

:=
a+
j+ 1

2
;k

6(a+
j+ 1

2
;k
� a�

j+ 1

2
;k
)

h
f(uNEj;k ) + 4f(uEj;k) + f(uSEj;k)

i
�

�
a�
j+ 1

2
;k

6(a+
j+ 1

2
;k
� a�

j+ 1

2
;k
)

h
f(uNWj+1;k) + 4f(uWj+1;k) + f(uSWj+1;k)

i
+

+
a+
j+ 1

2
;k
a�
j+ 1

2
;k

6(a+
j+ 1

2
;k
� a�

j+ 1

2
;k
)

h
uNWj+1;k � uNEj;k + 4(uWj+1;k � uEj;k) + uSWj+1;k � uSEj;k

i
; (2.14)

and

Hy

j;k+ 1

2

:=
b+
j;k+ 1

2

6(b+
j;k+ 1

2

� b�
j;k+ 1

2

)

h
g(uNWj;k ) + 4g(uNj;k) + g(uNEj;k )

i
�

�
b�
j;k+ 1

2

6(b+
j;k+ 1

2

� b�
j;k+ 1

2

)

h
g(uSWj;k+1) + 4g(uSj;k+1) + g(uSEj;k+1)

i
+

+
b+
j;k+ 1

2

b�
j;k+ 1

2

6(b+
j;k+ 1

2

� a�
j;k+ 1

2

)

h
uSWj;k+1 � uNWj;k + 4(uSj;k+1 � uNj;k) + uSEj;k+1 � uNEj;k

i
: (2.15)

In (2.14){(2.15), the one-sided local speeds a�
j+ 1

2
;k
; b�

j;k+ 1

2

are de�ned in (2.8), and the values of the u's

are computed in (2.7) and (2.11), using the piecewise quadratic reconstruction fpj;kg at time t.

Remarks.
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1. Time integration. All the aforementioned schemes, (2.4),(2.9){(2.10); (2.4),(2.12){(2.13) and (2.4),(2.14){
(2.15) are semi-discrete schemes. To solve the corresponding systems of time dependent ODEs,
one may use any stable ODE solver. In the examples below, we use the second-order modi�ed
Euler and the third-order TVD Runge-Kutta method ([27, 26]) in connection with the second-
and third-order schemes, respectively.

2. Simplicity. The Godunov-type central schemes enjoy the particular advantage that the computa-
tion of the midvalues in (2.7) and (2.11) is based on component-wise evaluation of the numerical
derivatives (2.6). Consequently, no (approximate) Riemann problem solvers are required, and
the intricate and time consuming part of computing the eigen-system of the problem at hand is
avoided. In this sense, the simplicity o�ered by the above semi-discrete central schemes coupled
with one's favorite ODEs solvers, leads to a class of easily implemented black-box methods for
solving one- and two-dimensional systems of conservation laws and related equations governing
the evolution of large gradient phenomena (see [13, 9, 14, 11, 10]).

3. Upwinding. At the same time that the schemes described above are central schemes (in the sense
of realizing their solution in terms of cell averages which are integrated across Riemann fans),
these schemes also have in common with schemes in the upwind class in the sense of following the
propagation of waves emanating from the interfaces of discontinuities. Indeed, these schemes are
termed as central-upwind schemes in [10].

To illustrate this, one may consider the scalar linear advection equation, ut+ aux+ buy = 0 with,
for example, positive constants a and b. Then the �rst-order version of the central-upwind scheme
becomes a standard �rst-order upwind scheme,

d

dt
uj;k(t) = �a

uj;k � uj�1;k
�x

� b
uj;k � uj;k�1

�y
:

4. Multidimensional approach. The second-order scheme (2.4),(2.9){(2.10) can also be obtained us-
ing the so-called `dimension-by-dimension' approach, namely, by adding the corresponding one-
dimensional central uxes (similar to the derivation of multidimensional schemes in [13, 9]).

The third-order scheme (2.4),(2.14){(2.15), like the second-order scheme (2.4),(2.12){(2.13), how-
ever, are genuinely multidimensional due to the additional cross diagonal terms, for details see
[11, 10]. The performed numerical experiments indicate that the genuinely multidimensional
second-order scheme (2.4),(2.12){(2.13) is more stable and less sensitive to a choice of piecewise
linear reconstruction than the `dimension-by-dimension' scheme (2.4),(2.9){(2.10).

5. Maximum principle. In the scalar case, both second-order schemes (2.4),(2.9){(2.10) and (2.4),(2.12){
(2.13), coupled with the non-oscillatory minmod reconstruction (2.2){(2.6), satisfy the maximum
principle ([10, Theorem 3.1]).

3 Numerical experiments

Let us consider the two-dimensional Euler equations of gas dynamics,

@

@t

2
664

�
�u
�v
E

3
775+

@

@x

2
664

�u
�u2 + p
�uv

u(E + p)

3
775+

@

@y

2
664

�v
�uv

�v2 + p
v(E + p)

3
775 = 0; p = ( � 1) �

h
E �

�

2
(u2 + v2)

i
; (3.1)
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for an ideal gas,  = 1:4. Here �; u; v; p and E are the density, the x- and y-velocities, the pressure
and the total energy, respectively.

We solve the Riemann problem for (3.1) with initial data

(p; �; u; v)(x; y; 0) =

8>><
>>:

(p1; �1; u1; v1); if x > 0:5 and y > 0:5;
(p2; �2; u2; v2); if x < 0:5 and y > 0:5;
(p3; �3; u3; v3); if x < 0:5 and y < 0:5;
(p4; �4; u4; v4); if x > 0:5 and y < 0:5:

(3.2)

According to [1, 16], there are 19 genuinely di�erent admissible con�gurations for polytropic gas, sepa-

rated by the three types of 1-D centered waves, namely, rarefaction- (
�!

R ), shock- (
�!

S ) and contact-wave

(
�!

J ). Consult [30, 24, 25, 2]) for details.

In this Section, we compute all these solutions using the second- and third-order genuinely multidi-
mensional central schemes, (2.4),(2.12){(2.13) and (2.4),(2.14){(2.15). The CFL number used is 0.475.
Our numerical examples below show the density contour lines subject to 19 di�erent initial data con-
�gurations, the same initial con�gurations as in [16], and we refer the reader to Schultz-Rinne et. al.
[25] for a detailed discussion on the wave formation in each of these con�gurations.

Below, we make brief comments for each con�guration, comparing our computed results with the
upwind computations in [25] and [16]. Overall, our results based on central schemes reveal the same
detailed information on the variety of wave formations, in a complete agreement with the upwind
schemes. It is rather remarkable that this amount of details is revealed without any input on the 1-D
elementary waves involved, beyond the maximal local speeds. The high resolution in the central and
upwind approaches is comparable, with the only noticeable di�erence in contacts and slip lines. As
expected, the resolution of the corresponding linear waves by the upwind schemes, particularly in [25],
is somewhat sharper than in the central computations. The di�erence in resolution of these linear waves
is small and in fact, in certain cases, consult Con�gurations 8 and 17 below, the central schemes perform
better than the results reported in [16].

Con�guration 1.

�!

R21
�!

R32

�!

R41
�!

R34

: the initial data are

p2 = 0:4 �2 = 0:5197 p1 = 1 �1 = 1
u2 = �0:7259 v2 = 0 u1 = 0 v1 = 0

p3 = 0:0439 �3 = 0:1072 p4 = 0:15 �4 = 0:2579
u3 = �0:7259 v3 = �1:4045 u4 = 0 v4 = �1:4045

Comments. We recover here the same 'ripples' in the middle of the left and lower rarefactions observed in
[16] and in a sharpened form in [25]. The computed front propagating in between these two rarefactions
is in agreement with [16], and is sharper than the one reported in [25].
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x

y

Figure 3.1a: 2-order scheme, � = 2, T=0.2

x

y

Figure 3.1b: Third-order scheme, T=0.2

Con�guration 2.

�!

R21
 �

R32

�!

R41
 �

R34

: the initial data are

p2 = 0:4 �2 = 0:5197 p1 = 1 �1 = 1
u2 = �0:7259 v2 = 0 u1 = 0 v1 = 0

p3 = 1 �3 = 1 p4 = 0:4 �4 = 0:5197
u3 = �0:7259 v3 = �0:7259 u4 = 0 v4 = �0:7259

Comments. The �-limiter (2.6) proves to be over-compressive with � = 2 { the spurious oscillations can
be noticed on the left, Figure 3.2a, are avoided in the third-order computation on the right. The same
secondary 'ripples' are observed in all the computations

x

y

Figure 3.2a: 2-order scheme, � = 2, T=0.2

x

y

Figure 3.2b: Third-order scheme, T=0.2
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Con�guration 3.

 �

S21
 �

S32
 �

S41
 �

S34

: the initial data are

p2 = 0:3 �2 = 0:5323 p1 = 1:5 �1 = 1:5
u2 = 1:206 v2 = 0 u1 = 0 v1 = 0

p3 = 0:029 �3 = 0:138 p4 = 0:3 �4 = 0:5323
u3 = 1:206 v3 = 1:206 u4 = 0 v4 = 1:206

Comments. As before, oscillations due to the over-compressive limiter with � = 2 in Figure 3.3a
are reduced in the third-order case, and even sharper results are obtained with a more 'mild' limiter
parameter, � = 1. The resolution of shocks is comparable to the upwind results.

x

y

Figure 3.3a: 2-order scheme, � = 2, T=0.3

x

y

Figure 3.3b: Third-order scheme, T=0.3

x

y

Figure 3.3c: 2-order scheme, � = 1, T=0.3
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Con�guration 4.

 �

S21
�!

S32
 �

S41
�!

S34

: the initial data are

p2 = 0:35 �2 = 0:5065 p1 = 1:1 �1 = 1:1
u2 = 0:8939 v2 = 0 u1 = 0 v1 = 0

p3 = 1:1 �3 = 1:1 p4 = 0:35 �4 = 0:5065
u3 = 0:8939 v3 = 0:8939 u4 = 0 v4 = 0:8939

Comments. Again, � = 2 is over-compressive in Figure 3.4a, the oscillations are reduced in the third-
order approximation, and sharp results, in complete agreement with those of [25, 16], are obtained with
the usual minmod limiter, corresponding to � = 1.

x

y

Figure 3.4a: 2-order scheme, � = 2, T=0.25

x

y

Figure 3.4b: Third-order scheme, T=0.25

x

y

Figure 3.4c: 2-order scheme, � = 1, T=0.25
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Con�guration 5.

J�21
J�32 J�41

J�34

: the initial data are

p2 = 1 �2 = 2 p1 = 1 �1 = 1
u2 = �0:75 v2 = 0:5 u1 = �0:75 v1 = �0:5

p3 = 1 �3 = 1 p4 = 1 �4 = 3
u3 = 0:75 v3 = 0:5 u4 = 0:75 v4 = �0:5

Comments. Same features are picked up by al methods, with similar resolution as in [16]. The contact
obtained in [25] has a better resolution.

x

y

Figure 3.5a: 2-order scheme, � = 1:3, T=0.23

x

y

Figure 3.5b: Third-order scheme, T=0.23

Con�guration 6.

J�21
J+32 J+41

J�34

: the initial data are

p2 = 1 �2 = 2 p1 = 1 �1 = 1
u2 = 0:75 v2 = 0:5 u1 = 0:75 v1 = �0:5

p3 = 1 �3 = 1 p4 = 1 �4 = 3
u3 = �0:75 v3 = 0:5 u4 = �0:75 v4 = �0:5

Comments. The 'ripples' observed in both the NE and SW quadrants, are recovered with a comparable
resolution to the one in [25, 16].
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x

y

Figure 3.6a: 2-order scheme, � = 1:3, T=0.3

x

y

Figure 3.6b: Third-order scheme, T=0.3

Con�guration 7.

�!

R21

J�32
�!

R41

J�34

: the initial data are

p2 = 0:4 �2 = 0:5197 p1 = 1 �1 = 1
u2 = �0:6259 v2 = 0:1 u1 = 0:1 v1 = 0:1

p3 = 0:4 �3 = 0:8 p4 = 0:4 �4 = 0:5197
u3 = 0:1 v3 = 0:1 u4 = 0:1 v4 = �0:6259

Comments. The high-resolution is in agreement with the corresponding upwind results in [16]. The
contacts in [25] are sharper.

x

y

Figure 3.7a: 2-order scheme, � = 1:3, T=0.25

x

y

Figure 3.7b: Third-order scheme, T=0.25
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Con�guration 8.

 �

R21

J�32
 �

R41

J�34

: the initial data are

p2 = 1 �2 = 1 p1 = 0:4 �1 = 0:5197
u2 = �0:6259 v2 = 0:1 u1 = 0:1 v1 = 0:1

p3 = 1 �3 = 0:8 p4 = 1 �4 = 1
u3 = 0:1 v3 = 0:1 u4 = 0:1 v4 = �0:6259

Comments. The semi-circular wavefront is recovered here with sharper resolution than the one in [16],
mainly due to the 'genuinely multidimensional' approach taken here, in term of the cross diagonal
di�erences. Again, the bottom and left contacts are sharper in [25].

x

y

Figure 3.8a: 2-order scheme, � = 1:3, T=0.25

x

y

Figure 3.8b: Third-order scheme, T=0.25

Con�guration 9.

J+21
�!

R32

�!

R41

J+34

: the initial data are

p2 = 1 �2 = 2 p1 = 1 �1 = 1
u2 = 0 v2 = �0:3 u1 = 0 v1 = 0:3

p3 = 0:4 �3 = 1:039 p4 = 0:4 �4 = 0:5197
u3 = 0 v3 = �0:8133 u4 = 0 v4 = �0:4259

Comments. As typical with the upwind approach, contacts are resolved better in [25, 16]. The 'bulge'
on the SW corner is identical in both central and upwind computations.
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x

y

Figure 3.9a: 2-order scheme, � = 1:3, T=0.3

x

y

Figure 3.9b: Third-order scheme, T=0.3

Con�guration 10.

J�21
�!

R32

�!

R41

J+34

: the initial data are

p2 = 1 �2 = 0:5 p1 = 1 �1 = 1
u2 = 0 v2 = 0:6076 u1 = 0 v1 = 0:4297

p3 = 0:3333 �3 = 0:2281 p4 = 0:3333 �4 = 0:4562
u3 = 0 v3 = �0:6076 u4 = 0 v4 = �0:4297

Comments. There is a sharp resolution of the contact waves, but the resolution in [16] is somewhat
better.

x

y

Figure 3.10a: 2-order scheme, � = 1:3, T=0.15

x

y

Figure 3.10b: Third-order scheme, T=0.15
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Con�guration 11.

 �

S21

J+32
 �

S41
J+34

: the initial data are

p2 = 0:4 �2 = 0:5313 p1 = 1 �1 = 1
u2 = 0:8276 v2 = 0 u1 = 0:1 v1 = 0

p3 = 0:4 �3 = 0:8 p4 = 0:4 �4 = 0:5313
u3 = 0:1 v3 = 0 u4 = 0:1 v4 = 0:7276

Comments. The 'ripples' in the NE quadrant are captured in full agreement with [16]. The same results
are strongly peaked in [25]. The limiter parameter � = 1:3 as well as the third-order results lead to
oscillations which are avoided with the standard minmod (� = 1) limiter. The contact on the left,
however, is further smeared compared with [25, 16].

x

y

Figure 3.11a: 2-order scheme, � = 1:3, T=0.3

x

y

Figure 3.11b: Third-order scheme, T=0.3

x

y

Figure 3.11c: 2-order scheme, � = 1, T=0.3
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Con�guration 12.

�!

S21

J+32
�!

S41
J+34

: the initial data are

p2 = 1 �2 = 1 p1 = 0:4 �1 = 0:5313
u2 = 0:7276 v2 = 0 u1 = 0 v1 = 0

p3 = 1 �3 = 0:8 p4 = 1 �4 = 1
u3 = 0 v3 = 0 u4 = 0 v4 = 0:7276

Comments. The resolution of the two contacts is improved by the third-order scheme, compared to the
second-order one. The results are in agreement with upwind computations.

x

y

Figure 3.12a: 2-order scheme, � = 1:3, T=0.25

x

y

Figure 3.12b: Third-order scheme, T=0.25

Con�guration 13.

J�21
 �

S32
 �

S41
J�34

: the initial data are

p2 = 1 �2 = 2 p1 = 1 �1 = 1
u2 = 0 v2 = 0:3 u1 = 0 v1 = �0:3

p3 = 0:4 �3 = 1:0625 p4 = 0:4 �4 = 0:5313
u3 = 0 v3 = 0:8145 u4 = 0 v4 = 0:4276

Comments. Does the 'blip' in the NE quadrant should be there? Indeed, this is in agreement with [25]
and [16].
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x

y

Figure 3.13a: 2-order scheme, � = 1:3, T=0.3

x

y

Figure 3.13b: Third-order scheme, T=0.3

Con�guration 14.

J+21
 �

S32
 �

S41
J�34

: the initial data are

p2 = 8 �2 = 1 p1 = 8 �1 = 2
u2 = 0 v2 = �1:2172 u1 = 0 v1 = �0:5606

p3 = 2:6667 �3 = 0:4736 p4 = 2:6667 �4 = 0:9474
u3 = 0 v3 = 1:2172 u4 = 0 v4 = 1:1606

Comments. The resolution of the contact in [16] is slightly sharper than the one achieved by the central
scheme.

x

y

Figure 3.14a: 2-order scheme, � = 1:3, T=0.1

x

y

Figure 3.14b: Third-order scheme, T=0.1
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Con�guration 15.

�!

R21

J�32
 �

S41
J+34

: the initial data are

p2 = 0:4 �2 = 0:5197 p1 = 1 �1 = 1
u2 = �0:6259 v2 = �0:3 u1 = 0:1 v1 = �0:3

p3 = 0:4 �3 = 0:8 p4 = 0:4 �4 = 0:5313
u3 = 0:1 v3 = �0:3 u4 = 0:1 v4 = 0:4276

Comments. Again, the sharp resolution of the contacts is only slightly less than those in [16]. The lower
contact in [25] is sharper, but our results is free of the weak oscillations observed in [25] at the tip of
the shock.

x

y

Figure 3.15a: 2-order scheme, � = 1:3, T=0.2

x

y

Figure 3.15b: Third-order scheme, T=0.2

Con�guration 16.

 �

R21

J�32
�!

S41
J+34

: the initial data are

p2 = 1 �2 = 1:0222 p1 = 0:4 �1 = 0:5313
u2 = �0:6179 v2 = 0:1 u1 = 0:1 v1 = 0:1

p3 = 1 �3 = 0:8 p4 = 1 �4 = 1
u3 = 0:1 v3 = 0:1 u4 = 0:1 v4 = 0:8276

Comments. The 'ripples', observed between the shock and contact waves, reproduce the same waveform
as in [25, 16]. Here, the shock resolution in [25] is sharper than [16] and the result in Figure 3.16b.
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x

y

Figure 3.16a: 2-order scheme, � = 1:3, T=0.2

x

y

Figure 3.16b: Third-order scheme, T=0.2

Con�guration 17.

J�21
 �

S32
�!

R41

J�34

: the initial data are

p2 = 1 �2 = 2 p1 = 1 �1 = 1
u2 = 0 v2 = �0:3 u1 = 0 v1 = �0:4

p3 = 0:4 �3 = 1:0625 p4 = 0:4 �4 = 0:5197
u3 = 0 v3 = 0:2145 u4 = 0 v4 = �1:1259

Comments. Here, we obtain sharp resolution of the contact without the spurious vorticities appearing
in [16]. In both cases, one observes the 'ripple' formed in the NW quadrant.

x

y

Figure 3.17a: 2-order scheme, � = 1:3, T=0.3

x

y

Figure 3.17b: Third-order scheme, T=0.3
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Con�guration 18.

J+21
 �

S32
�!

R41

J+34

: the initial data are

p2 = 1 �2 = 2 p1 = 1 �1 = 1
u2 = 0 v2 = �0:3 u1 = 0 v1 = 1

p3 = 0:4 �3 = 1:0625 p4 = 0:4 �4 = 0:5197
u3 = 0 v3 = 0:2145 u4 = 0 v4 = 0:2741

Comments. The resolution of the contacts is almost as sharp as in [16]. The 'ripples' in the NW
quadrant are observed in all computations.

x

y

Figure 3.18a: 2-order scheme, � = 1:3, T=0.2

x

y

Figure 3.18b: Third-order scheme, T=0.2

Con�guration 19.

J+21
 �

S32
�!

R41

J�34

: the initial data are

p2 = 1 �2 = 2 p1 = 1 �1 = 1
u2 = 0 v2 = �0:3 u1 = 0 v1 = 0:3

p3 = 0:4 �3 = 1:0625 p4 = 0:4 �4 = 0:5197
u3 = 0 v3 = 0:2145 u4 = 0 v4 = �0:4259

Comments. As before { ripples are observed in NW quadrant, and only the resolution of contacts is
slightly sharper in [16].
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x

y

Figure 3.19a: 2-order scheme, � = 1:3, T=0.3

x

y

Figure 3.19b: Third-order scheme, T=0.3
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